Letters

New calculations for photosynthesis measurement systems: what's the impact for physiologists and modelers?

Measurement of carbon dioxide (CO₂) and water (H₂O) vapor exchanged by leaves has been tremendously important for advancing understanding of plant physiology. Typically, photosynthesis measurement systems estimate the concentration of CO₂ and H₂O in air that has passed over a leaf inside a leaf chamber. Together with additional information such as flow rate, leaf area, and measurement of environmental variables, the calculations of von Caemmerer & Farquhar (1981), hereafter vCF1981, are used to estimate CO₂ and H₂O fluxes between the leaf and atmosphere. The combination of the vCF1981 calculations and photosynthesis measurement systems has enabled significant advances in the understanding and model representation of leaf-level photosynthesis and respiration.

Recently, the theory underlying the vCF1981 calculations has been updated (Márquez *et al.*, 2021), hereafter M2021. Changing the core calculations in photosynthesis measurement systems could have a marked impact on the measurement of leaf-level CO_2 and H_2O fluxes, and subsequent effects on derived parameters such as the maximum carboxylation capacity of Rubisco (V_{cmax}). Here, we highlight the implications of the M2021 theory for the plant physiology, crop breeding, and terrestrial biosphere modeling communities. We assess the effect of using the M2021 theory in photosynthesis measurement systems and identify which of the many measurements and derived parameters are affected.

What changes in the M2021 theory?

The foundation of the vCF1981 and M2021 theories rests on the shared transport pathways of H₂O and CO₂ through the leaf epidermis. The H₂O vapor concentration inside the leaf is typically assumed to be at saturation, that is, the relative humidity is 100%. This assumption enables the gradients of H₂O vapor to be calculated from measurements made at the leaf surface and enables estimation of the leaf water conductance (g_{lw}). Because H₂O and CO₂ share the same transport pathway, leaf CO₂ conductance (g_{lc}) can be inferred by accounting for the difference in diffusivity between CO₂ and H₂O. In the vCF1981 theory, g_{lc} is assumed to equal to the stomatal conductance to CO₂ (g_{sc}) and is calculated as:

where 1.6 is the ratio of the diffusivities of H_2O to CO_2 in air (Jarvis, 1971).

In the M2021 theory, g_{lc} considers the cuticular transport pathway and is calculated as:

$$g_{\rm lc} = \frac{g_{\rm sw}}{1.6} + \frac{g_{\rm cw}}{20}$$
 Eqn 2

where g_{sw} is the stomatal conductance to H₂O, g_{cw} is the cuticular conductance to H2O, and 20 is the ratio of the conductance through the cuticle of H₂O to CO₂, which is markedly higher than the ratio in air (Márquez et al., 2021). In other words, the diffusivity of H_2O and CO_2 through the stomata is of the same order of magnitude (a ratio of 1.6), but the cuticle is a stronger barrier to CO₂ than H₂O where the diffusivity of H₂O is much higher than that of CO₂ (a ratio of 20). For simplicity, we have used the conservative estimate (20) of the ratio of H₂O and CO₂ conductance through the cuticle provided by Márquez et al. (2021) throughout this letter; however, this value has been shown to vary between 20 and 40 depending on species and growth conditions (Boyer et al., 1997; Boyer, 2015a,b; Márquez et al., 2021). Using values higher than 20 would increase the magnitude of the effects of applying the M2021 theory that we discuss later.

For the same g_{lw} , considering solely the stomatal pathway or including the cuticular pathway can make a large difference to g_{lc} , particularly when the g_{cw} : g_{sw} ratio is markedly above zero. This is the most important difference between the vCF1981 and M2021 theories. Other differences between M2021 and vCF1981 have a smaller effect on calculated fluxes but are still notable: (1) The concentration of H₂O and CO₂ at the leaf surface is now explicitly calculated in M2021, which was not the case with vCF1981; (2) The M2021 theory better represents the molecular collisions between gases – known as the ternary effect – which can limit gas transport.

Theoretical changes: The M2021 theory now includes the cuticular conductance pathway which was not considered by the vCF1981 theory. It also improves representation of the conditions at the leaf surface and better represents the collision between gas molecules.

Which measured gas exchange variables are impacted by M2021?

Table 1 gives the list of variables of both theories as well as the expected impact due to application of the M2021 theory. The H₂O and CO₂ concentration at the leaf surface (w_s and C_s , respectively) are an output of M2021 calculations which were not directly given by vCF1981 calculations. The vCF1981 calculations only gave the H₂O and CO₂ concentrations in the atmosphere (w_a and C_a ,

vCF1981	M2021	Definition	Effect
A	А	Net CO_2 assimilation rate	No difference
E _T	E _T	Total leaf transpiration rate	No difference
_	Es	Leaf transpiration rate through the stomata	New variable
	E	Leaf transpiration rate through the cuticle	New variable
Ca	Ca	CO_2 concentration in the atmosphere	No difference
_	C,	CO_2 concentration at the leaf surface	New variable
Ci	Ci	CO_2 concentration inside the leaf	Difference (decrease)
gbc	gbc	Boundary layer conductance to CO_2	No difference
gbw	Sbw	Boundary layer conductance to water	No difference
glw	glw	Total leaf water vapor conductance	Difference (slight increase)
gsw	Ssw	Stomatal water vapor conductance	Difference (decrease)
	gcw	Cuticular water vapor conductance	New variable
glc	glc	Total leaf conductance to CO_2	Difference (decrease)
gsc	Ssc	Stomatal conductance to CO_2	Difference (decrease)
_	gcc	Cuticular conductance to CO_2	New variable
Wa	Wa	Water vapor concentration in the atmosphere	No difference
_	w _s	Water vapor concentration at the leaf surface	New variable
Wi	Wi	Water vapor concentration inside the leaf	No difference

Table 1 Variables calculated by the vCF1981 and M2021 theories and the expected difference in calculated values resulting from the application of the M2021 theory with $g_{cw} > 0$.

respectively). The difference between w_a , w_s and C_a , C_s is expected to be low under typical measurement conditions (high flow rates and high boundary layer conductance). In the M2021 theory the total leaf water transpiration (E_T) is separated into transpiration through the stomata (E_s) and through the cuticle (E_c) but E_T remains the same for both theories. Measurements of g_{lw} only change slightly with the M2021 theory, and thus g_{sw} , which was previously assumed to equal g_{lw} , will change with a difference of approximately the value of g_{cw} . Importantly, the measured CO₂ assimilation rate (*A*) does not change. Relative to application of the vCF1981 theory, there is potential for a marked effect on g_{lc} when the M2021 theory is applied. As a consequence of changes in g_{lc} ,

notable reductions in C_i can be realized (see fig. 5 of Márquez *et al.*, 2021). Note that an increase in C_i is also possible when A is negative.

For physiological studies, this means that the protocols that will be impacted by the M2021 theory are mainly those dependent upon C_i . This includes, as mentioned by Márquez *et al.* (2021), the estimation of the mesophyll conductance and the CO₂ concentration inside chloroplasts (C_c) which is based upon measurement of C_i (Pons *et al.*, 2009). Importantly, it also impacts parameters estimated from photosynthetic CO₂ response curves ($A-C_i$ or $A-C_c$ curves) which are frequently used to parameterize crop and terrestrial biosphere models. Measurement of variables that are not dependent on C_i or C_c such as the CO₂ assimilation rate at saturating irradiance (A_{sat}), the directly measured dark-adapted respiration rate (R_{dark}) or parameters derived from fitting models that do not rely on C_i or C_c will not be impacted (e.g. parameters derived from light response curves, or leaf H₂O conductance measurements).

Measurements: The main impact of applying the M2021 theory is a reduction in the estimation of intercellular CO_2 concentration during photosynthesis (i.e. when A > 0). Measurements of the photosynthetic rate and transpiration are not affected.

Impact of g_{cw} on $A-C_i$ measurements

To illustrate the effect of the g_{cw} on C_i and on parameters dependent on estimation of C_i , we recomputed previously published $A-C_i$ curves (Rogers et al., 2017b; Lamour et al., 2021; Burnett et al., 2021) using the M2021 theory considering a range of hypothetical g_{cw} (0–25 mmol m⁻² s⁻¹, Fig. 1). We then estimated the following parameters from the recalculated $A-C_i$ data: the maximum rate of carboxylation (V_{cmax}), the maximum rate of electron transport (J_{max}) , the triose phosphate utilization (TPU) rate, and the CO₂ release from the leaf in the light (R_{dav}) . Fig. 1 shows that indeed the new theory modifies C_i. The effect differed among the curves. This is expected by the theory, and a stronger effect is expected when the g_{cw} : g_{sw} ratio is high. Here, the arctic species (*Petasites frigidus*) was the least affected by consideration of g_{cw} and had the highest stomatal conductance during the measurement (around 0.20 mol m⁻² s⁻¹, Fig. 1(a,b), triangles). In oak (Quercus cocinear) the highest C_i on the A-C_i curve (Fig. 1a, high × ordinate, circle) showed the greatest response to g_{cw} , as it had the lowest conductance during the measurement (Fig. 1b). Note that the measured rates of $E_{\rm T}$ and A – while not directly affected by application of the M2021 theory – also influence the size of the g_{cw} effect on C_i (see Box 1).

Fig. 2 shows the effect on parameters derived from $A-C_i$ curves and highlights the potential for a marked increase in V_{cmax} when g_{cw} is high. This result is critical for estimation of photosynthetic traits because the assumption that g_{cw} is zero (in the vCF1981 theory) can bias the estimation of V_{cmax} in leaves for which g_{cw} is markedly higher than zero. Note that the parameter R_{day} is also impacted as it corresponds to the value of A when C_i equals the CO₂ compensation point in the absence of nonphotorespiratory CO₂ release (Γ^*). However, note that R_{day} fitted during estimation of the other $A-C_i$ parameters is usually

Box 1 Equations of gas transport between the leaf and the leaf surface

Fick's law of diffusion

$$C_i = C_s - \frac{A}{g_{\rm lc}}$$
 Eqn 3

vCF1981 theory

$$C_i = \frac{C_s \left(g_{lc} - \frac{E_T}{2}\right) - A}{g_{lc} + \frac{E_T}{2}}$$
 Eqn 4

Compared to Fick's law of diffusion, the vCF1981 theory considers a ternary effect which hinders the diffusion of CO₂ from the leaf surface toward the inside of the leaf through the stomata aperture due to collision between CO₂ molecules and the much higher number of H₂O molecules flowing in the opposite direction. This effect is represented in the equations by the terms $-E_T/2$ and $+E_T/2$. Note that if those terms are considered negligible, then we retrieve the Fick's law of diffusion (Eqn 4 corresponds to Eqn 3 when $E_T/2 = 0$). In this theory and in Fick's representation, $g_{lc} = g_{sc}$ and g_{cc} is assumed to be zero (Márquez *et al.*, 2021). Note that in photosynthesis measurement devices, C_s is not calculated by the vCF1981 theory (Table 1) and we assumed it was equal to C_a here.

M2021 theory

$$C_{i} = \frac{C_{s}(g_{sc} + g_{cc} - \frac{E_{s}}{2}) - A}{g_{sc} + g_{cc} + \frac{E_{s}}{2}}$$
Eqn 5

Compared to the vCF1981 theory, the cuticular conductance pathway is considered. The ternary effect which modifies the flux of CO₂ and water into and out of the leaf is taken into account by the $E_s/2$ terms. Compared to the vCF1981 model, the transpiration through the stomata (E_s) and the transpiration through the cuticle are also distinguished. Note that if $g_{cw} = 0$, then $g_{cc} = 0$, $g_{sc} = g_{lc}$ and $E_T = E_s$ and therefore, Eqn 5 would correspond to Eqn 4.

Importantly, the three equations (Eqns 3–5) depend upon the conductance variables for CO₂ (g_{sc} and g_{cc}). Note that the conductance for CO₂ is often inferred from the conductance to H₂O and that g_{sc} corresponds to $g_{sw}/1.6$ but that g_{cc} ranges from $g_{cw}/40$ to $g_{cw}/20$ (Boyer *et al.*, 1997; Boyer, 2015a,b; Márquez *et al.*, 2021) such as $g_{sc} + g_{cc} \neq (g_{sw} + g_{cw})/1.6$ if g_{cw} is above zero.

not used in physiological studies and other methods of estimating R_{day} are preferred. Interestingly, this also means that estimation of R_{day} using the approach of Laisk (1977), that is, the intersection of several $A-G_i$ curves, could be impacted by the M2021 theory. However, measurements using the Kok method (Kok, 1948) which are based on the response of A to irradiance, and which therefore do not rely on G_i , will not be impacted. Obviously, direct measurement of dark-adapted R_{dark} is also unaffected by the new theory.

Derived parameters: Only parameter estimates that are dependent upon measurement of C_i will be impacted by the M2021 theory. Notably, this includes V_{cmax} and the estimation of the mesophyll conductance. The magnitude of the effect increases with g_{cw} .

Forum 595

Fig. 2 Impact of g_{cw} on the parameters of the FvCB model (Farquhar *et al.*, 1980), V_{cmax} , J_{max} , TPU and R_{day} (a–d, respectively) estimated from the $A-C_i$ curves described in Fig. 1. The $A-C_i$ curves were measured on three different species (*Petasites frigidus*, triangles; *Quercus cocinear*, circles; *Guatteria dumetorum*, squares). The parameters estimated from the $A-C_i$ curves measured with the M2021 theory were standardized by dividing their values with the ones estimated using the vCF1981 theory and are unitless. Only *G. dumetorum* showed a TPU limitation so only squares are displayed in (c).

Impact of the M2021 theory on the simulation of photosynthesis

To simulate photosynthesis, leaf gas exchange models typically link a leaf gas transport model (e.g. Fick, 1855), a leaf conductance model (e.g. Medlyn *et al.*, 2011) and a photosynthesis model such as the FvCB model (Farquhar *et al.*, 1980). The leaf gas exchange models are end-users of the parameters estimated from data collected by photosynthesis measurement systems and will be affected by changes in measurements related to the use of the M2021 theory. In particular, changing the parameterization of the FvCB model to account for the effect of the M2021 theory on estimates of $A-G_i$ parameters (Fig. 2) would alter the simulation of gas exchange, as $V_{\rm cmax}$ is one of the most influential parameters in terrestrial biosphere models (Rogers, 2014; Walker *et al.*, 2021).

However, this is not the only impact of the M2021 theory. Márquez *et al.* (2021) focused on the theory of gas transport for improving calculations in photosynthesis measurement systems. Importantly, the representation of gas transport is also used in leaf gas exchange models. Today, in most models, it is represented by Fick's law of diffusion (Collatz *et al.*, 1991; Yin & Struik, 2009; Prieto *et al.*, 2012; Oleson *et al.*, 2013) which is a simpler representation than that used in both the vCF1981 and M2021 models (Box 1). Leaf gas exchange models typically do not represent gas transport through the cuticle, and share the flaws that

motivated the publication of the M2021 theory. For example, at present, the effect of the cuticular conductance is imperfectly taken into account by the parameter g_0 in leaf stomatal conductance models (Lombardozzi et al., 2017) and the transport of H₂O and CO₂ through the cuticle is represented through the stomatal pathway. Fig. 3 shows an example of differentiating the pathways in simulations of gas exchange by using the M2021 transport model with a hypothetical range of g_{cw} values (0–25 mmol m⁻² s⁻¹). Changing the transport model substantially modified simulations of A and E_T (Fig. 3) by modifying g_{lc} and C_i . Generally, simulated A decreased, and $E_{\rm T}$ increased as a consequence of using the M2021 model in place of the Fick's law of diffusion. This resulted in greater simulated transpiration for a given rate of photosynthesis, that is, a reduced water use efficiency. The effect was particularly evident at high temperature and low humidity (Fig. 3c,d,g,h). Therefore, consideration of the M2021 theory could be particularly important when modeling the response of CO₂ and H₂O cycles to drought. A key advantage of the M2021 theory is an improved representation of g_{cw} effects in photosynthesis models, which will open the door to improved representation of the impact of drought (Márquez et al., 2021), temperature (Schreiber, 2001; Schuster et al., 2016) or leaf aging (Duursma et al., 2019) on gcw. We also want to emphasize that if the M2021 theory is used in photosynthesis measurement systems, photosynthesis models will have to be updated so the calculations used for parametrization and simulation are the same (Rogers et al., 2017a).

596 Forum Let

Letters

Fig. 3 Impact of the choice of the representation of water and CO₂ transport between the leaf and atmosphere on modeled net assimilation rate (A, panels a–d) and transpiration (E_T , panels e–h). Fick's law is represented by a red line. The M2021 model is represented by a color ramp for different g_{cw} values. Note that using a g_{cw} of 0 mol m⁻² s⁻¹ corresponded here to the vCF1981 theory. The standard conditions for the simulations were irradiance = 2000 µmol m⁻² s⁻¹, relative humidity = 70%, leaf and air temperature = 25°C, C_s = 400 ppm. The following FvCB parameters measured at 25°C for *Guatteria dumetorum* were used: V_{cmax} = 36.7 µmol m⁻² s⁻¹, J_{max} = 66.9 µmol m⁻² s⁻¹, TPU = 4.08 µmol m⁻² s⁻¹ and R_{day} = 0.33 µmol m⁻² s⁻¹ (Fig. 2, vCF1981). We used the USO model of leaf conductance (Medlyn *et al.*, 2011), with a g_1 of 1.89 kPa^{0.5} which corresponded to the value measured in *G. dumetorum* (Fig. 2). The leaf conductance parameter g_0 was set to 0.03 mol m⁻² s⁻¹ for Fick's law of diffusion and for the vCF1981 theory. This parameter is thought to represent the cuticular conductance and the conductance due to unclosed stomata at low irradiance. Therefore, for the M2021 theory, g_0 was set to 0.03 – g_{cw} so the parametrization is comparable between simulations and gas transport models.

Modeled fluxes: The transport of gases in leaves is commonly represented by Fick's law of diffusion in crop and terrestrial biosphere models. The M2021 theory improves representation of gas transport and explicitly accounts for fluxes through the leaf cuticle which are currently accounted for using stomatal models.

Conclusion

The new M2021 theory could replace the way gas exchange is calculated in photosynthesis measurement systems. This would enable a better estimation of mesophyll conductance and of parameters derived from $A-C_i$ or $A-C_c$ response curves. The work of Márquez *et al.* (2021) therefore highlights that improved measurement and understanding of g_{cw} is not only important for drought mortality studies (e.g. Martin-StPaul *et al.*, 2017; Choat *et al.*, 2018) but also for accurate estimation of important photosynthetic parameters that determine leaf-level and global CO_2 and H_2O fluxes. In addition, the M2021 theory corrects the representation of gas fluxes through the cuticle. This advance can be

implemented in crop and terrestrial biosphere models that currently represent cuticular fluxes through the stomatal pathway. A significant barrier for the broad scale adoption of the M2021 theory in gas exchange systems is the necessity to measure g_{cw} for which the best methods are still debated (Boyer, 2015a; Duursma et al., 2019; Márquez et al., 2022). Recent advances, emerging datasets and new methods for measuring g_{cw} should accelerate the adoption of this new theory (Duursma et al., 2019; Machado et al., 2021; Márquez et al., 2022; Slot et al., 2021). Importantly, some aspects of gas exchange calculations are still uncertain and could change in the future. For example, plant physiologists and modelers typically assume that the H_2O content inside the leaf (w_i) is at saturation, which in some circumstances is an oversimplification that can result in biased estimation of C_i (Canny & Huang, 2006; Cernusak et al., 2018; Buckley & Sack, 2019). The work of Márquez et al. (2021) and potential continued development of the calculations used to describe the exchange of CO₂ and H₂O underscores the need to preserve the raw gas exchange data produced by photosynthesis measurement systems (Ely et al., 2021).

Acknowledgements

This work was supported by the Next-Generation Ecosystem Experiments (NGEE) – Tropics and NGEE – Arctic projects that are supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the United States Department of Energy contract no. DE-SC0012704 to Brookhaven National Laboratory, Upton, NY, USA.

Author contributions

JL and AR wrote the manuscript with contributions from KJD, KSE, QL and SPS. JL analyzed data.

ORCID

Kenneth J. Davidson D https://orcid.org/0000-0001-5745-9689 Kim S. Ely D https://orcid.org/0000-0002-3915-001X Julien Lamour D https://orcid.org/0000-0002-4410-507X Qianyu Li D https://orcid.org/0000-0002-0627-039X Alistair Rogers D https://orcid.org/0000-0001-9262-7430 Shawn P. Serbin D https://orcid.org/0000-0003-4136-8971

Data availability

The gas exchange measurements are available online, linked to the published datasets associated with the original studies (Rogers *et al.*, 2017b; Burnett *et al.*, 2021). The $A-C_i$ data for *Guatteria dumetorum* is publicly available (Lamour *et al.*, 2021). The code used to process the data is available online (Lamour, 2021).

¹Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; ²Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA (*Author for correspondence: email jlamour.sci@gmail.com)

References

- **Boyer JS. 2015a.** Turgor and the transport of CO₂ and water across the cuticle (epidermis) of leaves. *Journal of Experimental Botany* **66**: 2625–2633.
- Boyer JS. 2015b. Impact of cuticle on calculations of the CO₂ concentration inside leaves. *Planta* 242: 1405–1412.
- Boyer JS, Wong SC, Farquhar GD. 1997. CO₂ and water vapor exchange across leaf cuticle (epidermis) at various water potentials. *Plant Physiology* 114: 185–191.
- Buckley TN, Sack L. 2019. The humidity inside leaves and why you should care: implications of unsaturation of leaf intercellular airspaces. *American Journal of Botany* 106: 618–621.
- Burnett AC, Serbin SP, Lamour J, Anderson J, Davidson KJ, Yang D, Rogers A. 2021. Seasonal trends in photosynthesis and leaf traits in scarlet oak. *Tree Physiology* 41: 1413–1424.
- von Caemmerer S, Farquhar GD. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. *Planta* 153: 376–387.

- Canny MJ, Huang CX. 2006. Leaf water content and palisade cell size. *New Phytologist* 170: 75–85.
- Cernusak LA, Ubierna N, Jenkins MW, Garrity SR, Rahn T, Powers HH, Hanson DT, Sevanto S, Wong SC, McDowell NG *et al.* 2018. Unsaturation of vapour pressure inside leaves of two conifer species. *Scientific Reports* 8: 7667.
- Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. 2018. Triggers of tree mortality under drought. *Nature* 558: 531–539.
- Collatz GJ, Ball JT, Grivet C, Berry JA. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. *Agricultural and Forest Meteorology* 54: 107–136.
- Duursma RA, Blackman CJ, Lopéz R, Martin-StPaul NK, Cochard H, Medlyn BE. 2019. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. *New Phytologist* 221: 693–705.
- Ely KS, Rogers A, Agarwal DA, Ainsworth EA, Albert LP, Ali A, Anderson J, Aspinwall MJ, Bellasio C, Bernacchi C *et al.* 2021. A reporting format for leaflevel gas exchange data and metadata. *Ecological Informatics* 61: 101232.
- Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. *Planta* 149: 78–90.

Fick A. 1855. Ueber diffusion. *Annalen der Physik* 170: 59–86. Jarvis P. 1971. The estimation of resistances to carbon dioxide transfer. *Plant*

- photosynthetic production. Manual of methods. The Hague, the Netherlands: Dr W. Junk NV, 566–631.
- Kok B. 1948. A critical consideration of the quantum yield of Chlorella photosynthesis. *Enzymologia* 13: 1–56.
- Laisk AK. 1977. Kinetics of photosynthesis and photorespiration in C3 plant. Moscow, Russia: Nauka (in Russian).
- Lamour J. 2021. Lamour_et_al_2021_Letter_on_Marquez_et_al_2021_paper: v.1. Zenodo. doi: 10.5281/zenodo.5516288.
- Lamour J, Davidson KJ, Ely KS, Anderson J, Serbin SP, Rogers A. 2021. *Leaf gas* exchange and fitted parameters, San Lorenzo, Panama, 2020 (v.1.0). Oak Ridge, TN, USA: US Department of Energy Office of Scientific and Technical Information.
- Lombardozzi DL, Zeppel MJB, Fisher RA, Tawfik A. 2017. Representing nighttime and minimum conductance in CLM4.5: global hydrology and carbon sensitivity analysis using observational constraints. *Geoscientific Model Development* 10: 321–331.
- Machado R, Loram-Lourenço L, Farnese FS, Alves RDFB, de Sousa LF, Silva FG, Filho SCV, Torres-Ruiz JM, Cochard H, Menezes-Silva PE. 2021. Where do leaf water leaks come from? Trade-offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies. *New Phytologist* 229: 1415–1430.
- Márquez DA, Stuart-Williams H, Farquhar GD. 2021. An improved theory for calculating leaf gas exchange more precisely accounting for small fluxes. *Nature Plants* 7: 317–326.
- Márquez DA, Stuart-Williams H, Farquhar GD, Busch FA. 2022. Cuticular conductance of adaxial and abaxial leaf surfaces and its relation to minimum leaf surface conductance. *New Phytologist* 233: 156–168.
- Martin-StPaul N, Delzon S, Cochard H. 2017. Plant resistance to drought depends on timely stomatal closure. *Ecology Letters* 20: 1437–1447.
- Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, Angelis PD, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. *Global Change Biology* 17: 2134–2144.
- Oleson K, Lawrence D, Bonan G, Drewniak B, Huang M, Koven C, Levis S, Li F, Riley W, Subin Z et al. 2013. Technical description of v.4.5 of the Community Land Model (CLM). Boulder, CO, USA: NCAR Technical Notes.
- Pons TL, Flexas J, Von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E. 2009. Estimating mesophyll conductance to CO₂: methodology, potential errors, and recommendations. *Journal of Experimental Botany* 60: 2217– 2234.
- Prieto JA, Louarn G, Perez peña J, Ojeda H, Simonneau T, Lebon E. 2012. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (*Vitis vinifera* L.). *Plant, Cell & Environment* **35**: 1313–1328.
- **Rogers A. 2014.** The use and misuse of $V_{c,max}$ in earth system models. *Photosynthesis Research* **119**: 15–29.

Letters

- Rogers A, Medlyn BE, Dukes JS, Bonan G, Caemmerer S, Dietze MC, Kattge J, Leakey ADB, Mercado LM, Niinemets Ü *et al.* 2017a. A roadmap for improving the representation of photosynthesis in Earth system models. *New Phytologist* 213: 22–42.
- **Rogers A, Serbin SP, Ely KS, Sloan VL, Wullschleger SD. 2017b.** Terrestrial biosphere models underestimate photosynthetic capacity and CO₂ assimilation in the Arctic. *New Phytologist* **216**: 1090–1103.
- Schreiber L. 2001. Effect of temperature on cuticular transpiration of isolated cuticular membranes and leaf discs. *Journal of Experimental Botany* 52: 1893– 1900.
- Schuster A-C, Burghardt M, Alfarhan A, Bueno A, Hedrich R, Leide J, Thomas J, Riederer M. 2016. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures. *AoB PLANTS* 8: plw027.
- Slot M, Nardwattanawong T, Hernández GG, Bueno A, Riederer M, Winter K. 2021. Large differences in leaf cuticle conductance and its temperature response

among 24 tropical tree species from across a rainfall gradient. *New Phytologist* **232**: 1618–1631.

- Walker AP, Johnson AL, Rogers A, Anderson J, Bridges RA, Fisher RA, Lu D, Ricciuto DM, Serbin SP, Ye M. 2021. Multi-hypothesis comparison of Farquhar and Collatz photosynthesis models reveals the unexpected influence of empirical assumptions at leaf and global scales. *Global Change Biology* 27: 804–822.
- Yin X, Struik PC. 2009. C_3 and C_4 photosynthesis models: an overview from the perspective of crop modelling. *NJAS Wageningen Journal of Life Sciences* 57: 27–38.

Key words: cuticle, cuticular conductance, Fick's law, gas exchange systems, gas transport, intercellular CO₂, photosynthesis measurement devices.

Received, 7 July 2021; accepted, 19 September 2021.

About New Phytologist

- New Phytologist is an electronic (online-only) journal owned by the New Phytologist Foundation, a not-for-profit organization
 dedicated to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews and
 and Tansley insights.
- Regular papers, Letters, Viewpoints, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are
 encouraged. We are committed to rapid processing, from online submission through to publication 'as ready' via *Early View* –
 our average time to decision is <26 days. There are **no page or colour charges** and a PDF version will be provided for each article.
- The journal is available online at Wiley Online Library. Visit **www.newphytologist.com** to search the articles and register for table of contents email alerts.
- If you have any questions, do get in touch with Central Office (np-centraloffice@lancaster.ac.uk) or, if it is more convenient, our USA Office (np-usaoffice@lancaster.ac.uk)
- For submission instructions, subscription and all the latest information visit www.newphytologist.com