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Abstract

The finely tuned balance between sources and sinks determines plant resource par-

titioning and regulates growth and development. Understanding and measuring met-

abolic indicators of source or sink limitation forms a vital part of global efforts to

increase crop yield for future food security. We measured metabolic profiles of

Cucurbita pepo (zucchini) grown in the field under carbon sink limitation and control

conditions. We demonstrate that these profiles can be measured non-destructively

using hyperspectral reflectance at both leaf and canopy scales. Total non-structural

carbohydrates (TNC) increased 82% in sink-limited plants; leaf mass per unit area

(LMA) increased 38% and free amino acids increased 22%. Partial least-squares

regression (PLSR) models link these measured functional traits with reflectance data,

enabling high-throughput estimation of traits comprising the sink limitation response.

Leaf- and canopy-scale models for TNC had R2 values of 0.93 and 0.64 and %RMSE

of 13 and 38%, respectively. For LMA, R2 values were 0.91 and 0.60 and %RMSE

7 and 14%; for free amino acids, R2 was 0.53 and 0.21 with %RMSE 20 and 26%.

Remote sensing can enable accurate, rapid detection of sink limitation in the field at

the leaf and canopy scale, greatly expanding our ability to understand and measure

metabolic responses to stress.
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1 | INTRODUCTION

Plant breeders are faced with a significant challenge: the need to

develop high-yielding crop varieties, which are resilient to future cli-

mate change (Ainsworth, Rogers et al., 2008; Ort et al., 2015; Simkin,

L�opez-Calcagno, & Raines, 2019). Recent work in model crops has

demonstrated that improvements in yield can be realized by engineer-

ing more efficient photosynthesis (Degen, Worrall, & Carmo-

Silva, 2020; Kromdijk et al., 2016; Li et al., 2020; L�opez-Calcagno

et al., 2020; South, Cavanagh, Liu, & Ort, 2019). However, whilst

increased CO2 assimilation (carbon source activity) can be shown to

enhance yield, the response is often not matched by an equivalent

increase in plant growth and yield (carbon sink activity). Elevated CO2

research, including free-air concentration enrichment (FACE) experi-

ments, has shown that relatively large stimulations in photosynthesis

do not always translate to commensurate increases in growth and

yield providing evidence for a sink limitation bottleneck (Ainsworth,

Leakey, Ort & Long 2008; Leakey et al., 2009; Long, Ainsworth, Lea-

key, Nösberger, & Ort, 2006; Sanz-S�aez et al., 2010). Thus, carbon

sink limitation can reduce the potential for enhanced yield resulting

from genetically engineered improvements to source activity and the

anticipated yield benefit of rising atmospheric [CO2]. To fully capital-

ize on genetically enhanced and CO2-stimulated photosynthesis, car-

bon sink limitation must be minimized. Indeed, an integrated
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understanding of carbon sources and sinks is increasingly recognized

as a vital component of enhancing global food production (Fernie

et al., 2020; Smith, Rao, & Merchant, 2018; White, Rogers, Rees, &

Osborne, 2016). If breeders are to achieve the goal of minimizing sink

limitation (Fernie et al., 2020), it is essential to understand how carbon

sink limitation may be measured in a high-throughput manner, in

order to facilitate rapid screening for sink limitation in breeding pro-

grams (Reynolds & Langridge, 2016).

We address this need by defining the metabolic signature of car-

bon sink limitation in field-grown Cucurbita pepo and then developing

a high-throughput system for measuring this sink limitation non-

destructively using “hyperspectral”, or high spectral resolution, reflec-

tance data. Unlike several other limitations on growth that are of

interest to breeders, such as disease resistance or drought resilience

in response to pathogen or water stress, there is often no visual phe-

notype associated with sink limitation. This means that effective mea-

surement of sink stress relies upon destructive harvesting, making

continual monitoring difficult to achieve. Furthermore, carrying out

the biochemical analysis required for detailing the sink stress profile is

time consuming and expensive. For these reasons, a non-destructive,

high-throughput, spectroscopic approach to monitoring sink stress is a

desirable tool for crop breeders.

For the first time, we examine the source:sink balance of field-grown

plants using hyperspectral data. The metabolic profile of carbon sink limi-

tation has been extensively characterized (Bénard et al., 2015; Burnett,

Rogers, Rees, & Osborne, 2016; Stitt & Krapp, 1999). Chief among the

key traits of a carbon sink-limited plant is an increase in leaf carbohy-

drate content, which has been phenomenologically and mechanistically

linked to reduced sink strength (Ainsworth & Bush, 2011; Farrar, 1996;

Pollock & Cairns, 1991; Rogers & Ainsworth, 2006). It has also been well

established that reflectance data can be used to estimate a suite of leaf

traits using a range of approaches, including empirical partial least-

squares regression (PLSR) modelling to build relationships between spec-

tral data and measured traits. This spectra-trait PLSR approach provides

a rapid, high-throughput means for the estimation of biochemical traits

of interest (Cotrozzi & Couture, 2020; Ely, Burnett, Lieberman-Cribbin,

Serbin, & Rogers, 2019; Meacham-Hensold et al., 2019; Serbin, Singh,

McNeil, Kingdon, & Townsend, 2014; Silva-Perez et al., 2018; Yendrek

et al., 2017), including those associated with source-sink balance and car-

bon and nitrogen status. Here, we build on these advances in two key

ways: we evaluate the spectroscopic approach for identifying sink limita-

tion in the production environment and we scale up from leaf- to

canopy-level acquisition of hyperspectral data using a boom-mounted

spectrometer – a key step in moving to truly high-throughput monitoring

using remote sensing tools. We evaluated the spectra-trait modelling

approach in field-grown C. pepo with a sink removal treatment, to deter-

mine if the relationships between reflectance and leaf traits could be

used for predicting key indicators of source:sink imbalance in the field.

We also investigated the capability of linear discriminant analysis (LDA)

and partial least squares discriminant analysis (PLS-DA) for identification

of metabolic stress using measured leaf traits and using raw hyper-

spectral data, respectively. These discriminant analyses were used to

build class-prediction models which demonstrated the use of trait and

spectral data to distinguish between plants in the control or sink removal

treatment. Importantly, we demonstrate with each of our approaches

that sink limitation may be successfully detected at both the leaf and

canopy scale.

We tested the following hypotheses: (a) There will be significant

metabolic and structural differences between leaves of sink-limited

and control field-grown C. pepo plants. (b) These metabolic and struc-

tural differences can be detected in the field using hyperspectral

reflectance data acquired at the leaf scale. (c) These metabolic and

structural differences can also be detected remotely using hyper-

spectral reflectance data collected at the canopy scale.

2 | MATERIALS AND METHODS

2.1 | Plant material and experimental treatments

There are diverse ways to experimentally manipulate the carbon

source:sink balance, including: defoliation, debudding or sink removal;

manipulation of temperature, light, nitrogen or CO2 levels; and trans-

genic modifications (Ainsworth, Rogers, Nelson, & Long, 2004; White

et al., 2016). Direct manipulations of the carbon sink in field experi-

ments are comparatively rare. Here, we reduced the carbon sink of

field-grown C. pepo by removing developing fruits, throughout the

duration of the experiment. The continual removal of fruits is a stan-

dard agricultural practice for harvesting zucchini, although we removed

fruits early in their development.

C. pepo was selected for this experimental work because it rapidly

forms a full canopy, making this species an ideal target for our proof-

of-concept study of canopy reflectance. C. pepo is a suitable model

crop for sink manipulation experiments because its fruits are highly

visible due to large colourful flowers, there are relatively few fruits

per plant, and the fruits are easily removed. Furthermore, the local

environment is suitable for growing C. pepo, which is commonly culti-

vated as a commercial crop on Long Island.

Seeds of C. pepo L. var. Dunja were obtained from the Long Island

Cauliflower Association (Riverhead, New York, USA) and grown in a

research field at Brookhaven National Laboratory, Upton, New York,

USA in 2019 (latitude 40.864466, longitude 72.875158, 18 m eleva-

tion). Following initial pH testing, the field was prepared with lime

prior to sowing to ensure an appropriate soil pH for C. pepo. Seeds

were sown on DOY 158 at a density to achieve full canopy coverage

in eighteen 10 m × 10 m plots, each surrounded by a border of

C. pepo, of the same width as 1.5 times the height of mature C. pepo

(estimated from previous experiments) to give a total sown area of

12 m × 12 m. The large plot size was selected to facilitate canopy-

and UAS-level data collection. In addition to the sink manipulation

experiment described here, the field was also used for a drought

experiment. Six plots underwent sink manipulation and six plots

underwent drought treatment; six plots served as controls. For the

sink manipulation treatment, developing fruits were removed from

each plant twice per week beginning on DOY 196 by using a short-

bladed serrated harvesting knife to slice the midpoint of the short
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fleshy stem at the base of the fruit. The use of a complete, regularly

maintained sink removal treatment gave rise to large variation in

metabolite contents in order to fill the “trait space” (the numerical

range of data points), facilitating the development of robust PLSR

models. For the drought treatment, following germination and plant

establishment, irrigation was withheld from drought plots resulting in

soil dry-down during periods of no precipitation. Irrigation was

maintained at standard local agricultural levels in the sink manipula-

tion and control plots. The drought treatment began on DOY 186 and

lasted until the end of the experiment. Data from drought plots were

not used in the main study presented here but were included in PLSR

models to increase model performance by further increasing the range

of trait values, thus giving more robust data prediction capabilities.

Data were collected from each of the three plot types on every mea-

surement date. Meteorological data are reported in Figure S1.

2.2 | Experimental schedule

Leaf and canopy spectral data were collected twice per week for the

duration of the experiment (from the initiation of the sink removal

treatment until senescence of the control plants). All spectral data col-

lection and leaf harvesting was always performed within 3 hr of solar

noon (i.e., between 10:00 and 16:00 EDT) because canopy spectral

data collection requires the sun to be high in the sky to provide even

illumination of the leaves. Leaf harvests for obtaining biochemical

traits were alternately paired with either leaf spectral data collection

or canopy spectral data collection on any given day, in order to facili-

tate the development of PLSR models at both the leaf and canopy

scales. Conducting full diurnal time courses of leaf metabolite mea-

surements was beyond the scope of this work and not possible given

the constraints of sampling canopy spectra around solar noon. How-

ever, the strong experimental treatment used to build predictive

models should enable the prediction of metabolite contents at differ-

ent times of day via leaf level spectral data, and this will be an impor-

tant future application of the work presented here.

2.3 | Leaf spectral data

For leaf spectral data collection, three sets of random coordinates were

selected on each measurement day and applied to each plot. The newest

fully expanded leaf at each coordinate was selected for measurement.

First, leaf temperature was measured using a handheld infrared radiome-

ter (Apogee Instruments, Logan, Utah, USA). Immediately afterwards,

spectral data were collected using a PSR+ full-range (continuous

350-2,500 nm) spectroradiometer (Spectral Evolution, Lawrence, Massa-

chusetts, USA), connected to a leaf clip assembly with an internal, cali-

brated light source (SVC, Poughkeepsie, New York, USA). The

spectroradiometer was calibrated using a LabSphere Spectralon® reflec-

tance standard disc (LabSphere, Inc., North Sutton, New Hampshire,

USA). For each leaf, three spectral measurements were taken across the

adaxial surface and then averaged to give a single spectrum.

2.4 | Canopy spectral data

For canopy spectral data collection, three evenly spaced locations

were measured within the central region of each plot. The

spectroradiometer was fitted with a 14� lens (Spectral Evolution, Law-

rence, Massachusetts, USA) and positioned 2 m above the canopy on

a truck-mounted boom (Figure 4b). The spectroradiometer was cali-

brated using a LabSphere Spectralon® reflectance standard plate

(LabSphere, Inc., North Sutton, New Hampshire, USA). Leaf tempera-

ture in the area viewed by the spectroradiometer was first measured

using the infrared radiometer, positioned above the canopy. For each

location within the plot, three to five spectral measurements were

performed (immediately following temperature measurement) and

then averaged to give a single spectrum. When it was not possible to

measure canopy spectra on all experimental plots due to logistical or

weather constraints, the omitted plots were noted and prioritized for

measurement on the next measurement date, ensuring an overall even

coverage of canopy spectral data for all experimental plots.

2.5 | Physiological data

Measurements of ΦPSII and relative chlorophyll content were per-

formed using the PhotosynQ MultispeQ V 2.0 (Kuhlgert et al., 2016)

on the newest fully expanded leaf immediately following leaf spectral

data collection. The MultispeQ measurements were made on light-

adapted leaves, at ambient conditions matching the incident photo-

synthetically active radiation (PAR) and the temperature at the leaf

surface, using the “Photosynthesis RIDES” protocol available online at

photosynq.org.

In addition to the regular measurements of ΦPSII performed on all

plots throughout the experiment, the response of photosynthesis to

intercellular CO2 concentration (A/Ci curves) was performed on a sub-

set of plots on four dates. However, this data collection was con-

strained by instrument availability. These data, presented in Figure S2,

were collected in the field between the hours of 06:00 and 14:00,

using a LI-6800 Portable Photosynthesis System (LI-COR Biosciences,

Lincoln, Nebraska, USA). A diurnal measurement of photosynthesis

was performed prior to measurement of A/Ci curves to ensure that

measurements were completed before the onset of the afternoon

suppression of photosynthesis occurring naturally in plants in all treat-

ments. Light response curves were performed to determine the satu-

rating irradiance to be used in A/Ci curves: 2000 μmol photons

m−2 s−1. A/Ci curves were performed on the newest fully expanded

and physiologically mature leaf. Leaves were acclimated in the leaf

cuvette until steady-state A and gs were reached (20–45 min). Each

A/Ci curve began at 400 μmol mol−1 CO2, and the CO2 concentration

was decreased, then increased in a stepwise manner as described pre-

viously (Rogers, Serbin, Ely, Sloan, & Wullschleger, 2017).

Steady-state values of Ci/Ca and Asat at 400 μmol mol−1 CO2

were obtained from the first point of the A/Ci curve. Vc,max was esti-

mated from A/Ci response curves and should therefore be considered

as apparent Vc,max since mesophyll conductance was not measured,
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meaning that values are based on intercellular rather than chloroplas-

tic [CO2]. Estimation of Vc,max was made using the kinetic parameters

and their temperature dependence as presented previously (Bernacchi

et al., 2013; Bernacchi, Singsaas, Pimentel, Portis, & Long, 2001) fol-

lowing the method described in detail by Rogers et al. (2017). The

average root-mean-squared error (RMSE) associated with fitting Vc,max

was 1.26 (<1% of estimated Vc,max) ± 0.88 (SD). Values of Vc,max were

normalized to 25�C using an Arrhenius function (Bernacchi

et al., 2013).

2.6 | Sample collection

Leaves were either harvested immediately following leaf spectral data

collection for each plant or following canopy spectral data collection

for each area of the plot. For harvests paired with leaf spectra, the leaf

that had been used for spectral data collection was harvested. For

harvests paired with canopy spectra, the newest fully expanded leaf

from the centre of the area viewed by the spectroradiometer was

harvested. Each leaf was divided into two equal halves along the mid-

rib. Discs from one half were punched evenly across the leaf surface,

placed into an aluminium foil packet and immediately flash frozen in

liquid nitrogen, at the field site. The second half of the leaf was kept

intact and sealed in a plastic bag containing a damp paper towel, to

prevent desiccation during the sampling of the remaining leaves.

These intact leaf halves were placed into a cooler at the field site to

prevent sample deterioration. After harvesting was complete, all sam-

ples were returned to the laboratory. Frozen samples were stored at

−70�C for subsequent biochemical analysis. The intact half of each

leaf was punched into discs of known area distributed evenly across

the leaf surface, weighed and transferred to a drying oven for the sub-

sequent determination of leaf mass per unit leaf area (LMA) and leaf

water content (LWC).

2.7 | Leaf trait analysis

Leaf mass per unit leaf area was obtained from the measured area and

dry mass of oven-dried leaves. LWC was obtained from leaf fresh

mass at time of harvest and leaf dry mass after oven drying, according

to the following formula:

LWC %ð Þ= leaf fresh mass− leaf drymassð Þ
leaf fresh mass

x100:

Analysis of leaf carbon- and nitrogen-containing metabolites (glu-

cose, fructose, sucrose, starch, amino acids and protein) was per-

formed as described previously (Burnett et al., 2016). In brief,

sequential ethanol extractions were used to extract metabolites from

frozen tissue. For sugars (glucose, fructose and sucrose), a continuous

enzymatic substrate assay was performed in the presence of ATP and

NADP; the NADPH signal associated with each sugar was measured

at 340 nm (ELx808 Plate Reader, BioTek, Winooski, VT, USA). Amino

acids were quantified using fluorescamine in the presence of sodium

borate buffer, with fluorescence measured at 360 nm excitation,

460 nm emission and 40 nm bandwidth (Synergy HT Plate Reader,

BioTek, Winooski, VT, USA) after 5 min dark incubation. Protein was

quantified from the pellets resulting from the ethanol extraction using

a commercially available kit (Pierce BCA protein assay kit,

Thermoscientific, Rockford, IL, USA) following solubilization in 0.1 M

sodium hydroxide. For starch, pellet samples were first neutralized

with hydrochloric acid following the protein assay. An overnight enzy-

matic digest was performed, and the resultant sugars were quantified

as described above. For each assay, a standard curve was included on

every plate to ensure accurate metabolite quantification. For a more

detailed description of these methods, refer to Burnett et al. (2016).

Biochemical traits were expressed on a per unit area basis, derived

from the relationship between fresh mass and leaf area that was

obtained from the oven-dried samples.

Values of carbohydrate-corrected LMA (ccLMA) were obtained

from the total non-structural carbohydrate data (TNC; the sum of glu-

cose, fructose, sucrose and starch) as follows. TNC, expressed as

mmol glucose equivalents m−2, was first multiplied by the millimolar

mass of glucose to give TNC, g m−2. This value was then multiplied by

the area of each sample to give TNC, g sample−1. Finally, ccLMA

(g m−2) was obtained using the following equation:

ccLMA=
sample drymass−sampleTNCmassð Þ

sample area
:

2.8 | UAS flight data

An unoccupied aerial system (UAS) flight was performed on DOY

226, the last day of the measurement period, using an “Osprey” sys-

tem as described previously (D. Yang et al., 2020). Since the flight was

carried out at the end of the measurement period, only the RGB data

were analysed for this study; the full data are available online as

detailed at the end of the manuscript. Green Chromatic Coordinate

(GCC; Richardson, 2019) was obtained for each experimental plot

using RGB camera data following the methods of D. Yang

et al. (2020). This metric enables standardization of RGB data

between different cameras, facilitating comparison with future work.

2.9 | Data analysis

All data analysis was performed in the R open source software envi-

ronment (R Core Team, 2019). For analysis of leaf traits, depicted in

Figures 1 and 2 and Table 1, each trait was analysed using repeated-

measures ANOVA. Analysis was performed at the plot level (n = 6

plots for each treatment). For each measurement date, the within-plot

values obtained from three leaves per plot were first averaged to give

one value for each trait per plot and per measurement date. Next, if

required, data were log- or square-root-transformed prior to analysis

to satisfy requirements for normally distributed data. ANOVA was
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used to test for effects of and interactions between treatment catego-

ries (control and sink-limited) and time into the sink manipulation

experiment (DOY), with repeated measurements at the plot level. The

significance level was set to p < .05, with individual significance levels

reported in Table 1. A post-hoc Tukey test was performed to determine

the dates upon which differences between treatments were significant.

PLSR was used to predict leaf traits from spectral data using the

“pls” package (Mevik & Wehrens, 2007) in R. PLSR models included

drought plants, control plants and sink-limited plants to increase the

predictive power by extending the range of trait values and the num-

ber of samples. Measured starch and TNC data were square-root-

transformed prior to modelling; untransformed data are always pres-

ented in the manuscript. A small set of samples was removed from the

dataset prior to fitting, due to outlier residual errors, for each trait.

Leaf-level PLSR models were built using all spectral wavelengths

between 500 and 2,400 nm with the exception of TNC and free

amino acids when the range 1,100–2,400 nm was used to improve

accuracy of model prediction. Canopy-level PLSR models were built

using the spectral wavelengths 500–1,800 nm and 1950–2,400 nm in

order to eliminate the 1800-1950 nm region containing atmospheric

water interference. For canopy-level PLSR models for TNC and starch,

the starting wavelength was 1,100 nm rather than 500 nm to improve

the model fit. Spectral data did not undergo any transformation prior

to model building.

For all PLSR models, observational data points were subset

according to treatment then randomly assigned to datasets for calibra-

tion (80% of the data) and validation (20% of the data) (Table 2). Com-

ponent selection and model calibration were carried out as described

previously (Ely et al., 2019; Serbin et al., 2014). The R2 and RMSE of

prediction of the validation data set were used to assess each model,

and the variable importance of projection (VIP) was used for qualita-

tive evaluation of model predictor variables as described previously

(Wold, Sjöström, & Eriksson, 2001).

PLS-DA was performed in R using the “caret” package (Kuhn, 2008),

in accordance with methods developed previously (Cotrozzi &

Couture, 2020; Ely et al., 2019; Gold et al., 2020; Serbin et al., 2014).

PLS-DA models used 75% of the data for model training and 25% for

model testing, with 10-fold cross-validated resampling repeated five

times, and receiver–operator curves (ROC) optimization of the number

of components. Models ran until convergence was reached (up to

100 iterations). The LDA model was built using 75% of the data for

model training and 25% for model testing; the LDA model was trained

with leave-one-out calibration and ROC-optimization of the number of

components. The average results from 10 model iterations are reported.

GCC was analysed using a t-test of plot-level mean GCC values

for sink-limited and control plots (Figure S3).

3 | RESULTS

3.1 | Photosynthesis is maintained in sink-limited
plants

The sink removal treatment began on day of year (DOY) 196, and

plants were measured from the onset of treatment until DOY

226 when control plants were senescing. Physiological, metabolic and

(c)

(b)

(a)

F IGURE 1 Leaf temperature was higher in sink-limited plants, but
photosynthesis-related traits did not change. (a) leaf temperature;
(b) efficiency of photosystem II (ΦPSII); (c) relative chlorophyll content. For
leaf temperature (a) n = 6 plots each reporting an average value of 3–6 reps
per plot measured at leaf and/or canopy scales on any given date; the final
two time points show the average of five sink-limited plots and four control
plots. For MultispeQmeasurements (b,c) n = 6 plots with an average of three
reps taken for the plot-level value. Means ± SE of plot-level data are shown
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structural traits were measured (Figures 1 and 2). Averaged over the

experiment, leaf temperature was 3% higher in sink limited plants; leaf

temperature was 6% higher in sink limited plants at the final time

point. Temperature differences were significant across the experiment

taken as a whole; when individual measurement dates were analysed,

significant differences in temperature occurred on DOY 205, 206,

214, 221 (Figure 1a; Table 1). Photosystem II operating efficiency

(Figure 1b; Table 1) was not affected by the sink manipulation. Leaf

chlorophyll content was not affected by the sink manipulation except

for DOY 200 when it was significantly higher in sink manipulated

plants (Figure 1c; Table 1). The lack of overall photosynthetic

response displayed in data collected throughout the experiment

(Figure 1b) was supported by a small dataset of A/Ci curves which

showed no clear trend in Asat or Vc,max although gs was lower in sink-

limited plants (F1,8 = 7.2, p < .05; Figure S2).

3.2 | Sink limitation affects leaf metabolism and
structure

Leaf structure was markedly affected by the sink manipulation treat-

ment. There was a 5% decrease in LWC in the sink manipulation treat-

ment, and the magnitude of this effect increased with time, with a

highly significant time x treatment interaction (Figure 2a; Table 1). We

observed a 38% increase in LMA (mean for all time points) overall, dis-

playing the highest increase of 57% at the final time point, and a

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F IGURE 2 Leaf metabolic and structural traits in sink-limited (grey points) and control (black points) plants. (a) leaf water content (LWC);
(b) leaf mass per unit area (LMA); (c) free amino acids; (d) glucose; (e) fructose; (f) sucrose; (g) starch; (h) TNC and (i) protein. TNC is the sum of
glucose, fructose, sucrose and starch. For leaf metabolic traits (c–i), n = 6 plots with the exception of measurements made 9, 15 and 25 days into

treatment when five sink-limited plots and four control plots were measured. The data for each plot represent an average value from three
harvested leaves. For leaf structural traits (a,b) sampling was identical to leaf metabolic traits with the exception of the final time point on which
samples were taken for LWC and LMA only, with n = 2 sink-limited and n = 2 control plots. Means ± SE of plot-level data are shown
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TABLE 1 Leaf traits shown in Figures 1 and 2 analysed with repeated-measures ANOVA

Trait Effect F-value p-value

Leaf temperature Treatment

Time

Time × Treatment

F(1,8) = 20.1

F(10,94) = 59.6

F(10,94) = 1.1

p < .01

p < .001

ns

ΦPSII Treatment

Time

Time × Treatment

F(1,10) = 0.3

F(6,60) = 29.2

F(6,60) = 1.4

ns

p < .001

ns

Chlorophyll Treatment

Time

Time × Treatment

F(1,10) = 1.1

F(6,60) = 32.5

F(6,60) = 1.5

ns

p < .001

ns

Leaf water content Treatment

Time

Time × Treatment

F(1,6) = 104.5

F(8,63) = 27.4

F(8,63) = 6.0

p < .001

p < .001

p < .001

LMA Treatment

Time

Time × Treatment

F(1,6) = 190.7

F(8,63) = 53.3

F(8,63) = 21.8

p < .001

p < .001

p < .001

Free amino acids Treatment

Time

Time × Treatment

F(1,8) = 14.8

F(7,61) = 4.9

F(7,61) = 1.4

P < 0.01

p < 0.001

ns

Glucose Treatment

Time

Time × Treatment

F(1,8) = 13.0

F(7,61) = 13.6

F(7,61) = 12.3

p < 0.01

p < 0.001

p < 0.001

Fructose Treatment

Time

Time × Treatment

F(1,8) = 1.4

F(7,61) = 20.1

F(7,61) = 9.1

ns

p < 0.001

p < 0.001

Sucrose Treatment

Time

Time × Treatment

F(1,8) = 12.4

F(7,61) = 14.3

F(7,61) = 3.8

P < 0.01

p < 0.001

p < 0.01

Starch Treatment

Time

Time × Treatment

F(1,8) = 134.9

F(7,61) = 35.5

F(7,61) = 20.4

p < .001

p < .001

p < .001

TNC Treatment

Time

Time × Treatment

F(1,8) = 199.8

F(7,61) = 37.4

F(7,61) = 28.8

p < .001

p < .001

p < .001

Protein Treatment

Time

Time × Treatment

F(1,8) = 10.9

F(7,61) = 29.8

F(7,61) = 2.3

p < .05

p < .001

p < .05

Note: Effects of treatment (control and sink manipulation), time (DOY) and the interactive effect are shown.

TABLE 2 Numbers of datapoints in calibration (cal.) and validation (val.) datasets and number of model components (nComps) for partial least
square regression (PLSR) models presented in Figure 5

Leaf-scale PLSR Canopy-scale PLSR

Trait Cal. Val. nComps Cal. Val. nComps

LWC 192 49 7 71 20 9

LMA 190 48 9 71 19 11

Free amino acids 187 48 10 70 19 10

Glucose 191 49 11 70 18 6

Fructose 189 48 11 68 18 5

Sucrose 188 49 9 70 18 9

Starch 180 47 10 67 19 6

TNC 178 47 9 67 19 6

Protein 189 50 8 71 19 8
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highly significant time x treatment interaction (Figure 2b; Table 1).

The difference between control and sink-limited plants was significant

on DOY 200 for LMA and for both LMA and LWC on all measurement

dates from DOY 205 onwards (Table 2). About half of the overall

increase in the raw LMA data presented here was attributable to an

increased TNC content in sink-limited plants; carbohydrate-corrected

values of LMA (ccLMA) still showed an overall 20% increase in sink-

limited plants (see Data S1).

All leaf metabolites were analysed on an area basis. Free amino

acid content increased by 22% in sink-limited plants and decreased

over time in both control and sink-limited plants with no significant

interaction (Figure 2c; Table 1). However, for individual dates, the dif-

ference was significant on DOY 200, 205, 207, 214 and 218.

Sink-limited plants displayed a strong and highly significant

increase in TNC, which became more marked over time (Figure 2h;

Table 1). The increase in TNC was attributable in part to an increased

sugar content (Figure 2d–f; Table 1) but was dominated by a marked

increase in starch (Figure 2g; Table 1). Glucose was significantly higher

in sink-limited plants on DOY 207, 214, 218, 221; fructose was signifi-

cantly lower in sink-limited plants on DOY 200, then significantly higher

on DOY 214, 218, 221; sucrose was significantly higher in sink-limited

plants on DOY 211, 214, 218 and 221. Both starch and TNC were sig-

nificantly higher in sink-limited plants on all measurement dates from

DOY 205 onwards. Overall, TNC increased by 82% in sink-limited

plants. There was a highly significant time x treatment interaction for

each carbohydrate measured; the difference between control and sink-

limited plants increased as time progressed (Figure 2d–h; Table 1).

Leaf protein content increased 8% overall in sink-limited plants, and

the magnitude of this difference was greatest at the final time point

when protein was 25% higher than in the control plants; there was a sig-

nificant time x treatment interaction and the difference between treat-

ments was significant on DOY 207, 218 and 221 (Figure 2i; Table 1).

3.3 | Plot-level greenness is maintained in sink-
limited plants

Sink-limited plots stayed green for longer than control plots at the end

of the experiment, due to delayed senescence (Figure 3). Using UAS

imagery, we observed that the Green Chromatic Coordinate (GCC) was

significantly higher in sink-limited than control plants (t = 5.8, p < .001,

df = 10; Figure S3). This response was also visually evident in the stan-

dard red-green-blue (RGB) image where sink-limited plots were visually

greener compared to the control plots (Figure 3a).

3.4 | Partial least-squares regression successfully
predicts metabolic and structural traits from
reflectance at leaf and canopy scales

Reflectance data were collected at both leaf and canopy scales using a

leaf clip (Figure 4a) and truck-mounted boom (Figure 4b). At both

scales, PLSR successfully estimated leaf metabolite contents and

structural traits associated with sink limitation (Figure 5). In general,

F IGURE 3 An aerial image of the field (a) shows a prolonged green phenotype in plants which underwent the sink removal treatment. Plot
positions are indicated as follows: green = control, beige = drought, pink = sink removal (b). Drought plants were not used in the main study but
were included in PLSR model building to increase model performance (see Methods)
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models performed better at the leaf level, with a higher R2 when com-

pared to the canopy-level model for the same trait, and a lower RMSE

for six of nine leaf-level models when compared to canopy-level

models (Figure 5; data shown are for independent model validation in

each case). R2 values for leaf-level models ranged from 0.53 to 0.93

demonstrating strong predictive capabilities (Figure 5). Canopy-level

models also showed acceptable predictive capabilities for many traits.

Five of the nine models had R2 values greater than 0.5 (Figure 5) with

the highest R2 of 0.78 for LWC. The %RMSE (RMSE expressed as a

percentage of the mean of the observed values for a trait) ranged

from 2 to 37% for leaf models, and from 2 to 38% for canopy models.

For leaf models, %RMSE was <20% for all traits except sugars and

was 2% for LWC, 7% for LMA, 20% for free amino acids, 11% for pro-

tein and 13% for TNC. For canopy models, %RMSE was 2% for LWC,

14% for LMA, 26% for free amino acids, 10% for protein and 38%

for TNC.

3.5 | Sink stress detection may be achieved using
measured traits or hyperspectral reflectance

LDA was used to determine whether or not plants were exposed to

sink stress, based on metabolic and structural traits (glucose, fructose,

sucrose, starch, protein, free amino acids, LMA and LWC). When LDA

was performed iteratively, including cumulative data for each succes-

sive date and the preceding dates, class detection accuracy improved

over time as the treatment effect became stronger. The maximum

overall accuracy was 86% when all time points were included

(Figure 6), and the area under the receiver–operator curve (AUC-

ROC) was 0.93. PLS-DA using raw spectral data also showed a good

capability for distinguishing between sink-limited and control plants,

with detection success of 78% at the leaf level (AUC-ROC = 0.86) and

89% for canopy level spectra (AUC-ROC = 0.96), including all mea-

sured time points (Figure 6). The greater success of detection with

canopy spectra is likely due to the fact that compared to leaf-scale

data collection, canopy spectral data collection began slightly later

into the experiment. This would enhance the overall treatment effect

observed in canopy data, since the metabolic differences between

treatments generally increased over time as the sink stress became

more pronounced. After we omitted the leaf measurements that did

not overlap with those from the canopy collections in the PLS-DA

(i.e., leaf and canopy measurement periods were aligned, with the ear-

liest part of the experiment omitted) the detection accuracy at the leaf

scale was 93% (AUC-ROC = 0.99). The equivalent measurement for

LDA using measured leaf traits yielded a prediction accuracy of 94%

(Figure 6). Measured traits and hyperspectral reflectance are both suc-

cessful at distinguishing between sink-limited and control plants

(Figure 6).

4 | DISCUSSION

We conducted a sink manipulation experiment in field-grown C. pepo

and demonstrated that we could detect the marked and significant

effect of sink limitation (hypothesis a) on leaf metabolic and structural

traits using spectroscopy. Our key finding was that this approach can

be scaled effectively from the leaf level to the canopy scale (hypothe-

ses b and c). Collectively, our results demonstrate the robustness of

the spectroscopy approach, the potential to detect sink limitation

non-destructively and remotely and to do that in a real-world agricul-

tural setting, emphasizing the value of the approach for breeders and

producers.

4.1 | The metabolic signature of sink stress

Sink strength is the product of sink size multiplied by sink activity

(Geiger & Shieh, 1993; White et al., 2016). Removing developing fruits

dramatically decreases carbon sink strength within the plant, by

removing a critical carbon sink. However, fruit removal also increases

F IGURE 4 Photographs show spectral data collection at leaf (a) and canopy (b) levels. The spectroradiometer is referenced using a white
Spectralon® disc for leaf-level measurements and a white Spectralon® plate for canopy-level measurements, shown in (b)
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the sink activity by stimulating the development of new fruits, which

have a strong carbon requirement, thereby increasing sink strength

within the plant. In the manipulation performed here, the net effect

on sink strength was an overall decrease, since the increase in sink

activity was outweighed by the larger decrease in sink size, and this is

confirmed by the trends in carbohydrate levels observed in sink-

limited plants (Figure 2d–h).

Like most biotic and abiotic plant stresses, sink limitation has a

metabolic signature. Here, sink limitation led to significant increases in

the content of non-structural carbohydrates (Figure 2d–h) and free

amino acids (Figure 2c) in addition to leaf structural changes

(Figure 2a,b). Increased levels of non-structural carbohydrates – both

each carbohydrate metabolite individually and the total pool (TNC) –

are consistent with the literature on carbon sink limitation; our sink

(a) (b) (c)

(d)

(g) (h) (i)

(e) (f)

F IGURE 5 Partial least squares regression (PLSR) models demonstrate that spectral data may be used to predict leaf structural (a,b) and
metabolic (c–i) traits at both leaf and canopy scales. Each plot shows the validation results for leaf-level (black points) and canopy-level (grey
points) models. Plots show the relationship between observed traits from traditional measurements and predicted traits derived from spectral
data. The dashed line shows the 1:1 relationship, and R2 and RMSE values are provided for each model (black and grey text are used for leaf and
canopy models, respectively). For leaf PLSR models, calibration datasets included between 178 and 192 datapoints, and validation datasets
included between 47 and 50 datapoints (Table 2). For canopy PLSR models, there were between 67 and 71 calibration datapoints and between
18 and 20 validation datapoints (Table 2)
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removal treatment for manipulation of the source:sink balance, there-

fore, elicited the expected response. Sink-limited plants had increased

levels of leaf carbohydrates likely due to decreased export from the

leaf caused by reduced sink demand (Ainsworth & Bush, 2011; Bur-

nett et al., 2016; Stitt & Krapp, 1999).

The observed leaf structural changes (LWC and LMA; Figure 2a,b;

Table 1) are consistent with the development of smaller, longer-lasting

leaves; furthermore, these leaf characteristics are themselves consis-

tent with the delayed leaf senescence and maintained leaf protein

content observed in sink-limited plants (Figures 2i and 3). Delayed leaf

senescence has been observed in multiple FACE experiments in which

elevated [CO2] increased the carbon source:sink balance non-destruc-

tively, further indicating that our findings are commensurate with a

source:sink imbalance (Kontunen-Soppela et al., 2010; McGrath,

Karnosky, & Ainsworth, 2010; Tallis et al., 2010).

4.2 | Detection of metabolic traits at leaf and
canopy scales using hyperspectral reflectance

Since the sink limitation treatment was not accompanied by a change

in photosynthesis (Figures 1 and 2; Table 1; Figure S2), screening for

sink limitation in zucchini plants requires insight into the metabolic

response. Biochemical measurements are not only time-consuming

and costly to perform but are also destructive, meaning that a leaf-

level study cannot track an individual leaf over its lifespan. In addition,

the delay in obtaining results from destructive analysis is substantial,

preventing rapid feedback to breeders or farmers. Therefore, the use

of high-throughput, non-destructive hyperspectral data, which can

readily be analysed to understand the metabolic status of a plant

(at the leaf level) or field plot (at the canopy level), enables a great step

forward in the efficiency and capability of sink stress monitoring. Our

study provides the first field-level example of non-destructive moni-

toring of sink stress via metabolite prediction.

Whilst leaf-level PLSR models generally had a higher capability

for predicting traits from spectral data than their canopy-level coun-

terparts (Figure 5), models at both scales were effective at predicting

a suite of leaf traits. Importantly, predictions of starch, which forms

the vast majority of TNC, and leaf structural traits (LWC and LMA)

were successful at both leaf and canopy levels with R2 > 0.60 in each

case (Figure 5a,b,g,h). Since TNC was the major metabolic indicator of

sink limitation in this study, this indicates effective prediction of sink

limitation at the canopy scale. To our knowledge, this is the first time

that canopy-level predictive models have been used to examine the

traits underpinning crop sink limitation.

4.3 | Perspectives on scaling up trait detection

Scaling detection of traits from the leaf level to the canopy level is a

critical step to enable high-throughput measurement of plant traits

(Asner & Martin, 2008; Herrmann et al., 2018; Kokaly, Asner, Ollinger,

Martin, & Wessman, 2009; Virlet, Sabermanesh, Sadeghi-Tehran, &

Hawkesford, 2017). To measure traits at the canopy level, the time of

day must be carefully considered, given the reliance on natural illumi-

nation of the leaves by solar irradiation, rather than artificial illumina-

tion from the light sources typically used in a leaf clip. Leaf orientation

and canopy structure also become relevant for canopy-scale measure-

ments of reflectance (Ollinger, 2011); gaps between plants must be

avoided in order to obtain a reliable spectral measurement of the core

vegetation component. Finally, atmospheric water vapour can inter-

fere with the signal in the main water absorption regions (Gao,

Heidebrecht, & Goetz, 1993) and must be removed from the spectral

data prior to analysis. Here, we successfully demonstrated the use of

canopy-level spectral data for detecting sink limitation, representing a

major advance in the phenotyping of sink limitation – a recognized

critical target for crop breeding (Dusenge, Duarte, & Way, 2019; Fer-

nie et al., 2020).

Scaling the hyperspectral monitoring of sink stress to the UAS

level using UAS-mounted hyperspectral sensors (Shiklomanov

et al., 2019; G. Yang et al., 2017; D. Yang et al., 2020) is the next step

for increasing throughput and the ability to scale the technique, as has

been shown for phenotyping of wheat height in response to a nitro-

gen treatment (Holman et al., 2016) and canopy characteristics of avo-

cado trees (Tu, Johansen, Phinn, & Robson, 2019). However, it must

be noted that scaling up to the UAS level is not without its technical,

economic and legislative challenges (Coops, Goodbody, & Cao, 2019;

Hunt & Daughtry, 2018). In terms of technical limitations, UAS-
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F IGURE 6 Linear discriminant analysis (LDA) using measured leaf
traits and partial least squares discriminant analysis (PLS-DA) using
raw spectral data measured at leaf and canopy scales successfully
predict whether or not plants were sink limited. The grey line
represents the 50% (equal to chance) detection rate. AUC-ROC values
are reported in the text. Asterisks indicate when a subset of data was
used, with aligned leaf and canopy measurement periods, to facilitate
comparison with canopy-level data, for which collection began later
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mounted spectral cameras often have a narrower range of wavebands

and a lower waveband resolution than hyperspectral sensors used on

the ground, for example 10 nm resolution in the study by Basso,

Fiorentino, Cammarano, and Schulthess (2016), reducing measurement

precision. In the present study, we used the Green Chromatic Coordinate

(GCC), which is a simple metric derived from RGB camera data, to dem-

onstrate that sink-limited plots were greener than control plots at the

end of the experimental period, measured at the UAS level. This finding

is likely related to underlying physiological and biochemical traits, since

GCC is linked to pigments and plant health as well as leaf area index (Liu

et al., 2015; Liu, An, Lu, Hu, & Tang, 2018; Reid, Chapman, Prescott, &

Nijland, 2016). Simple metrics such as GCC provide a less expensive

approach to airborne crop monitoring, and UAS measurements fre-

quently rely on spectral indices rather than taking the full-spectrum trait

prediction approach demonstrated using our leaf- and canopy-level data.

However, for detecting small changes and understanding the underlying

metabolic differences, hyperspectral data provide far more detailed infor-

mation than spectral indices. Hyperspectral data – in contrast to multi-

spectral data – are especially suited to measurements of nutrient status

as well as other stresses such as pathogens when using UAS systems

(Maes & Steppe, 2019), and it will be important to use high spectral reso-

lution when scaling up our detailed approach for stress detection from

the leaf- and canopy-level to the UAS level.

The detection of metabolic and structural signatures using leaf

reflectance facilitates faster screening for crop breeding as well as the

development of precision agriculture techniques. In the plant breeding

context, understanding sink limitation – whether at the leaf, canopy

or field scale – enables the development of crops better able to trans-

late additional photosynthate resulting from improved carbon assimi-

lation (Degen et al., 2020; Kromdijk et al., 2016; Li et al., 2020; L�opez-

Calcagno et al., 2020; South et al., 2019) or future elevated CO2

(Ainsworth, Rogers, & Leakey, 2008; Leakey et al., 2009) into

enhanced yield. In the precision agriculture context, monitoring sink

limitation in major crops may be used to inform the timing of fertiliser

application to improve the balance between carbon and nitrogen

resources in the plant (Basso et al., 2016; Maes & Steppe, 2019;

Maresma, Ariza, Martínez, Lloveras, & Martínez-Casasnovas, 2016).

Both carbon and nitrogen can place limits on crop growth, develop-

ment and yield (Burnett et al., 2016; Burnett, Rogers, Rees, &

Osborne, 2018; White et al., 2016), and both source and sink limita-

tions must be addressed for successful breeding of our future crops

(Fernie et al., 2020; White et al., 2016).

In summary, source:sink balance underpins plant growth and sur-

vival and is a key factor affecting crop yield. In order to realize crop

yield increases, an integrated understanding of carbon and nitrogen

sources and sinks is essential. Remote sensing provides a unique

opportunity for detailed, high-throughput phenotyping of plant physi-

ological and metabolic traits, enabling us to understand limitations on

yield caused by sink limitation. Here, we have demonstrated the use

of leaf reflectance data to examine vital plant processes in the produc-

tion environment, measuring source:sink balance remotely in field-

grown plants for the first time, enabling rapid and non-invasive mea-

surements of sink limitation.
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