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1  |  INTRODUC TION

High-latitude ecosystems, defined here as the Arctic–Boreal Region 
(ABR), mostly lie north of 55°N and occupy c. 17% of the global land 
area (Pan et al., 2013; Walker et al., 2005). The vegetated area of the 
Arctic (5.05 × 106 km2) and the boreal (18.8 × 106 km2) regions is 
typified by short growing seasons, cold mean annual temperatures, 
low nutrient cycling rates and availability, and low species diversity 
(Bobbink et al., 2010; Pan et al., 2013; Walker et al., 2005; Willig 
et al., 2003). Although these factors limit the biological activity 
of the ABR, northern regions have an enormous impact on global 
vegetation–atmosphere interactions and are a significant source of 
uncertainty in carbon uptake in terrestrial biosphere models (TBMs; 

Fisher, Hayes, et al., 2018). Annual gross primary productivity (GPP) 
in the Arctic (1.6 Pg C year−1) and boreal (8.3 Pg C year−1) regions is 
small relative to global GPP (123 Pg C year−1) but is also highly uncer-
tain (Beer et al., 2010; Fisher, Hayes, et al., 2018; Fisher, Sikka, et al., 
2014; Pan et al., 2013). In conjunction with an improved understand-
ing of the processes that release CO2 from the ABR, reducing un-
certainty in CO2 uptake is important for understanding whether the 
region will be a net source or sink for CO2 in the future. Therefore, 
reducing uncertainty in GPP in the region is critical for more accu-
rately estimating global carbon cycling, and understanding the re-
sponse of the region to global change.

The planet has warmed by c. 1°C since the beginning of the 
Industrial Revolution, driven predominantly by a c. 50% increase in 
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Abstract
The Arctic–Boreal Region (ABR) has a large impact on global vegetation–atmosphere 
interactions and is experiencing markedly greater warming than the rest of the planet, 
a trend that is projected to continue with anticipated future emissions of CO2. The 
ABR is a significant source of uncertainty in estimates of carbon uptake in terres-
trial biosphere models such that reducing this uncertainty is critical for more accu-
rately estimating global carbon cycling and understanding the response of the region 
to global change. Process representation and parameterization associated with gross 
primary productivity (GPP) drives a large amount of this model uncertainty, particu-
larly within the next 50 years, where the response of existing vegetation to climate 
change will dominate estimates of GPP for the region. Here we review our current 
understanding and model representation of GPP in northern latitudes, focusing on 
vegetation composition, phenology, and physiology, and consider how climate change 
alters these three components. We highlight challenges in the ABR for predicting GPP, 
but also focus on the unique opportunities for advancing knowledge and model rep-
resentation, particularly through the combination of remote sensing and traditional 
boots-on-the-ground science.
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atmospheric carbon dioxide concentration ([CO2]) (Ciais et al., 2013). 
Over the same period, the annual near-surface air temperature in 
the ABR has increased by more than twice the global mean (IPCC, 
2014; USGCRP, 2017). Indeed, parts of Canada's Yukon region are al-
ready 3.5°C warmer than they were in the mid-20th century (Zhang 
et al., 2019). Under a scenario with continued high emissions of an-
thropogenic CO2, mean annual global temperatures are predicted 
to increase by ~4°C by 2100 (IPCC, 2014). However, the greatest 
degree of future warming is expected in high latitudes, where the 
Arctic is projected to warm by ~8°C by 2100 (Ciais et al., 2013) with 
enormous consequences for the functioning of arctic and boreal 
ecosystems (Euskirchen et al., 2009; Hinzman et al., 2005; Hugelius 
et al., 2020; Natali et al., 2012; Price et al., 2013; Schuur et al., 2015; 
Soja et al., 2007).

Climate change–carbon cycle feedbacks in these northern re-
gions are complex and hold the potential to alter global carbon cy-
cling. Global change can increase GPP through the direct effects of 
warming and rising [CO2] on photosynthesis and canopy growth, 
through an extended growing season, and increased rates of nu-
trient cycling and availability (Hinzman et al., 2005; Morison et al., 
2018; Shaver & Chapin, 1980). These effects may underlie recent 
greening trends in this region (Arndt et al., 2019; Epstein et al., 2012; 
Raynolds et al., 2012). At the same time, increased thaw and deg-
radation of permafrost is adding previously frozen and preserved 
carbon to the atmosphere, and dramatically altering hydrology and 
tree cover, and continued warming is expected change peatland re-
gions from a net sink to a source of CO2 (Carpino et al., 2018; Helbig 
et al., 2016; Hugelius et al., 2020; Jorgenson et al., 2006; Liljedahl 
et al., 2016; Schuur & Mack, 2018; Smith et al., 2005). Lastly, dis-
turbance plays a critical role in this region, and many of the natural 
disturbance regimes which impact carbon cycling in the ABR (such 
as fires, drought, and insect damage) are prone to alterations via cli-
mate change (Seidl et al., 2017; Soja et al., 2007).

While disturbance can substantially alter the structure and func-
tion of northern ecosystems (Amiro et al., 2010; Bond-Lamberty 
et al., 2009; Mack et al., 2021), vegetation composition change 
across the ABR is spatially heterogeneous, and in the absence of 
disturbance is slow and often not observed (Arndt et al., 2019; 
Jorgenson et al., 2015; Tape et al., 2012). The slow change in com-
munity composition is partly because ABR vegetation is long-lived. 
Vegetative reproduction dominates in the Arctic where individual 
tussocks can be c. 150 years old, while sedge communities can be 
several thousand years old, and boreal hardwoods and conifers live 
50–300 years (Burns & Honkala, 1990; Burns et al., 1990; Jónsdóttir 
et al., 2000; Mark et al., 1985). Thus, these existing communities 
have already experienced decades of global change and, by and 
large, are the same communities we need to understand and rep-
resent in TBMs to project the effects of the much greater changes 
anticipated for the next 50 years.

In the long term (>100 year), changes in vegetation composition 
and structure resulting from disturbance will play an increasingly 
dominant role in determining the response of the ABR to global 
change (Mack et al., 2021; Thom & Seidl, 2016). However, it is 

uncertainty in the anthropogenic greenhouse gas emission scenario 
that dominates projections of global change on this timescale. In 
contrast, uncertainty in near-term (~50 year) projections of C uptake 
in the ABR are dominated by scientific uncertainty, that is, represen-
tation of the many processes that determine the response of eco-
systems to global change (Fisher et al., 2014; Lovenduski & Bonan, 
2017; USGCRP, 2017). Analyses of TBMs have consistently shown 
that model process representation and parametrization associated 
with photosynthesis and respiration drives a large fraction of the un-
certainty in ecosystem fluxes and pools, including GPP, net primary 
productivity, leaf area index (LAI), latent heat flux, and soil organic 
matter carbon (Bonan et al., 2011; Booth et al., 2012; Ricciuto et al., 
2018; Sargsyan et al., 2014). Therefore, a major advance needed to 
reduce near-term (~50 year) model uncertainty associated with car-
bon, water, and energy cycling and pools in the ABR is an improved 
representation of current vegetation, a robust understanding of the 
response and potential acclimation of current vegetation to pro-
jected global change, and an understanding of how global change 
will alter community composition following disturbance. Currently, a 
paucity of observational data in the ABR is limiting model improve-
ment and evaluation (Fisher, Hayes, et al., 2018), in part due to the 
inherent remoteness of these ecosystems and the associated logis-
tical challenges of carrying out in-situ measurements, particularly 
over large spatial and temporal scales.

Previous work has highlighted the primary drivers, impacts, and 
feedbacks of climate change on high-latitude ecosystems (AMAP, 
2021; Gauthier et al., 2015; Price et al., 2013; Swann et al., 2010; 
Venäläinen et al., 2020) and the use of remote sensing to study vege-
tation and disturbance dynamics (Beamish et al., 2020; Gamon et al., 
2004; Schimel et al., 2015), as well as new opportunities (Ustin & 
Middleton, 2021). Here, we specifically focus on the challenge of 
reducing the uncertainty associated with modeling GPP in the ABR. 
Within this framework, we consider the unique features, processes, 
and challenges of this region, and highlight the opportunities to im-
prove model representation. We address four fundamental ques-
tions related to model representation of GPP in the region: (1) What 
is the current vegetation composition and distribution? (2) What are 
the current phenological patterns? (3) How can we best represent 
the physiological activity of the vegetation? (4) How will climate 
change alter vegetation composition, phenology, and physiology in 
ways that lead to changes in species composition?

2  |  VEGETATION COMPOSITION AND 
DISTRIBUTION

Spatial and temporal variation in the uptake of carbon and associ-
ated fluxes of water and energy across the globe is determined by 
climate and the distribution of vegetation. In TBMs, the diversity of 
plant species and their traits are typically binned into groups known 
as plant functional types (PFTs), groupings that reflect plant size, 
life-history strategies, architecture, metabolism, and phenology 
(Wullschleger et al., 2014). This simplification provides an intuitive 
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way to reduce ecological and model complexity by grouping func-
tionally similar plant types while also balancing biological realism 
(Box, 1996; Fisher, Koven, et al., 2018; Woodward & Cramer, 1996). 
In most major climate models, the distribution of PFTs is determined 
by dynamic global vegetation models that provide an area-averaged 
representation of each PFT for each climatic grid cell (Fisher, Koven, 
et al., 2018; Fisher et al., 2015).

Understanding the composition of the ABR is a critical first 
step for modeling high-latitude GPP and resulting carbon stores. 
Much of the region is underlain by permafrost and the associated 
belowground carbon stocks are massive, accounting for about one-
third of the world's stored carbon (Hugelius et al., 2020; Pan et al., 
2013; Schuur et al., 2015; Tarnocai et al., 2009; Walker et al., 2005; 
Figure 1). While approximately 80% of the boreal zone is also un-
derlain by permafrost, more than half of this area is discontinuous, 
sporadic, or isolated permafrost (Helbig et al., 2016; Tarnocai et al., 
2009). Arctic land cover is dominated by graminoids and shrubs 
growing above a lichen or moss layer. The boreal region is domi-
nated by extensive forests that account for 29% of the total global 
forested land area (Pan et al., 2013), but some areas also contain 
extensive wetland and peatland ecosystems (Gauthier et al., 2015; 
Hugelius et al., 2020; Tarnocai et al., 2002). Compared to other eco-
systems, the ABR has a low plant biodiversity, with a small number 
of common species dominating regional communities. The relatively 
low plant diversity in the ABR and the long lifespans of northern 
plants makes wall-to-wall measurement of fractional cover of each 
PFT tractable and valuable. Despite this, high-latitude ecosystems 

have been critically understudied, and existing observations and ex-
periments are biased to small geographic regions, primarily located 
in North America and Scandinavia (Metcalfe et al., 2018; Schimel 
et al., 2015). Our reliance on process knowledge and observational 
data from a small number of field sites raises questions about how 
effectively we can interpolate this knowledge about the vegetation 
composition of the ABR across the vast, heterogeneous spaces be-
tween them.

Our understanding of ecosystem and vegetation structure and 
composition across the ABR has been greatly advanced by the use 
of remote sensing (Peckham et al., 2008; Sulla-Menashe et al., 2018; 
e.g., Beamish et al., 2020; Jenkins et al., 2020). Importantly, remote 
sensing can help fill the significant spatial and temporal gaps in ob-
servational data for areas where ground-based measurements are 
difficult to obtain (Nelson et al., 2009; Schimel et al., 2015). The util-
ity of remote sensing technologies to enhance the monitoring and 
measurement of high-latitude systems is rapidly growing, including 
the adoption of novel technologies and analysis techniques that can 
improve the accuracy of monitoring approaches (Assmann et al., 
2019; Lara et al., 2019; Schimel et al., 2015; Sluijs et al., 2018; Yang, 
Meng, et al., 2020; Zhang et al., 2018). Remote sensing platforms, 
across many different spatiotemporal scales, can serve a wide range 
of purposes for studying this region (Langford et al., 2019; Lees 
et al., 2021; Shiklomanov et al., 2019; Table 1). Across the ABR, re-
mote sensing has been used to monitor key biophysical properties, 
including LAI and the fraction of absorbed photosynthetically active 
radiation, as well as vegetation composition and albedo, and to infer 

F I G U R E  1  Conceptual diagram of the Arctic–Boreal Region (ABR). The latitude where the arctic ecosystem transitions to a boreal 
ecosystem, and the southern extent of the boreal region varies with longitude but can be broadly considered to range from 55 to 75°N. (a) 
(Walker et al., 2005), (b) (Beer et al., 2010), (c) (Epstein et al., 2012), (d) (Neigh et al., 2013), and (e) (Tarnocai et al., 2009) [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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TA B L E  1  Remote sensing technologies for monitoring and measuring high-latitude ecosystems

Remote sensing technology 
(key references) How does it work

Data products and link to 
biological function Example platforms

Imaging spectroscopy (IS) 
(Cawse-Nicholson et al., 
2021; Serbin & Townsend, 
2020; Ustin & Middleton, 
2021; Ustin et al., 2004)

A passive optical remote sensing system 
that collects very high spectral 
resolution imagery between 350 
and 2500 nm in a large number 
(e.g., >100) of narrow (<10 nm 
bandwidths) continuous spectral 
channels

Albedo, composition, plant 
traits, light-use efficiency

Airborne: AVIRIS, CASI 
Spaceborne: CHRIS, 
DESIS, Hyperion, PRISMA, 
Surface Biology and 
Geology (upcoming NASA 
mission)

Optical multispectral, multi-
temporal, and very high-
resolution imagery (Ustin 
& Middleton, 2021; Xie 
et al., 2008)

An optical multispectral imaging 
system captures image data within 
specific wavelength ranges across 
the electromagnetic spectrum. 
Common spectral coverage includes 
blue (~450–495 nm), green (~495–
570 nm), red/red-edge (~620–750 nm), 
near infrared (~750–1100 nm), and 
sometimes shortwave-infrared 
(~1100–2500 nm)

Greeness, SVIs, albedo, LAI, 
land-use/land-cover, 
disturbance, land-surface 
phenology

AVHRR, Landsat, MODIS, 
QuickBird, Sentinel, SPOT, 
VIIRS, WoldView

Light detection and ranging 
(Lidar) (Cook et al., 2013; 
Lefsky et al., 2002; Lim 
et al., 2003)

An active remote sensing system that uses 
pulsed laser energy to very accurately 
measure the distance from the sensor 
to the target, based on elapsed time-of-
flight of the light energy reflected from 
the surface

Three dimensional canopy 
structure, plant height, 
biomass, surface elevation

Airborne: LVIS, G-LiHT, NEON 
AOP

Spaceborne: IceSat, GLAS, 
GEDI (poor coverage at 
high latitude)

Thermal Infrared (TIR) (Costa 
et al., 2013; Still et al., 
2019)

A passive sensing system that measures 
energy emitted from objects in the 
mid-infrared (~8–14 μm) region to 
calculate the temperature of the object 
using Plank's Law. Calculation of the 
surface temperature also requires the 
emissivity of the object, which for 
vegetation, is often assumed to be 
~0.98

Land-surface temperature 
(LST), evapotranspiration 
(ET)

Landsat, MODIS, ECOSTRESS 
(poor coverage at high 
latitude)

Synthetic aperture Radio 
Detection and Ranging 
(Radar, SAR) (Harrell et al., 
1995; Kimball et al., 2004; 
Saatchi & Moghaddam, 
2000; Sinha et al., 2015; 
Zhou et al., 2019)

Radar systems operate in the microwave 
portion of the electromagnetic 
spectrum (c. 2–100 cm) with a 
frequency of 0.25–11 GHz. Active 
radar systems generate their own 
pulses that interact with surfaces 
and then measure the properties of 
the reflected radiation. Passive radar 
systems only measure radar signatures 
reflected from materials. Radar 
systems are generally “all weather” and 
can operate in different wavelengths 
and polarizations depending on the 
main purpose of the sensor. SAR 
systems create an artificially long 
antenna length by combining multiple 
measurements over a short time period 
into a single data stream allowing 
them to use a wide range of different 
frequencies

Canopy structure, canopy 
moisture, seasonality, 
surface elevation, soil 
freeze–thaw status, soil 
moisture, vegetation 
biomass, vegetation 
optical depth (VOD)

Airborne: AIRSAR, JERS−1, 
UAVSAR

Spaceborne: NISAR (upcoming 
joint NASA ISRO mission), 
PALSAR, RADARSAT, 
SeaWinds, SRTM, 
TanDEM-X, TERRASar-X

Interferometric SAR (InSAR) 
(Kellndorfer et al., 2010; 
Qi & Dubayah, 2016; Yun 
et al., 2019)

InSAR combines the phase information 
of multiple SAR images of the same 
location into an “interferogram” to 
measure surface displacement or 
change

Canopy height, structure, 
and biomass, land-cover 
classification

Similar platforms as SAR 
but used to generate 
interferograms
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vegetation productivity (Kimball et al., 2006; Langford et al., 2019; 
Serbin et al., 2013). Multi-temporal and multi-spectral platforms 
have provided regular characterization of vegetation composition 
across space and time (Potter et al., 1999; Raynolds et al., 2019; 
Wolter & Townsend, 2011), as well as characterizing canopy loss, 
change, or recovery from disturbance (Lees et al., 2021; Potapov 
et al., 2008; Schroeder et al., 2011; Wang, Sulla-Menashe, et al., 
2020). In the North American region of the ABR, intensive field 
campaigns combined with airborne and satellite data have yielded 
detailed inventories of vegetation structure, functional status, and 
biomass using both passive and active radar platforms (Alonzo et al., 
2020; Gamon et al., 2004; Saatchi & Rignot, 1997). Emerging remote 
sensing platforms and sensors offer excellent near-term opportuni-
ties to determine vegetation composition, enabling us to answer the 
key question of “what is out there?,” but critical needs remain.

Remote sensing of the ABR has been historically limited by (1) 
poor data coverage outside of North America (Neigh et al., 2013; 
Nelson et al., 2009); (2) inconsistent coverage by key global imaging 
systems, including imaging spectroscopy (IS), thermal infrared (TIR), 
Lidar, and synthetic aperture radar (SAR)—as they are not available, 
have poor spatial coverage, coarse resolution, or have not regularly 
covered northern high latitudes; and (3) the fact that the low spe-
cies diversity in the ABR is offset by high sub-pixel heterogeneity 
(Greaves et al., 2019; Riihimäki et al., 2019; Yang, Meng, et al., 2020). 
Critically, this sub-pixel heterogeneity in vegetation cover, distribu-
tion, composition, and structure is important to characterize as it is 

a key driver of ecosystem-scale processes, including carbon fluxes 
and stores (Lara et al., 2020), yet is a significant challenge to account 
for in most satellite observations (Montesano et al., 2016; Siewert & 
Olofsson, 2020). Commercial high-resolution platforms could help 
to fill this gap (Davidson et al., 2016; Witharana et al., 2020), but 
are often more limited in their spectral and temporal coverage than 
other coarse-scale multispectral platforms, such as Landsat and 
MODIS (Table 1). Furthermore, the absence of ground truthing data 
for verifying high-latitude remote sensing observations is a major 
source of uncertainty in quantifying and monitoring vegetation 
changes across the Eurasian ABR (e.g., Neigh et al., 2013).

Despite these challenges, remote sensing has played a key role 
in providing regular accounting of high-latitude ecosystem compo-
sition, structure, and condition (Duncan et al., 2020). For example, 
the detailed circum-Arctic vegetation map (Raynolds et al., 2019), 
derived from both field surveys and remote sensing data, shows 
the distribution of primary land-cover types across the pan-Arctic 
region (Walker et al., 2005) and can be used with other data to 
connect land-cover patterns to ecosystem processes or to explore 
widespread changes in related properties, including permafrost–
vegetation feedbacks (e.g., Nitze et al., 2018). Active remote sensing 
platforms, including SAR and Lidar (Table 1), have been used from 
local to larger scales to capture snapshots in time of vegetation 
structure, surface elevation, and aboveground biomass patterns 
(Kristensen et al., 2015; Neigh et al., 2013; Williams et al., 1999; 
e.g., Alonzo et al., 2020; Askne et al., 2017), as well as characterize 

Remote sensing technology 
(key references) How does it work

Data products and link to 
biological function Example platforms

Solar-induced fluorescence 
(SIF) (Campbell et al., 
2008; Meroni et al., 2009; 
Mohammed et al., 2019; 
Yang et al., 2015)

An optical, passive remote sensing 
approach that measures fluorescence 
(the re-emittance of absorbed light 
at red to far-red wavelengths) from 
plants in very narrow spectral regions. 
Vegetation absorbs sunlight to drive 
photosynthesis, but a fraction of 
this light is unused and is dissipated 
as fluorescence. Therefore, the 
SIF signatures relate to underlying 
photosynthetic status and can be used 
as a means to more directly infer GPP. 
However, SIF signals are only a very 
small fraction of the total reflectance 
signal (~2%) so sensors need to be very 
sensitive to the primary SIF wavelength 
ranges

SIF, GPP (through 
relationships derived 
between GPP from eddy 
covariance and SIF)

Airborne: CFIS
Spaceborne: GOME, GOSAT, 

OCO-2/3, Tropomi

Abbreviations: AIRSAR, Airborne Synthetic Aperture Radar; AVHRR, Advanced Very High-Resolution Radiometer; AVIRIS, Airborne Visible/Infrared 
Imaging Spectrometer; CASI, Compact Airborne Imaging Spectrometer; CFIS, Chlorophyll Fluorescence Imaging Spectrometer; CHRIS, Compact 
High-Resolution Imaging Spectrometer; DESIS, DLR Earth Sensing Imaging Spectrometer; ECOSTRESS, ECOsystem Spaceborne Thermal Radiometer 
Experiment on Space Station; GEDI, Global Ecosystem Dynamics Investigation; GLAS, Geoscience Laser Altimeter System; GLiHT, Goddard's Lidar, 
Hyperspectral, and Thermal imager; GOME, Global Ozone Monitoring Experiment; GOSAT, Greenhouse Gases Observing Satellite; JERS-1, Japan 
Earth Resources Satellite-1; MODIS, MODerate resolution Imaging Spectrometer; NEON AOP, National Ecological Observatory Network Airborne 
Observatory Platform; NISAR, NASA-ISRO SAR Mission; OCO-2/3, Orbiting Carbon Observatory; PALSAR, Phased Array type L-band Synthetic 
Aperture Radar; PRISMA, PRecursore IperSpettrale della Missione Applicativa; RADARSAT, Radar Satellite Constellation; SPOT, Satellite Pour 
l’Observation de la Terre; SRTM, Shuttle Radar Topography Mission; TanDEM-X, TerraSAR-X add-on for Digital Elevation Measurement; UAVSAR, 
Unoccupied Aerial Vehicle Synthetic Aperture Radar; VIIRS, Visible Infrared Imaging Radiometer Suite.

TA B L E  1  (Continued)
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ecosystem resilience (Lees et al., 2021). From these remote sensing 
assessments, the circumboreal forest is estimated to contain ~38 Pg 
C in aboveground biomass. Using regression models between NDVI 
and aboveground phytomass (Epstein et al., 2012), total circumpo-
lar Arctic biomass has been estimated to be ~2.4 Pg C (Figure 1). 
However, these assessments are often derived from a range of dif-
ferent datasets which are not continually available, are not available 
everywhere, or are validated on limited field observations, which re-
sults in significant uncertainty in estimates of vegetation cover and 
biomass (e.g., Saarela et al., 2020).

Overcoming the challenges outlined here requires new remote 
sensing platforms, novel use of existing platforms—including com-
mercial high-resolution imagery to aid in calibration and validation—
and paired field and airborne campaigns (e.g., the NASA Arctic/
Boreal Vulnerability Experiment; Miller et al., 2019).

3  |  THE IMPORTANCE OF PHENOLOGY 
FOR C APTURING C ARBON FLUXES

Understanding the composition of high-latitude vegetation is a pre-
requisite for modeling carbon uptake in the ABR. However, accu-
rately representing the timing of bud burst (green-up), peak season 
productivity, and senescence and leaf fall (brown-down) for this 
region is also critical for estimating GPP because these processes 
are on-off switches for physiological activity. Measuring shifts in 
vegetation seasonality in response to climate extremes or long-term 
change is also critical to understand the impact of climate change on 
land–atmosphere feedbacks and carbon storage (Kross et al., 2014; 
Lindroth et al., 2020; Xia et al., 2015).

The growing season in the ABR is short compared to many other 
biomes, ranging from ~60 days in the high Arctic to ~260 days in the 
southern boreal region (Park et al., 2016). The short growing season 
typical of the region means that errors in estimation of green-up and 
brown-down have a more marked impact on GPP in the ABR than in 
temperate systems with longer growing seasons. Additionally, the 
dominance of evergreen species in portions of the ABR requires 
knowledge of the start and end of the primary photosynthetic pe-
riod that may not be as clearly defined by seasonal “greenness” sig-
nals (Wong et al., 2020). A range of approaches are employed by 
TBMs to determine green-up and brown-down, including various 
metrics associated with air temperature, and the use of prescribed 
dates or photoperiod length (Fisher, Huntzinger, et al., 2014). In 
some cases, phenology also directly regulates leaf-level physiology 
through seasonal scalars on photosynthetic capacity (e.g., Medvigy 
et al., 2009). Approximately one-third of TBMs prescribe green-up 
and brown-down from spectral vegetation indices (SVIs) or other 
remotely sensed metrics (Fisher, Huntzinger, et al., 2014; MacBean 
et al., 2015).

Satellite remote sensing is ideally suited for characterizing global 
vegetation phenology, and in particular high-latitude phenology. For 
one, the increasing record of globally available, daily or near-daily 
observations from satellites covering the ABR has ushered in a new 

era in the ability to quantify broad-scale annual phenology metrics, 
including the start and end of season, as well as other metrics includ-
ing the rate of green-up and senescence, and seasonal amplitudes 
(Chen & Yang, 2020; Jeganathan et al., 2014; Peckham et al., 2008). 
Compared with other remote sensing products that often require 
models or transfer functions to convert the measured signal to the 
variable of interest (Myneni et al., 2002; Running et al., 2004), remote 
sensing of seasonal changes can be measured with simpler products 
like reflectance or SVIs, including NDVI. In addition, because they 
provide a synoptic view over multiple decades, satellite-derived 
phenology metrics can also be used to track changes in plant season-
ality (Zeng et al., 2011), which allows us to determine the controls 
of plant seasonality on carbon cycling and storage (Pulliainen et al., 
2017; Richardson et al., 2010; Zhu et al., 2013). More recently, the 
characterization of vegetation phenology has become more routine, 
particularly with the creation of standard data products (Ganguly 
et al., 2010), while novel platforms now enable higher temporal res-
olutions (Wheeler & Dietze, 2021). Similarly, biophysical products, 
including LAI, are often used to capture seasonality of plants, but 
also provide a more meaningful metric for evaluating carbon cycle 
models (Li et al., 2018; Viskari et al., 2015).

Optical remote sensing is particularly effective at capturing 
seasonal changes in broadleaf deciduous plants. Studies exploring 
seasonality in the ABR show that, in general, satellite observations 
provide good accuracy in characterizing start and end of season met-
rics of deciduous vegetation (Serbin et al., 2013). However, a large 
fraction of the ABR is composed of evergreen plants, which present 
additional challenges for the remote characterization of seasonality. 
The primary challenge is the much smaller spectral changes in SVIs 
of evergreen trees associated with seasonal transitions, coupled 
with a potentially strong signal from deciduous understory vegeta-
tion (Miller et al., 1997; Robin et al., 2008; Serbin et al., 2013), which 
limits the utility of traditional approaches that extract phenology 
from optical remote sensing data (Wang et al., 2018). Importantly, 
mischaracterization of evergreen phenology can then have signifi-
cant impacts on monitoring and modeling of the ABR carbon cycle 
(Forkel et al., 2019; Richardson et al., 2012). Other background signal 
contamination, including contamination from snow cover, soil mois-
ture change, shadows, and changing sun-sensor geometry during the 
spring and fall transition periods, can also reduce the performance 
of satellite-derived phenology (Wang et al., 2018). Furthermore, the 
longest satellite records often contain other artifacts stemming from 
changing platforms, orbital drift, and new sensor designs that also 
have to be accounted for, all of which may increase the uncertainties 
in derived seasonal metrics (Ji & Brown, 2017). However, surface 
phenology observation networks and approaches have matured 
(Seyednasrollah et al., 2019), providing critical new datasets for the 
assessment and improvement of tracking phenological signals in the 
ABR.

Despite these challenges, satellite phenology is widely used to 
study seasonality in the ABR. Remote sensing has revealed a gen-
eral lengthening of the growing season as the climate warms, but 
also a potential stress-induced browning trend in later successional 



1228  |    ROGERS et al.

vegetation (Bunn & Goetz, 2006; Dannenberg et al., 2020; Myneni 
et al., 1997; Park et al., 2016; Sulla-Menashe et al., 2018). The con-
flict between these two divergent patterns may, in part, be related 
to historical data artifacts, sensor mismatch or other scaling issues 
(Guay et al., 2014; Myers-Smith et al., 2020; Robin et al., 2008), but is 
likely reflecting a broader shift in seasonal greenness (either increas-
ing or decreasing) in response to warmer, drier summer conditions or 
a general change in the surface moisture regime, which, in turn, im-
pacts plant seasonality (Arndt et al., 2019; Myers-Smith et al., 2020). 
Disturbance also has a marked influence on phenology (Peckham 
et al., 2008; Serbin et al., 2009) which complicates the characteriza-
tion of broad-scale NDVI patterns across the ABR (Figure 2). Recent 
evidence shows that the interpretation of greening and browning 
trends is strongly dependent on land cover and disturbance history, 
whereas areas of more stable land cover have much more muted 
trends (Wang & Friedl, 2019).

To address the challenges of accurately capturing evergreen 
seasonality and avoiding potential mischaracterization, new remote 
sensing observations combined with improved in-situ monitoring 
networks are needed (Tang et al., 2016). The consideration of addi-
tional information from TIR or solar-induced fluorescence (SIF) could 
be used to identify plant stress responses that may be confused with 
the phenological signals (greening vs browning) found in more com-
monly used, coarse-resolution NDVI data (Luus et al., 2017; Magney 
et al., 2019; Still et al., 2021). In addition, the increased coverage and 
availability of very high-resolution (<5 m) data allow for improved 

characterization of fine-scale species composition and within-
pixel phenological patterns (Arndt et al., 2019). By combining fine-
resolution information with other long-term, coarse observations, it 
will become increasingly easy to identify whether satellite signals 
are related to underlying changes in vegetation physiology or stress, 
land-cover transition, or in response to disturbance (Figure 2). Lastly, 
while our discussion, and the majority of studies in the ABR, has fo-
cused on aboveground phenology, the belowground growing season 
length is markedly longer than that of the canopy, and understand-
ing the relationship between subsurface dynamics and aboveground 
phenology will likely provide valuable insights into the carbon dy-
namics of high-latitude ecosystems and remains a critical research 
need for the region (Blume-Werry et al., 2016).

4  |  REMOTE SENSING IS A VALUABLE 
TOOL FOR LINKING PHENOLOGY AND 
PHYSIOLOGY

Satellite remote sensing is an invaluable tool for characterizing 
vegetation across the ABR (Table 1). However, a key challenge is 
identifying the difference between the general “greenness” of veg-
etation, and the underlying physiology necessary to understand 
photosynthetic phenology (Wong et al., 2020; Wong & Gamon, 
2015a). Observations have shown an increase in the seasonal 
cycle of CO2 concentration (Graven et al., 2013), but we still lack 

F I G U R E  2  The potential mismatch 
between gross primary productivity 
(GPP) and forest greeness as estimated by 
normalized difference vegetation index 
(NDVI). Shortly after a disturbance event, 
such as a fire, understory vegetation can 
quickly develop and result in an NDVI 
signal that is not indicative of a return to 
the original, or an alternate, ecosystem 
state [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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an understanding of whether this can be attributed to a change in 
surface vegetation, growing season length, or a direct physiological 
response (Forkel et al., 2016; Piao et al., 2018; Thomas et al., 2016). 
While knowledge of the temporal and spatial variation in dominant 
plant types is critical for mapping and modeling carbon, water, and 
energy fluxes, these quasi-static maps do not account for the daily to 
seasonal changes in remote sensing signatures that relate to short-
term environmental conditions and underlying plant physiology. A 
combination of long-term characterization of the changes in surface 
structure and composition and shorter-term (daily to seasonal) char-
acterization of vegetation condition (as inferred from spectral signa-
tures) is needed to better quantify short-term functional responses 
to weather conditions and longer-term changes in underlying physi-
ology and GPP.

Historical analyses of satellite time-series data have related gree-
ness to photosynthetic activity (e.g., Goetz et al., 2005), yet at the 
more local scale these connections can be more tenuous and may 
be impacted by leaf phenology, scale, vegetation composition, local 
environmental conditions, and canopy structure (e.g., La Puma et al., 
2007; May et al., 2018). For example, in large portions of the ABR, 
satellite-derived NDVI can saturate early in the growing season or 
otherwise fail to track seasonal photosynthetic downregulation 
(Peñuelas et al., 2011), resulting in a disconnect between the gen-
eral greeness signal and ecosystem productivity (Fiore et al., 2020; 
Ueyama et al., 2013). Other narrow-band SVIs that are sensitive to 
leaf pigment pools and fluxes, such as the photochemical reflectance 
index (PRI) and the chlorophyll/carotenoid index are far more sensi-
tive to within-day and seasonal variation in underlying vegetation 
function and GPP (Gamon et al., 2016; Nichol et al., 2000; Peñuelas 
et al., 2011). During the NASA BOReal Ecosystem Atmosphere Study 
(BOREAS), field and airborne IS platforms, such as AVIRIS and CASI 
(Table 1), were used to demonstrate the capacity of spectroscopy to 
provide deeper insight into ABR leaf properties, canopy condition, 
and carbon fluxes, specifically to retrieve canopy light-use efficiency 
(Gamon et al., 2004; Rahman et al., 2001). Indices, including PRI, 
have since been used across the region to infer light use efficiency 
and GPP at seasonal and interannual timescales (Drolet et al., 2008; 
Nichol et al., 2002).

However, there remain additional challenges with specific attri-
bution of the underlying plant conditions that are conveyed through 
reflectance signatures (Garbulsky et al., 2011). Historically, PRI 
was used to infer light-use efficiency or radiation-use efficiency 
of plants. However, the underlying drivers of PRI are complex, 
responding rapidly to changes in leaf physiology and pigment dy-
namics, particularly during spring and fall phenological transitions 
(Wong & Gamon, 2015b). Thus far, it is been challenging to transfer 
the specific derived relationships for any one study to new systems 
or locations given the many underlying drivers of variation in PRI 
(Garbulsky et al., 2011). Some of this mismatch is related to differ-
ences in measurement protocols, the multitude of challenges when 
scaling from leaves to canopies, potentially confounding seasonal 
changes in pigments not accounted for in these relationships, as well 
as canopy structural influences (Hilker et al., 2008; Peñuelas et al., 

2011). Given these issues, the widespread use of spectral index ap-
proaches like PRI to monitor carbon uptake across the ABR requires 
further development of measurement and scaling protocols (Gamon 
et al., 2019; Garbulsky et al., 2011), though the promise of these in-
dices warrant further attention.

Together with SVI methods, other reflectance-based spectro-
scopic approaches could yield additional insights into the spatial and 
temporal variation of plant function across the ABR. In particular, 
since BOREAS, the capacity to map plant functional traits across 
space and time with IS has increased substantially (Gamon et al., 
2019; Serbin & Townsend, 2020), including the retrieval of carbon 
fluxes and photosynthetic capacity (DuBois et al., 2018; Serbin et al., 
2015). This is commonly achieved by developing empirical relation-
ships between spectral reflectance and leaf traits at leaf, canopy, 
and landscape scales, using all the information provided by IS rather 
than selecting a single or small set of SVIs (Singh et al., 2015; Wang, 
Chlus, et al., 2020). In North America, the NASA ABoVE experi-
ment (Miller et al., 2019) has generated a considerable amount of 
new airborne remote sensing data, including high spectral resolution 
AVIRIS imagery (Table 1), providing a new opportunity to charac-
terize spatial and temporal variation in functional traits across a cli-
mate transect in the ABR. The use of additional airborne platforms, 
including the National Ecological Observatory Network (NEON) 
Airborne Observation Platform (AOP) and NASA Goddard's Lidar, 
Hyperspectral and Thermal Imager (G-LiHT) (Table 1) in portions 
of the ABR (Alonzo et al., 2020) could also enable retrieval of plant 
structural and functional properties (Kamoske et al., 2021). The po-
tential use of these approaches to develop maps of plant traits in 
arctic and boreal vegetation should be explored in more detail and 
linked to both fieldwork and data from satellite platforms to develop 
relationships that can be used to retrieve plant traits throughout the 
ABR (e.g., Ma et al., 2020).

Other novel airborne and satellite observations may also pro-
vide more direct estimates of carbon fluxes in the ABR, including 
airborne flux measurements (Serafimovich et al., 2018) and SIF (Luus 
et al., 2017). SIF relates to GPP through the connection between 
photosynthesis and chlorophyll energy dissipation pathways; given 
this linkage, SIF observations have been used to estimate ecosys-
tem- to global-scale plant GPP at daily, monthly, and seasonal scales 
across a range of plant types (Mohammed et al., 2019). However, 
issues remain as to the exact mechanisms driving this relationship 
across scales, which requires further development of the approach 
for widespread use (Chen et al., 2021). However, SIF closely tracks 
seasonal photosynthesis and GPP, including in evergreen conifer 
canopies (Magney et al., 2019) and arctic tundra (Luus et al., 2017). 
Given the increasing availability of airborne SIF observations through 
the ABoVE program (Table 1), including areas containing eddy co-
variance observations (Miller et al., 2019), it should be increasingly 
possible to improve linkages between vegetation productivity in the 
ABR and remote sensing of GPP, as well as improve the scaling of 
these relationships to satellite-derived SIF datasets.

Photosynthesis is strongly regulated by temperature (Yamori 
et al., 2014), making it critical to accurately estimate canopy 
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temperatures to accurately predict carbon uptake. Thermal infrared 
remote sensing (Table 1) can measure the land-surface temperature 
across space and time (Costa et al., 2013; Still et al., 2019, 2021). 
Steady improvements and availability of TIR remote sensing tech-
nologies have begun to enable remote sensing of plant function and 
stress, from leaves to whole ecosystems (Fisher et al., 2020; Yang, 
Meng, et al., 2020). The indirect remote sensing of photosynthetic 
capacity also requires knowledge of the thermal properties of vege-
tation (Serbin et al., 2015), while detection of plant stress responses 
is enhanced using TIR observations (Costa et al., 2013). In addition, 
TIR measurements allow for the indirect retrieval of surface water 
status and fluxes, including evapotranspiration (Chen & Liu, 2020; 
Fisher et al., 2020). Together with TIR observations (Table 1), it may 
also be possible to remotely sense ABR carbon, water, and energy 
cycling (Still et al., 2021). For example, Junttila et al. (2021) demon-
strate the combined use of an optical and TIR approach to upscale 
both ecosystem-scale GPP and respiration across peatland sites in 
Sweden and Finland. However, some platforms do not currently pro-
vide data at high latitudes (Fisher et al., 2020). Moreover, the thermal 
regime in the ABR is complex, strongly tied to the cover and struc-
ture of vegetation (Kropp et al., 2020), and as a result, understanding 
the partitioning of energy across sensible, latent, and ground heat 
fluxes is essential for monitoring changes in ecosystem productivity 
to global change (Loranty et al., 2018).

Linking physiological understanding of plants to their environ-
ment with remote sensing could transform the standard approach 
for model parameterization of PFTs (e.g., Serbin et al., 2015; Singh 
et al., 2015; Thomson et al., 2021). In addition, use of these data 
with models would also provide a means to constrain model process 
representation of albedo, evapotranspiration, LAI, and plant pro-
ductivity (Shiklomanov et al., 2020; Smith et al., 2020; Viskari et al., 
2015), evaluate model predictions or test new structural hypotheses 
(Collier et al., 2018; Forzieri et al., 2018; Kumar et al., 2012; Oleson & 
Bonan, 2000) and, importantly, scale up our functional understand-
ing of ABR carbon dynamics and surface fluxes (Huemmrich et al., 
2013; Pan et al., 2020).

5  |  IMPROVING PHYSIOLOGIC AL 
PAR AMETERIZ ATION OF HIGH-L ATITUDE 
PF TS OFFERS DISTINC T OPPORTUNITIES

While remote sensing can improve our knowledge of photosynthesis 
across broad spatial and temporal scales, our ability to reduce un-
certainty in the modeling of high-latitude GPP can also benefit from 
incorporating a deeper understanding of the photosynthetic physi-
ology within and among PFTs in the region. To give different PFTs 
their varying structural and functional properties, TBMs commonly 
prescribe static values of plant traits to each PFT (Wullschleger 
et al., 2014). These traits then determine how a given PFT will re-
spond to the environment, and in terms of GPP, determine what 
green “means” when linking phenology with physiological activ-
ity. Global-scale TBMs typically represent the ABR with ~5 PFTs 

(Table 2). Furthermore, PFTs are often parameterized with identical, 
or nearly identical, values for key physiological processes connected 
to GPP, for example, quantum yield, the stomatal slope parameter 
(m, g1), or the maximum carboxylation capacity of Rubisco (Vcmax) 
(Lin et al., 2015; Rogers, 2014; Rogers et al., 2019). Therefore, the 
PFT categories that are typically used to describe vegetation in the 
ABR lack important physiological diversity (Saccone et al., 2017) 
and, within a PFT, lack the plasticity of functional properties typi-
cally seen in a single species (Wullschleger et al., 2014). For example, 
within the boreal evergreen needleleaf tree PFT, Vcmax can vary by 
at least 3.5-fold in the literature, and swapping between the highest 
and lowest Vcmax values reported within this PFT alters tree-level net 
carbon gain by 75% (Stinziano et al., 2018). Similarly, a recent study 
showed how Scots pine and Norway spruce, both in the evergreen 
needleleaf PFT, differ in their sensitivity to drought (Gutierrez Lopez 
et al., 2021).

The uncertainty around parameterizing PFTs was highlighted by 
Fisher, Hayes, et al. (2018), who found that climate modelers iden-
tified PFTs as one of the top six areas where more data are needed 
to improve the modeling of high-latitude terrestrial ecosystem dy-
namics. Dietze et al. (2014) demonstrated how including new obser-
vations of the stomatal slope parameter can lead to a reduction of 
uncertainty in modeled carbon gain, providing strong motivation for 
data collection and synthesis of traits that drive model uncertainty. 
The case for improving our spatial and temporal understanding of 
variation in key traits associated with model representation of GPP, 
such as Vcmax and g1, is clear and is also true for many biomes (Lin 
et al., 2015; Ricciuto et al., 2018; Rogers, 2014; Rogers et al., 2017). 
However, the low species diversity in the ABR makes this challenge 
theoretically tractable for this biome, and remote sensing offers ex-
citing opportunities to retrieve these traits from airborne or satellite 
platforms (Cawse-Nicholson et al., 2021; Gamon et al., 2019). One 
opportunity to improve model representation of GPP that is particu-
larly relevant for the ABR is improving our understanding and model 
representation of the low temperature sensitivity of quantum yield 
(Table 3).

5.1  |  Quantum yield: A critical knowledge 
gap and a unique opportunity to improve model 
representation of GPP at high latitudes

High-latitude ecosystems experience high seasonality with regard 
to both temperature and irradiance. One of the greatest challenges 
for photosynthesis in these highly seasonal regions is photodamage 
(Ensminger et al., 2006). Low temperatures at high latitudes reduce 
the demand for ATP and NADPH in the Calvin–Benson cycle, but also 
the capacity for repair of photodamage and recovery from photopro-
tection mechanisms (Barber & Andersson, 1992; Bilger & Björkman, 
1991). If low temperatures coincide with high to moderate irradiance 
conditions, the photosynthetic electron transport chain continues 
to absorb photons, since photochemistry is much less temperature 
sensitive than are enzymatic reactions (Ensminger et al., 2006; Groot 
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et al., 1997; Oquist & Huner, 2003). The imbalance between the ca-
pacity to generate reductant and ATP through photochemistry and 
the capacity to use these products in the Calvin–Benson cycle can 
lead to the production of reactive oxygen species in the electron 
transport chain during cold, high light conditions, consequently dam-
aging leaves (Ensminger et al., 2006; Murchie & Ruban, 2020; Oquist 
& Huner, 2003).

To prevent photodamage, some high-latitude evergreen coni-
fers and arctic shrubs downregulate photosynthesis in the winter 
through a regulated inactivation of the photosystem II reaction cen-
ter and a reorganization of the associated light harvesting complexes 
to reorient their activity towards light energy dissipation rather than 
light energy absorption (Ensminger et al., 2006; Oquist & Huner, 
2003; Solanki et al., 2019). But there is considerable variation be-
tween species in the mechanisms used to prevent photodamage, 
with consequences for GPP. For example, Norway spruce (Picea 
abies) and Scots pine (Pinus sylvestris) are co-occurring boreal ever-
green needleleaf tree species that dominate Scandinavian forests, 
accounting for 91% of total forest cover in this region (Black et al., 
2005). Scots pine actively downregulates its ability to fix CO2 during 
the winter while upregulating electron sink capacity to prevent 
photodamage during cold, bright days (Saccone et al., 2017; Yang, 
Blanco, et al., 2020). This seasonal regulation allows Scots pine to 
reestablish photosynthetic CO2 assimilation in the spring with min-
imal damage to the electron transport system. In contrast, Norway 
spruce lacks this mechanism, which results in repeated photodam-
age during spring and a suppression of photosynthesis (Yang, Blanco, 
et al., 2020). The differences in physiology between these two spe-
cies therefore underlie differences in potential springtime GPP in 
these two common species, even though Norway spruce is in the 
same PFT, the same family (Pinaceae) and the same growing region 
as Scots pine.

The maximum quantum yield of photosynthesis reflects the abil-
ity of plants to use incident irradiance for CO2 assimilation, and in 
unstressed plants is remarkably constant (Baker, 2008; Long et al., 
1993). Therefore, most TBMs assume the same quantum yield for all 
PFTs and do not include any temperature sensitivity for this parame-
ter (Dietze, 2014; Rogers et al., 2017). While this assumption is robust 
for many PFTs and biomes, it does not account for observations of 
low quantum yield that are associated with the typically cold growth 
temperatures experienced by arctic and boreal vegetation (Albert 
et al., 2012; Bokhorst et al., 2010; Kolari et al., 2014; Marchand et al., 
2006; Rogers et al., 2019; Solanki et al., 2019; Wallin et al., 2013). 
Reductions in quantum yield and convexity (which determines the 
irradiance at which light saturation is reached), and slow recovery 
from photoprotection and photodamage reduce carbon gain by up 
to 32% in crop systems, and transgenic tobacco that had been bio-
engineered for a rapid recovery from photoprotection has a 15% in-
crease in photosynthesis and yield (Kromdijk et al., 2016; Murchie & 
Ruban, 2020; Zhu et al., 2004). These studies in temperate systems 
strongly suggest that understanding known reductions in quantum 
yield in the ABR is an important area to consider. Seasonal hardening 
in evergreen species associated with long-lived quenching through 

accumulation and retention of zeathanthin dramatically reduces the 
quantum yield in the winter months and while the foliage appears 
green, the dehardening process can take weeks before quantum 
yield is restored, with clear implications for GPP (Murchie & Lawson, 
2013; Murchie & Ruban, 2020). However, these phenomena are not 
currently represented in TBMs. A lack of understanding of the en-
vironmental cues, dynamics, and mechanisms of photodamage and 
photoprotection in the ABR is currently hindering potential imple-
mentation of a dynamic quantum yield in TBMs. Future field work 
focused on closing this knowledge gap could be enhanced if those 
efforts are coupled with remote sensing to maximize the potential to 
scale understanding and measurement approaches over space and 
time.

6  |  HIGH-L ATITUDE VEGETATION 
RESPONSES TO GLOBAL CHANGE WILL 
SHAPE LONG -TERM CHANGES IN C ARBON 
UPTAKE

The impact of climate change on plants in northern latitudes is often 
assumed to be positive, since warming should allow for enhanced 
growth of highly productive species (Way & Oren, 2010), lengthen 
the growing season (Richardson et al., 2010, 2018), and alleviate low 
temperature inhibition of photosynthesis (Richardson et al., 2010; 
Stinziano & Way, 2014). Concurrently, high CO2 concentrations can 
stimulate photosynthesis and growth (Ainsworth & Rogers, 2007). 
But the reality is more mixed. Under warming of up to 9°C imposed 
in the field on mature trees, tamarack (a deciduous conifer) had in-
creased photosynthesis, which was correlated with higher stomatal 
conductance and lower leaf water potentials (Dusenge et al., 2020, 
2021; Warren et al., 2021). In contrast, the evergreen conifer black 
spruce had lower stomatal conductance under warming, which al-
lowed the trees to maintain a moderate stem water potential, but 
also constrained photosynthesis (Dusenge et al., 2021; Warren 
et al., 2021). This trade-off between prioritizing either water sta-
tus or carbon uptake may become increasingly common in northern 
latitudes as the climate warms and the vapor pressure deficit (VPD) 
increases. For example, Van Herk et al. (2011) showed that sap flow 
increased significantly in black spruce trees under a simulated air 
warming treatment with VPD matching control, but lower rates in 
the warming and increased VPD treatment, illustrating a potentially 
strong constraint of VPD on the function of boreal tree species. 
Indeed, there are often negative effects of warming on boreal tree 
growth when soil moisture is low, but potential positive effects, es-
pecially in broad-leaved tree species, when soil water is abundant 
(D’Orangeville et al., 2018; Girardin et al., 2016; Reich et al., 2018).

Warming experiments and observations conducted over cli-
matic gradients within the Arctic have demonstrated that shrubs, 
forbs, grasses, and sedges can all respond positively to warmer con-
ditions, with increased biomass, plant height, leaf area, allocation 
to reproductive biomass, and earlier green-up (Arft et al., 1999; 
Bilger & Björkman, 1991; Bjorkman et al., 2018; Elmendorf, Henry, 
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Hollister, Björk, Boulanger-Lapointe, et al., 2012; Hudson et al., 
2011; Klady et al., 2011; Wahren et al., 2005). However, the re-
sponse of an individual species or PFT is strongly influenced by the 
presence or absence of permafrost, the climatic zone, and moisture 
regime, with notable differences between observations in Europe 
and North America (Bjorkman et al., 2018; Elmendorf, Henry, 
Hollister, Björk, Bjorkman, et al., 2012; Elmendorf, Henry, Hollister, 
Björk, Boulanger-Lapointe, et al., 2012; Myers-Smith et al., 2015; 
Wahren et al., 2005).

The changes in species composition, biomass, phenology, and 
photosynthetic physiology wrought by climate change will play an 
increasingly important role in determining the GPP of the ABR, yet 
our knowledge of how increasing temperature, [CO2], and VPD will 
affect high-latitude vegetation is lacking. The vast majority of exper-
iments investigating temperature responses in the region have been 
passive warming experiments. While these experiments provide 
important understanding of how warming alters these communities 
(Elmendorf, Henry, Hollister, Björk, Bjorkman, et al., 2012), the ma-
nipulations rarely elevate temperature by more than ~1.5°C (Marion 
et al., 1997), leaving critical uncertainty over the response to future 
projected temperature increases in the region (IPCC, 2014). There 
are even fewer examples of CO2 manipulations in the ABR (Bridgman 
et al., 2020; Oechel et al., 1994) and, with some notable exceptions 
(Hanson et al., 2017; Lamba et al., 2018; Sigurdsson et al., 2013), ma-
nipulations of CO2 and temperature that are aligned with projected 
temperature and [CO2] increases are rare.

6.1  |  Composition

Global change-induced shifts in the composition of vegetation in the 
ABR are likely to occur via northwards migration of species, differ-
ential mortality rates between species, variation between species 
in their capacity to increase growth under warmer temperatures 
and higher [CO2], and variable responses to increased disturbance 
regimes (Figure 3).

While there is relatively little evidence for poleward migration 
of the northern treeline into Arctic tundra, increased recruitment 
of seedlings has been seen at many sites across Eurasia and North 
America (Gamache & Payette, 2005; MacDonald et al., 2008). This 
greater recruitment has led to a higher density of trees near the 
treeline, but the northern limit of the boreal tree line has yet to ad-
vance to the extent that it did during the Medieval Warm Period 
(~1000–1300 AD, Gamache & Payette, 2005; MacDonald et al., 
2008). Thus, while large-scale shifts in the ecotone between the 
Arctic and boreal are likely over the next century, harsh tundra abi-
otic conditions and a lack of neighboring trees that modify local mi-
croclimates appear to currently limit seedling establishment beyond 
the treeline (Germino et al., 2002). The migration of temperate trees 
northwards could also significantly affect GPP, as many boreal ev-
ergreen species have low photosynthetic rates (Reich et al., 2018). 
However, the occurrence of boreal trees at a site impedes the es-
tablishment of temperate seedlings, mainly due to edaphic charac-
teristics related to needle cover, the presence of dead wood, and 

F I G U R E  3  The individual, and combined, effects of the primary climate change drivers; rising CO2, temperature, and vapor pressure 
deficit (VPD) on processes and traits that will result in positive or negative impacts on gross primary productivity across the Arctic–Boreal 
Region [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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mycorrhizal abundance, which could cause lags between the climatic 
suitability of a site and the ability of temperate trees to migrate 
(Carteron et al., 2020; Johnstone et al., 2016; Solarik et al., 2020).

Changes in mortality and growth due to climate change will also 
alter the vegetation composition of the ABR. In the boreal forest, 
mortality rates are increasing in many tree species, particularly in 
North America (Luo & Chen, 2013, 2015; Peng et al., 2011). Tree 
mortality rates in a range of species increased 4.7% per year within 
the Canadian boreal region between 1963 and 2008, an effect at-
tributed to climate change-induced drying (Peng et al., 2011). The 
stability of northern peatlands is strongly linked with moisture con-
ditions, and prolonged drought can cause significant changes to 
peatland structure and composition, with important implications for 
carbon storage (Kokkonen et al., 2019; Lees et al., 2021; Zhong et al., 
2020). However, greening trends are more evident in Eurasia than 
in North America as the climate warms (Jian et al., 2013), indicating 
key differences in how boreal ecosystems may respond to climate 
change. The cover of pioneer species, which mainly include decidu-
ous trees and shrubs, is likely to increase in the boreal region as the 
climate warms, both because they often recover faster in disturbed 
areas where evergreen cover was previously dominant (Gauthier 
et al., 2014), but also because their growth tends to respond pos-
itively to increasing growth temperatures and CO2 concentrations 
(Dusenge et al., 2020; Way & Oren, 2010). A broad range of evidence 
has indicated an increase in the growth and abundance of shrubs, 
and an advancing shrub line, across the Arctic. However, shrubifi-
cation is not uniform across this region, with some areas showing 
no change, while others show marked increases. There are likely 
several factors leading to this heterogeneity and understanding the 
influence of disturbance, warming, nutrient cycling, topography, and 
hydrology will be key to identifying the drivers of shrub expansion 
(Mekonnen et al., 2021; Myers-Smith et al., 2020).

6.2  |  Phenology

As the climate warms, earlier springs and extended warm tempera-
tures in the autumn are prolonging the growing season (Garonna 
et al., 2014). The spring phenology of northern deciduous trees is 
more responsive to warming than that of evergreen species from the 
same range (Montgomery et al., 2020). While a longer growing sea-
son should increase GPP in the ABR, this change in phenology comes 
with risks. Earlier spring leaf-out due to warmer spring temperatures 
is correlated with increased risk of frost in northern latitudes (Liu 
et al., 2018; Richardson et al., 2018). In these conditions, variation in 
how species protect the photosynthetic apparatus during winter (as 
discussed above) is likely to translate into differences in the degree 
to which they can quickly upregulate photosynthesis in the spring. 
Indeed, the differences between winter photodamage defense 
strategies in Scandinavian boreal trees led to a suppression of spring 
carbon uptake in Norway spruce from repeated photodamage, but 
high photosynthetic rates in Scots pine (Saccone et al., 2017; Yang, 
Blanco, et al., 2020).

6.3  |  Physiology

Model representation of leaf and canopy processes is central to 
projecting the response of plants and ecosystems to future global 
change and understanding the role plants play in determining the 
rate of climate change. Direct responses to rising CO2 are limited to 
the increased carboxylation and reduced oxygenation reactions by 
Rubisco, and the reduction in stomatal conductance (Ainsworth & 
Rogers, 2007). The response of plants and ecosystems to increasing 
VPD is broader, including changes in leaf area and photosynthetic 
rate, but strongly mediated by the VPD response of stomatal con-
ductance, which varies among PFTs (López et al., 2021). Although ris-
ing temperatures affect many ecosystem processes, there are direct 
responses of photosynthesis and stomatal conductance to warming 
(Dusenge et al., 2019). Plants also exhibit acclimation to these three 
environmental drivers in both rates and fluxes, via changes in their 
underlying physiology (Ainsworth & Rogers, 2007; Dusenge et al., 
2019; Kumarathunge et al., 2019). In addition, key physiological traits 
underpin sensitivity to climate change, for example, the importance 
of minimum conductance (cuticular conductance+conductance 
through leaky stomata) in determining vulnerability to drought and 
subsequent increases in fire risk (Choat et al., 2018; Nolan et al., 
2020). Therefore, accurate process representation and parameteri-
zation associated with model representation of CO2 and water ex-
change is central to models’ ability to project the impacts of global 
change.

While TBMs all represent these direct responses of photosyn-
thesis to CO2, temperature, and VPD (or relative humidity), model 
representation of acclimation to these principal drivers of global 
change is not as well developed (Rogers et al., 2017). Acclimation of 
photosynthesis to growth temperature is commonly represented by 
algorithms which adjust the parameters associated with the modi-
fied Arrhenius function (e.g., Vcmax) based on the growth tempera-
ture of a preceding time period (Kattge & Knorr, 2007). While the 
need to ensure that these formulations are appropriate for the cold 
conditions found in high latitudes has been raised (Stinziano et al., 
2018), this approach is robust over an extended range of measure-
ment temperatures, including the low growth temperatures of rel-
evance to the ABR (Kumarathunge et al., 2019). The physiological 
acclimation of photosynthesis to rising [CO2] (Ainsworth & Rogers, 
2007) is largely absent from TBMs, with the exception of optimal-
ity approaches which enable well-documented reductions in Vcmax 
with rising [CO2] (Smith et al., 2019). Lastly, the potential for physi-
ological acclimation to rising VPD is largely unknown because very 
little work has isolated the physiological response and acclimation 
of rising VPD from rising temperature, and it is not yet possible to 
represent acclimation to VPD in TBMs (Grossiord et al., 2020; López 
et al., 2021). Therefore, the effects of global change on GPP in cur-
rent TBMs are largely based upon model representations of direct 
physiological responses to global change, but not acclimation. When 
combined with static parameterization of PFTs, this lack of acclima-
tion “bakes in” the response to global change and may not reflect im-
portant physiological changes that result from long-term exposure 
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to elevated temperature, [CO2] and VPD (Ainsworth & Rogers, 2007; 
Dusenge et al., 2019; López et al., 2021).

Elevated CO2 concentrations could boost photosynthesis and 
growth. However, studies that grew northern species under com-
bined CO2 and warming typically found weak effects of elevated 
CO2 on photosynthesis and growth in high-latitude conifer species 
(Dusenge et al., 2020; Sigurdsson et al., 2013) or a downregulation 
of photosynthesis in response to high CO2 (Dusenge et al., 2020; 
Lamba et al., 2018; Tjoelker et al., 1998), such that in many cases the 
effects of warming tend to predominate. While some of the variation 
we see in the response to these climate drivers may be related to dif-
ferences between PFTs (Dusenge et al., 2020; Tjoelker et al., 1998), 
variation in the response to elevated [CO2] within a PFT has also 
been found. Norway spruce and Scots pine, the Scandinavian boreal 
species discussed earlier, not only differ in how they deal with win-
ter photodamage, but also in their ability to acclimate photosynthe-
sis to elevated temperatures and atmospheric CO2 concentrations 
(Kurepin et al., 2018). Under warming of up to 8°C and increased CO2 
concentrations, Scots pine maintains a similar photosynthetic rate 
as the control, cool-grown trees (Kurepin et al., 2018). Yet, elevated 
growth temperatures suppressed photosynthetic rates by 33%–50% 
in Norway spruce, a result that correlated with a diversion of reduc-
ing power from photosynthetic electron transport away from CO2 
fixation and toward alternate electron sinks (Kurepin et al., 2018).
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Accurate characterization of the vegetation in the ABR is criti-
cal for improving the capacity of models to project the impact of 
global change on this important region and in turn to understand 
whether this region will continue to be a carbon sink in the future. 
The opportunity for improving process knowledge and param-
eterization in the ABR is ripe because the low species diversity, 
and the dominance of just a few species in many regions means 
that gaining knowledge and improving process representation in 
TBMs can realistically be achieved in the near term. Advancing 
our understanding will require field work to better understand 
and parameterize key processes for existing and potentially new 
classifications of PFTs. One critical tool to advance understand-
ing, and to enable scaling across the ABR, will be the increased 
use of remote sensing. The biggest opportunities for scaling will 
be made by pairing ground-based field-studies of physiology and 
ecology with remote sensing. This synergy would provide invalu-
able opportunities to develop relationships between important 
physiological processes, the key plant traits that drive them, and 
remotely sensed signals; ultimately enabling retrieval of structural 
and functional parameters throughout the ABR (Serbin et al., 2015, 
2019; Singh et al., 2015). An important bridge to enable scaling will 
be the increased use of unoccupied aerial systems which can cap-
ture fine-scale surface structural and functional diversity (Alonzo 
et al., 2020; Yang, Meng, et al., 2020), and, in combination with 
more coarse resolution data from airborne and satellite platforms, 

inform our ability to scale and map key plant processes and traits. 
The increased availability of airborne datasets and upcoming spa-
ceborne missions (Guanter et al., 2015; Miller et al., 2019; Kellogg 
et al., 2020; e.g., Cawse-Nicholson et al., 2021; Poulter, 2021) 
provides important new opportunities for increasing observations 
across the ABR.

Accurate representation of physiological processes is critical for 
capturing the response of plants and ecosystems to global change 
because these processes, and their parameterization, play a major 
role in determining the response of GPP to global change (Rogers 
et al., 2017). This is true globally, but process representation and 
parameterization of GPP in the ABR presents unique challenges and 
opportunities. For example, understanding of the low temperature 
sensitivity and temporal dynamics of reductions in quantum yield is 
a key knowledge gap that has the potential to have a marked impact 
on model estimates of GPP, yet is currently missing from models and 
is potentially important, but challenging to capture in the ABR.

Accurate model representation of the response of GPP to global 
change is also dependent upon understanding the acclimation of ex-
isting vegetation to the drivers of global change. Without a greater 
understanding of the acclimation response (and, by extension, the 
climate sensitivity) of a given PFT, the modelled response to climate 
change will be based on how those plants function in today's climate. 
In order to future-proof model representation of PFTs and enable 
accurate competition between PFTs in future climate scenarios, we 
need manipulative experiments to address key uncertainties sur-
rounding the potential for acclimation and the possible climate sen-
sitivity of plant productivity. Unfortunately, compared to temperate 
systems there have been relatively few manipulative experiments 
in the ABR that address physiological responses and acclimation to 
global change. Improving our understanding and model representa-
tion of acclimation is also critical if models are to accurately pre-
dict the outcome of competition between PFTs in novel climates, 
particularly following disturbance where the result of competition 
will determine the long-term response of the ABR to global change. 
Representation of climate-driven community composition changes 
will become increasingly important for long-term model projections.

We highlight that there is a growing need to categorize species 
not only by their current form and function, but also based on knowl-
edge of their ability to acclimate, compete, and maintain physiolog-
ical performance and growth under future climates scenarios, for 
example, climate-sensitive evergreen needleleaf trees and climate-
resilient evergreen needleleaf trees. Our current definition and pa-
rameterization of PFTs are understandably based on our knowledge 
of the current structure and function of vegetation that comprises 
a given PFT. Therefore, our confidence in how a PFT will respond to 
global change does not account for the ability of species to acclimate 
and maintain physiological performance under future global change 
scenarios. This raises the question of whether we are currently 
parameterizing PFTs by looking in the rearview mirror. Building 
climate-smart PFTs that can represent the vegetation of the future is 
also essential for enabling proactive management of ecosystem ser-
vices for anticipated global change (Overpeck & Breshears, 2021).
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Understanding potential variation in how species respond to cli-
mate change presents us with the challenge of characterizing the 
climate change sensitivity of a large number of species and repre-
senting those species as PFTs in TBMs. However, it is important to 
consider the value of such an exercise in terms of the influence of 
a given species on regional carbon uptake. For some biomes, this is 
empirically and computationally daunting because the sheer num-
ber of species precludes us from capturing their physiological and 
structural diversity in any meaningful manner: for example, tropical 
forests are estimated to contain between 40,000 and 53,000 tree 
species (Slik et al., 2015). In contrast, the low plant biodiversity of 
arctic vegetation and the dominance of just a handful of tree species 
in boreal forests provides a unique opportunity for taking a deeper 
dive into modeling the species that define the carbon cycling of 
these regions. There are only six tree genera that comprise the ma-
jority of the entire global boreal forest canopy (Abies, Betula, Larix, 
Picea, Pinus, and Populus), making it feasible to parameterize mod-
els at the genus, or possibly even species level in these regions, and 
to understand the plasticity and climate sensitivity of these domi-
nant species. The advantage of such an approach for high-latitude 
ecosystems would be to capture known differences between these 
genera in their photosynthetic physiology, as noted above, and their 
ability to respond to climate change.
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