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Abstract

Tropical forests are one of the main carbon sinks on Earth, but the magnitude of CO2

absorbed by tropical vegetation remains uncertain. Terrestrial biosphere models (TBMs)

are commonly used to estimate the CO2 absorbed by forests, but their performance is highly

sensitive to the parameterization of processes that control leaf-level CO2 exchange. Direct

measurements of leaf respiratory and photosynthetic traits that determine vegetation CO2

fluxes are critical, but traditional approaches are time-consuming. Reflectance spectroscopy

can be a viable alternative for the estimation of these traits and, because data collection is

markedly quicker than traditional gas exchange, the approach can enable the rapid assem-

bly of large datasets. However, the application of spectroscopy to estimate photosynthetic

traits across a wide range of tropical species, leaf ages and light environments has not been

extensively studied. Here, we used leaf reflectance spectroscopy together with partial least-

squares regression (PLSR) modeling to estimate leaf respiration (Rdark25), the maximum

rate of carboxylation by the enzyme Rubisco (Vcmax25), the maximum rate of electron trans-

port (Jmax25), and the triose phosphate utilization rate (Tp25), all normalized to 25˚C. We col-

lected data from three tropical forest sites and included leaves from fifty-three species

sampled at different leaf phenological stages and different leaf light environments. Our

resulting spectra-trait models validated on randomly sampled data showed good predictive

performance for Vcmax25, Jmax25, Tp25 and Rdark25 (RMSE of 13, 20, 1.5 and 0.3 μmol m-2 s-1,

and R2 of 0.74, 0.73, 0.64 and 0.58, respectively). The models showed similar performance

when applied to leaves of species not included in the training dataset, illustrating that the

approach is robust for capturing the main axes of trait variation in tropical species. We dis-

cuss the utility of the spectra-trait and traditional gas exchange approaches for enhancing

tropical plant trait studies and improving the parameterization of TBMs.
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Introduction

Tropical forests absorb more CO2 than any other biome and current estimates suggest that

they are responsible for 60% of the annual, global CO2 assimilation [1]. Terrestrial biosphere

models (TBMs) are commonly used to forecast the response of vegetation carbon sequestra-

tion to environmental change, yet their ability to adequately capture the responses of CO2

cycling is currently limited by the poor representation of key leaf-level physiological processes.

In particular, the parameterization of TBMs associated with the underlying representation of

photosynthesis and respiration drives some of the greatest uncertainty in key TBM outputs

[2,3]. Importantly, the parameterization of photosynthesis in TBMs also has a strong influence

on the projected response to rising atmospheric CO2 concentration and temperature [4,5].

Therefore, accurate representation of these key parameters is central to projecting CO2

exchange, and determining the response of tropical forests to a changing climate.

Most TBMs utilize some form of the Farquhar, von Caemmerer and Berry (FvCB) repre-

sentation of leaf-level photosynthesis ([6]), or a version proposed by ([3,7,8]). In the FvCB

model, the net CO2 assimilation rate of leaves corresponds to the minimum of three potential

rates of three processes taken independently: the Rubisco limited assimilation rate (Ac), which

depends on the maximum carboxylation rate of Rubisco (Vcmax), the electron transport limited

assimilation rate (Aj), which depends on the maximum rate of electron transport (Jmax), and

the export limited assimilation rate (Ap), which depends on the rate of triose phosphate utiliza-

tion (Tp) for the synthesis of starch and sucrose [6,9,10]. The FvCB model also considers the

release of CO2 by dark respiration (Rdark) which lowers the rate of gross CO2 assimilation

(photosynthesis, stricto sensu). These four parameters (Vcmax, Jmax, Tp and Rdark), are all tem-

perature dependent [5,11–14] and are expressed at a common reference temperature, typically

25˚C (Vcmax25, Jmax25, Tp25 and Rdark25). Providing robust estimates of these parameters and

rates is central to improving parameterization and ability of TBMs to simulate the response of

tropical forests to climate change.

The “gold standard” for determining leaf Vcmax25, Jmax25, Tp25 and Rdark25 relies on labori-

ous, time consuming and logistically challenging procedures. For example, the traditional

approach for estimating Vcmax25, Jmax25 and Tp25 uses a combination of direct measurements

of the response of photosynthesis to CO2 in a light acclimated leaf (commonly referred to as

an A-Ci curve), followed by fitting the data to a mechanistic model to estimate Vcmax25, Jmax25

and Tp25 (e.g. [15–18]). Measurement of an A-Ci curve followed by dark adaptation and mea-

surement of dark adapted Rdark25 can take two hours for a single leaf. In addition, these key

photosynthetic parameters also vary with a range of other biotic and abiotic covariates, includ-

ing plant species, leaf age, season, environment gradients and stress [19–24]. Therefore, the

use of traditional gas exchange approaches has been a significant bottleneck in providing key

leaf-level physiological data, thus limiting our ability to characterize variation in key photosyn-

thetic parameters across these axes of biotic and abiotic variation.

Leaf reflectance spectroscopy has shown promise for enabling the rapid estimation of a

wide-range of leaf traits, and in many cases replacing slower traditional methods. For example,

spectroscopic approaches have already been used to replace chemical assays for leaf chloro-

phyll extraction (e.g., Dualex: FORCE-A, Orsay, France; SPAD: Minolta Camera Co., Osaka,

Japan) using simple spectral indices. Leaf traits involving more complex relationships with

reflectance at different wavelengths [25] can be inferred using leaf-level radiation transfer

models (RTMs), such as the PROSPECT model [26,27]. Another common approach consists

of using empirical methods such as Partial Least Square Regression (PLSR) [28] to model the

relationship between reflectance and leaf traits such as leaf mass per area, carbohydrate content

and nitrogen content [29–31]. In addition, the PLSR modeling approach has been shown
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capable of estimating a range of physiological parameters currently impossible to estimate

with leaf RTMs, including the parameters needed to model net photosynthesis,Vcmax25, Jmax25,

Tp25 and Rdark25 [32–39].

In the past, PLSR models have been successfully applied to individual species [32–36]. How-

ever, studies exploring more globally-applicable relationships between photosynthetic parame-

ters and reflectance are sparse [37–39]. For tropical forests, some work has been done [39], but

has been limited to the use of the spectra-trait approach on a small dataset (n = 40 leaves, 11

species), which also showed low overall model performance (R2 = 0.39 and RMSE = 36 μmol

m-2 s-1 for Vcmax25, R2 = 0.52 and RMSE = 39 μmol m-2 s-1 for Jmax25 and R2 = 0.48 and

RMSE = 0.52 μmol m-2 s-1 for Rdark25). More recently, the possibility to estimate Vcmax25 from

leaf reflectance spectra across 21 tropical tree species was explored and showed much higher

model performance (R2 = 0.89 and RMSE = 6.6 μmol m-2 s-1, n = 216 leaves) [38].

However, to effectively replace or complement the gold standard measurements used to

estimate a variety of plant traits, the spectra-trait PLSR approach needs to be accurate across

the many axes of variation that include the plant material and environmental conditions that

are the target of a given study. Traditional gas exchange methods, while slow, are capable of

inferring photosynthetic capacity across a wide-range of plants and environments, and reflec-

tance spectroscopy would need to show similar generality to serve as a viable means for supple-

menting them. Despite the potential shown in past studies, the possibility of using PLSR

models for predicting photosynthetic parameters across plant species and conditions is still an

open question. In most cases, PLSR models have been trained on a small number of species

and conditions relative to the large number of species present in a tropical forest. For example,

the predictive performance of PLSR models for Vcmax25 applied to independent species or con-

ditions was not robust (R2 = 0.23) when compared with application of those models to species

and conditions represented in the training dataset (R2 = 0.90) [38].

In order to evaluate the potential to use spectroscopy to enable and accelerate extensive

data collection for parameterization of TBMs, the objectives of the study were: (i) to measure

the four net photosynthesis parameters across an expanded number of tropical species and

conditions to better fill the optical property and trait space, (ii) to test the ability of PLSR mod-

els to predict the photosynthetic parameters on external species or sites not included in the

training dataset and, (iii) to quantify the uncertainty associated with estimation of our target

leaf traits using spectroscopy and traditional gas exchange approaches. To address these objec-

tives, we measured these parameters and reflectance spectra of leaves of a wide variety of spe-

cies encountered in a tropical forest in Panama at different elevations inside the canopy and at

different leaf phenological stages. We increased the size and scope of this database by combin-

ing our data with measurements from previous work [38,40] to allow us to capture variation

over several years (2012, 2013, 2016, 2017, 2020) and sites in Panama and Brazil, comprising

53 different species.

Materials and methods

Study site

Between January and March 2020, we sampled leaves in the area surrounding the Smithsonian

Tropical Research Institute (STRI) canopy crane site located in the San Lorenzo Protected

Area in the Province of Colon, Republic of Panama (9.281˚N, 79.974˚W, 130 m above sea

level). This location represents a wet evergreen tropical forest composed of a large diversity of

lianas, epiphytes and evergreen trees [41]. The climate in this area is tropical and characterized

by a low variation in the mean monthly air temperature (25˚C), but a high seasonal variation

in precipitation. The rainy season is from May to December with a mean monthly

PLOS ONE PLSR models for rapid estimation of tropical plant photosynthetic parameters using reflectance spectrometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0258791 October 19, 2021 3 / 22

https://doi.org/10.1371/journal.pone.0258791


precipitation of 370 mm. The dry season is from January to April with a mean monthly precip-

itation of 80 mm.

Plant material

In this study, we were interested in evaluating the potential for reflectance spectroscopy to

accurately estimate photosynthetic and respiratory traits under a wide range of leaf conditions.

Therefore, branches were selected across a wide range of species, canopy position and leaf age.

Branches were sampled randomly from ten vertical profiles at five different heights, equally

distributed from the top of the canopy to the ground. In addition to samples taken from the

vertical profiles, other branches from six species (Brosimum utile, Cecropia insignis, Guatteria
dumetorum,Miconia minutiflora, Terminalia amazonia and Vochysia ferruginea) representing

different growth strategies (early, medium or late successional) were also sampled. In total,

branches from 39 species were collected (Table 1). On the branches, when possible, the mea-

surements were made on leaves at different stages of leaf age development, from young to old,

by sampling leaves at different positions on the branch and choosing leaves with different col-

ors and texture (young leaves being lighter green and at the tip of the branches, older leaves

being further down the branch, thicker and often darker, [42]). Branches were excised from

the trees before dawn, immediately put in buckets filled with water and re-cut under water at

least 20 cm up from the original cut, toward the tip of the branch to avoid cavitation as

described previously [38,43]. Importantly, measurements made on cut branches show no sta-

tistically significant differences from in situmeasurements on intact branches when precau-

tions are taken to wait for acclimation and to avoid cavitation [44–46]. Gas exchange

measurements and reflectance spectra were measured in a nearby shaded area.

Gas exchange measurements

We used five LI-6400XT Portable Photosynthesis Systems and one LI-6800 Portable Photosyn-

thesis System (LI-COR, Lincoln, Nebraska, USA). Instruments were zeroed using a common

nitrogen standard at the beginning of the study. Before beginning each measurement, a single

leaf was placed in the leaf chamber under stable conditions (irradiance, CO2, temperature,

flow rate) and allowed to acclimate to these conditions for a minimum of 20 minutes. Mea-

surements of the response of photosynthesis to irradiance and carbon dioxide concentration

followed an established protocol [47]. The response to irradiance was measured by sequentially

lowering the irradiance as follows: 1800, 1400, 1200, 1000, 800, 600, 400, 300, 200, 120, 80, 50,

30, 20, 10 and finally 0 μmol m-2 s-1. For all measurements, the color spectrum of the light was

90% red, 10% blue. The temperature of the leaves was maintained constant at 30, 31 or 32˚C

depending on ambient conditions at the time of measurement. The CO2 concentration at the

surface of the leaf was maintained at 400 μmol CO2 mol-1. For the five LI-6400 XTs, the

humidity was not controlled and fluctuated with the ambient humidity at the time of the mea-

surement with values generally above 60%. On the LI-6800, the humidity was controlled and

set at 70%. After each light response curve, the saturating irradiance was estimated from visual

assessment of the light response curve, and the leaf was acclimated at this irradiance for

another 20 minutes, allowing the stomatal conductance (gsw) and the CO2 assimilation rate

(A) to stabilize at the new irradiance. The gsw and A were compared against the rates measured

prior to starting the light response to ensure that the leaves fully recovered. The CO2 concen-

tration entering the leaf chamber was then sequentially modified as follows 400, 300, 225, 150,

100, 75, 50, 400, 475, 575, 675, 800, 1000, 1400, 1800 μmol mol-1 air. The humidity and temper-

ature settings were controlled in the same manner as in the light response curves. Upon com-

pletion of the A-Ci curve the chamber illumination was turned off and the leaf and branch
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Table 1. Number of leaves measured by species in the different datasets.

Species Name Brazil Panama (2016 2017) Panama (2020)

Albizia adinocephala - 4 -

Anacardium excelsum - 4 -

Annona spraguei - - 1

Apeiba membranacea - 5 2

Aspidosperma spruceanum - - 5

Bixa orellana - - 1

Brosimum utile - - 11

Calycophyllum candidissimum - 3 -

Carapa guianensis - 3 1

Castilla elastica - 1 -

Cecropia insignis - - 17

Cecropia obtusifolia - - 1

Cespedesia spathulata - - 1

Chamaecrista xinguensis 12 - -

Clusia rosea - - 2

Cordia alliodora - 4 -

Cupania scrobiculata - - 1

Dendropanax arboreus - - 2

Erisma uncinatum 24 - -

Ficus insipida - 5 -

Guatteria dumetorum - 23 7

Inga multijuga - - 2

Lonchocarpus heptaphyllus - - 1

Luehea seemannii - 5 1

Manilkara bidentata - - 1

Manilkara elata 3 - -

Manilkara zapota - - 3

Maranthes panamensis - - 1

Marila laxiflora - - 1

Melastomacea family� - - 6

Mezilaurus itauba 5 - -

Miconia minutiflora - 29 1

Pera arborea - - 3

Persea americana - - 1

Philodendron fragrantissimum - - 3

Philodendron grandipes - - 2

Pittoniotis trichantha - 4 -

Pourouma bicolor - - 1

Protium panamense - - 2

Salacia multiflora - - 1

Sloanea meianthera - - 1

Symphonia globulifera - - 2

Tachigali cf. chrysophylla 1 - -

Tachigali versicolor - 7 2

Tapirira guianensis - - 12

Terminalia amazonia - 21 -

Tocoyena pittieri - 10 -

Tovomita longifolia - - 3

(Continued)
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were covered with a black cloth to ensure full darkness. The CO2 entering the cuvette was set

to 400 μmol mol-1 air and the flow was reduced to 350 μmol s-1 air to increase the signal to

noise ratio. After 45 minutes of dark adaptation and when the CO2 exchange was stable, the

CO2 efflux from the leaves was recorded every second for one minute and averaged to estimate

Rdark.

Leaf reflectance spectra measurements

Leaf reflectance was measured shortly after completion of the gas exchange measurements

(typically immediately after completion or within one hour) as described previously [30,38],

using a full range spectrometer (PSR 3500+, Spectral Evolution, Inc., Lawrence, MA, USA;

spectral range: 350–2500 nm; spectral resolution: 2.8 nm at 700 nm, 8 nm at 1500 nm, and 6

nm at 2100 nm) together with an LC-RP-Pro leaf clip foreoptic (Spectra Vista Corporation,

Poughkeepsie, New York) containing an internal, full-spectrum calibrated light source. The

integration time was set to 2 seconds at the lowest light intensity. A white reference was taken

before measuring the leaf reflectance using a white Spectralon1 standard. To account for

potential heterogeneity of the leaf sample, 3–4 reflectance measurements were taken on differ-

ent sections of the leaf. They were then averaged to provide one mean leaf spectrum for each

leaf.

Additional data

In order to increase the number of samples and to improve the robustness of the PLSR, we

also included the data described in [38,40] with our new data collection to generate one dataset

that was used for the analysis described below. The data collection from [38,40] added diversity

to our data and included, in addition to measurements made in the same Panamanian forest

as described above, samples measured at the drier Parque Natural Metropolitano site, located

in Panama, as well as data measured during a previous campaign in Tapajos National Forest,

near Santarem, Para, Brazil. Samples from these campaigns included different leaf age classes,

from young to old leaves. The leaves collected in Panama [38] were sunlit leaves whereas the

data acquired in Brazil [40] also included shaded leaves. In total, 53 species with different

growth strategies and shade tolerance were present in the overall dataset, 39 from this study in

2020 and 14 additional species from the previous studies [38,40] (Table 1). The complete

instrument output from the original A-Ci curves presented in [38,40] was used and refitted fol-

lowing the same procedure as the A-Ci measured in this study. This was done to eliminate any

potential bias in the estimation of the parameters that could occur using different equations

and fitting methods [3]. The data from [38,40] did not include measurements of Rdark25 so this

dataset was only used to improve the PLSR prediction of Vcmax25, Jmax25 and Tp25.

Table 1. (Continued)

Species Name Brazil Panama (2016 2017) Panama (2020)

Tovomita stylosa - - 4

Virola elata - - 1

Virola multiflora - - 1

Vochysia ferruginea - 17 1

Xylopia macrantha - - 2

� The species for the leaves corresponding to this family could not be identified.

https://doi.org/10.1371/journal.pone.0258791.t001
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Fitting of the photosynthetic parameters from the gas exchange data

From each A-Ci curve, the parameters Jmax25, Vcmax25 and Tp25 and their confidence intervals

were estimated at a reference temperature of 25 ˚C by fitting the Farquhar model [6] using

the modified Arrhenius function published by [11] to correct for the difference between the

measurement temperature and the reference temperature. The parameters used to model the

temperature dependencies were those summarized in [48] (Table B3, PSN temperature

dependencies) using the activation energy parameters from [12,14,49]. The modified Arrhe-

nius function and corresponding parameters were also used to estimate Rdark25 from Rdark.

Our approach assumed an infinite mesophyll conductance and therefore estimates of photo-

synthetic parameters should be considered apparent. The fitting was done using the ‘mle2’

function from the R package ‘bbmle’ [50,51] which allowed the estimation of all the parame-

ters as well as their standard errors and confidence interval. Note that the transitions

between the Ac, Aj and Ap limitations were not assigned manually but automatically by the

fitting procedure so the set of parameters maximized the likelihood of the estimation for

each A-Ci curve.

Triose phosphate utilization limitation (Ap) is not always present in A-Ci curves. To deter-

mine if the consideration of Ap (from which the parameter Tp25 is associated) was relevant to

improve the quality of the A-Ci fitting, the Akaike Information Criterion (AIC) of the models

with and without Ap was compared. This criterion was used to compare both models and to

assess if the addition of Ap improved the fit of the model. Ultimately, the model with the lower

AIC was kept and, as a result, not all curves have a Tp25 parameter value. The code for process-

ing A-Ci data is available online [52].

It is important to note that in the fitting procedure, a respiration parameter was also fitted.

Other methods to estimate the respiration value are often preferred and, in this study, we did

not used this value to build the PLSR models. Instead, we used the measurement of the respira-

tion in the dark (Rdark25) presented in the section ‘Gas exchange measurements’.

Development and validation of the spectra-trait PLSR models on different

validation datasets

The PLSR models were built for each response variable separately, i.e., for Vcmax25, Jmax25, Tp25

and Rdark25. We followed a double cross validation procedure which uses distinct training and

validation datasets to train and then assess the predictive performance of the PLSR models.

Importantly, we used special care to define the training and validation datasets to test the gen-

erality of the PLSR models and to validate if they could be used to predict observations for spe-

cies or sites that were different from those used to train the PLSR models. For this purpose, we

built three different training and validation datasets with different characteristics allowing us

to carry out three different tests of model generality. In the first test, we randomly sampled

80% of all the leaves measured during the three campaigns (i.e., this study campaign and the

campaigns from [38,40]) to build the training dataset. The validation dataset consisted of the

remaining 20% of the samples. We call this test the ‘random split’ test, hereafter. This test cor-

responded to the type of validation usually made in previous studies [38,39] and leaves from

potentially the same species and even the same plants as those used in the training dataset can

be used for validation. In the second test, we randomly sampled 30% of the new species mea-

sured in 2020 (i.e., 10 species) to create the validation dataset. All observations made on the

other species constituted the training dataset. This test is called the ‘species split’ test hereafter

and contrary to the random split test, this test ensures that different species are used to train

and validate the PLSR models. In the third test, we separated the data into the training and val-

idation datasets according to the forest site. We used all the observations made in Panama to
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build the training dataset and all the observations made in Brazil to build the validation data-

set. We call this test the ‘site split’ test hereafter. This last test was the most challenging in

terms of prediction as it involved different spectrometers, different species and a different site

from the one used to build the models. This test was only made on Vcmax25 and Jmax25 since the

data acquired in Brazil did not include Rdark25 and only included a small number of Tp25

observations.

Once the training and validation datasets were created, we used the guide and code from

[53] to train and validate the PLSR models. In this guide, two steps are considered: 1) Statisti-

cally selecting the most parsimonious number of PLSR components which balances model

performance. We did this by creating 1000 random subsets of the training dataset, each one

containing 70% of the training observations, and assessing the performance of the sub models

on the 30% of the remaining training observations (internal validation). We assessed the per-

formance of each of the 1000 sub models across the selected range of possible PLSR compo-

nents using the prediction residual sum of square (PRESS). We then identified the minimum

number of components as the number which was still less than one standard error away from

the overall best model. This method is designed to avoid overfitting, a common issue with

PLSR. Given the high number of repetitions (1000), it also reduces the effect of the sub sam-

pling on the determination of the number of components. Note that in order to be consistent

between the tests, the number of components for each PLSR variable was chosen during the

random split test and was not changed for the species and site split tests. 2) The second step

consisted of validating the final calibrated model on the withheld validation dataset (external

validation), i.e., comparing the predicted values with the observed values based on the valida-

tion dataset observations. To do so, the 1000 sub models were used to predict the response of

the validation dataset. The mean of the response could therefore be predicted as well as the

confidence and prediction intervals.

Here, we considered the random split test and the PLSR models resulting from this test as

the final PLSR models because they included the widest conditions for training and followed

the same validation procedure (random split) as previous studies. We added the species split

and site split tests to investigate if the data was general enough to train PLSR models that can

be used on new species and on a new site. We used three different metrics to quantify the per-

formance of the PLSR obtained by the three tests on their validations datasets: the coefficient

of determination (R2), the root mean square error (RMSE), and the RMSE standardized by the

trait range across the whole dataset including the three campaigns of measurement (%RMSE).

It is important to note that Vcmax25 and Jmax25 were square root transformed to increase the

symmetry of their distributions before performing the PLSR as advised in [28].

Interpretation of the PLSR models

In order to find the spectral area that had the greatest importance in the PLSR models to pre-

dict the response variables, we used the coefficients of the PLSR models and the VIP (Variable

Importance in the Projection) scores [28,54]. The coefficients non significantly different from

zero have no effect on the prediction of the response variable, whereas coefficients with high

values (negative or positive) have a strong effect, so the ‘peaks’ in the coefficient plots give

information to interpret the PLSR model. We also used the VIP scores as they are complemen-

tary to the coefficients [28,54]. Contrary to the coefficients, the VIP scores also consider the

importance of each particular wavelength to predict the reflectance spectrum itself, in addition

to the effect on the prediction of the response variable. So, in the end, the most important

wavelengths have both a high VIP (in practice, above one) and a high coefficient values (posi-

tive or negative).
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Results

Variation in leaf net photosynthetic traits estimated with gas exchange

measurements

An example of our A-Ci fitting approach is provided in Fig 1. In our approach, we estimated

the three potentially limiting processes which determine A at a given CO2 concentration: the

Rubisco carboxylation rate (Ac) which depends on Vcmax25, the electron transport rate (Aj)

which depends on Jmax25 and the triose phosphate utilization rate (Ap) which depends on Tp25.

Our fitting approach also allowed us to calculate the confidence interval of each parameter and

to calculate the confidence interval of the mean assimilation rate (i.e., the 95% interval where

the mean A is expected, in green) as well as the prediction interval (i.e., the 95% interval where

a measure of A should fall, in grey). The uncertainty associated with the fitting of the A-Ci

curves and with the dark respiration measurement are presented in Table 2 and are always

below 10%.

The standard deviation for the gas exchange measurement corresponds to the average stan-

dard deviation from the A-Ci curve fittings (Vcmax25, Jmax25 and Tp25) or to the average stan-

dard deviation from the dark acclimated measurements of the respiration (Rdark25). The

standard deviation for the PLSR predictions corresponds to the average standard deviation of

the validation points of the random validation test. Note that the standard deviation for the

Fig 1. Example of fitting of an A-Ci curve. The observations are represented by points. The Rubisco carboxylation

rate (Ac), the electron transport rate (Aj) and the triose phosphate utilization rate (Ap) of net photosynthesis are shown.

The three limiting rates of photosynthesis (Ac, Aj and Ap) depend on the parameters Vcmax25, Jmax25 and Tp25,

respectively. The confidence interval of the mean A is shown in green (i.e., the 95% interval where the mean A is

expected) as well as the interval of prediction in grey (i.e., the 95% interval where a measure of A should fall).

https://doi.org/10.1371/journal.pone.0258791.g001
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PLSR prediction includes the model uncertainty, i.e., the error associated with the estimation

by the 1000 PLSR sub models, and the residual error. The relative standard deviation is the

ratio of the standard deviation to the mean.

The resulting distributions of Vcmax25, Jmax25, Rdark25 and Tp25 are shown in Fig 2. These dis-

tributions show that our dataset captures a large degree of variation in leaf physiological traits.

This variation is not surprising given the nature of the leaf sampling, which was designed to

select leaves across a wide range of drivers of leaf trait variation, including species (n = 53 spe-

cies), different leaf development stages, five different canopy positions on vertical profiles, and

three observation site locations in Panama and Brazil. Due to the nature of parameter estima-

tion, we ended up with fewer observations of Tp25 compared with Vcmax25 and Jmax25 observa-

tions because only 32% of the A-Ci curves showed evidence of a Ap limitation, as evaluated

using model AIC. This resulted in a lower number of points used to train the Tp25 PLSR model

than for Vcmax25, Jmax25 and Rdark25. Note that the A-Ci curves measured in Brazil only showed

Ap limitation for one A-Ci curve.

Performance of the PLSR models over the different validation datasets

The performance of PLSR models expressed in terms of R2, RMSE and %RMSE for each

parameter Vcmax25, Jmax25, Tp25 and Rdark25 are shown in Table 3, as well as the final number of

PLSR components. In this table, the performance using the different training and validation

datasets (random split, species split and site split) is also shown.

Overall, our validation results for the random split (Table 3) showed good prediction per-

formance, with R2 above 0.60 for the variables Vcmax25, Jmax25 and Tp25, and a lower quality of

prediction for Rdark25 (R2 = 0.58). The performance of the models was similar with the species

split (Table 3). Generally, the R2 increased slightly and the RMSE and %RMSE decreased

slightly, suggesting that reflectance spectroscopy provides a robust approach for the prediction

of photosynthetic parameters on independent species not used to train the PLSR model. Note

that the number of observations in the species split validation dataset was smaller than in the

random split validation dataset, and that the number of observations in the training dataset

was higher which could explain the slightly better performance (Table 3). A change in the par-

titioning of the number of observations in the training and validation datasets between the

random split and the species split was expected given that the number of samples measured for

each species was variable and that we did not constrain the choice of the species to populate

the validation dataset (Table 1). In the site split test, the RMSE and %RMSE for Jmax25 and

Vcmax25 decreased slightly as compared to the random split (Table 3). This was despite using

data acquired on a different site and different species to train and validate the models. We

observed a lower R2 but given that the range of Vcmax25 and Jmax25 at the Brazil site was low

(10–62 μmol m-2 s-1 and 21–114 μmol m-2 s-1, respectively, Fig 2) compared with the observa-

tions from Panama (10–159 μmol m-2 s-1 and 17–254 μmol m-2 s-1, respectively, Fig 2) with

mostly smaller values, it was expected that a smaller ratio of the total variability could be

explained (R2).

Table 2. Uncertainties associated with the gas exchange measurements and the PLSR predictions.

Variable Standard deviation gas

exchange

Relative standard deviation gas

exchange

Standard deviation PLSR

prediction

Relative standard deviation PLSR

prediction

Vcmax25 1.49 3.0% 14.0 36.6%

Jmax25 1.64 1.8% 21.6 28.1%

Tp25 0.123 1.9% 1.53 27.8%

Rdark25 0.038 8.8% 0.31 47. 3%

https://doi.org/10.1371/journal.pone.0258791.t002
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The observed versus predicted values obtained on the random split test are presented in Fig

3. It is clear that the uncertainty associated with the PLSR model fitting are higher than with

the gas exchange measurement. By comparison, the standard deviation of the PLSR predic-

tions (Table 2) were between 8 and 13 times higher than standard deviation obtained with the

traditional gas exchange model fitting approach.

Dominant spectral regions for leaf physiological traits

The PLSR regression coefficients (random split dataset) are provided in Fig 4. In addition, we

have overlayed grey shaded bars associated with variable importance of projection (VIP) values

greater than one. Overall, these results show that strong peaks are present across the entire (0.5

to 2.4 microns) spectral region, illustrating that our PLSR models utilized spectral information

Fig 2. Histogram of the parameters Vcmax25, Jmax25, Rdark25 and Tp25. Vcmax25 (a), Jmax25 (b), Rdark25 (c) and Tp25 (d) correspond to the

fitted values from the A-Ci curves and to measurements of dark acclimated leaves sampled in a large variety of tropical species, leaf ages and

canopy positions.

https://doi.org/10.1371/journal.pone.0258791.g002
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in the visible, near infrared (NIR) and also in the shortwave infrared (SWIR). Clear similarities

across traits are also present in the coefficients and VIP values, notably between Vcmax25,

Jmax25, and Rdark25 under 1100 nm and around 1100, 1400 1880 and 2200 nm. We also saw

spectral areas where some of the physiological traits show VIP above 1 and others do not. For

example, for Tp25, the VIP in the visible region was below one whereas it was above one for the

other traits. Moreover, the coefficients for Vcmax25 and Jmax25 were found to show similar pat-

terns, but, despite this strong correspondence (Pearson correlation coefficient = 0.82), we also

found significant differences in the models, for example at 550, 670, 1910 and 2155 nm wave-

lengths (Fig 5).

Discussion

In this study we combined leaf-level reflectance spectroscopy and traditional gas exchange esti-

mates of four key physiological parameters (Jmax25, Vcmax25, Tp25 and Rdark25) used in the FvCB

model of leaf net photosynthesis [15]. We explored the ability of reflectance spectroscopy to

estimate these parameters across a wide range of biotic and abiotic sources of variation, in

three different tropical forest sites over multiple years. We demonstrated that reflectance spec-

troscopy could be used to estimate these parameters with high accuracy for Jmax25, Vcmax25 and

Tp25 and with moderate accuracy for Rdark25. Importantly and contrary to previous studies in

the tropics [38,39], we also showed that spectroscopy could be used to infer the photosynthetic

parameters of leaves from species and sites that were not used in the training dataset, showing

that the models from this study could potentially be applied pan tropically. These results sug-

gest that spectroscopy and PLSR models could be a viable alternative for collecting much larger

physiological datasets using spectral measurements alone, where individual leaf trait estima-

tion accuracy is not the primary requirement. This could significantly enrich trait databases by

harnessing spectral measurements to fill in the key observational gaps in tropical forests.

Comparison of PLSR model performance with other studies

The accuracy of the PLSR models we obtained were comparable with other studies. For exam-

ple, past work exploring Vcmax25 [37] on 37 temperate deciduous tree species found a R2 of

0.64 and a RMSE of 17.36 μmol m-2 s-1 using 15 PLSR model components. For tropical studies,

Table 3. Description of the PLSR models and their performance on the different validation datasets (random split, species split and site split).

Variable Dataset split Nobs Nval Transformation Ncomp RMSE Range %RMSE R2

Vcmax25 Random 302 59 sqrt 18 13.1 149.3 8.8% 0.74

Vcmax25 Species 302 34 sqrt 18 11.2 149.3 7.5% 0.86

Vcmax25 Site 302 43 sqrt 18 8.2 149.3 5.5% 0.66

Jmax25 Random 286 56 sqrt 18 19.8 237.3 8.4% 0.73

Jmax25 Species 286 34 sqrt 18 17.6 237.3 7.4% 0.86

Jmax25 Site 286 30 sqrt 18 16.6 237.3 7.0% 0.38

Tp25 Random 99 18 - 3 1.52 12.3 12.4% 0.64

Tp25 Species 99 19 - 3 1.44 12.3 11.7% 0.74

Rdark25 Random 168 49 - 11 0.27 2.8 9.5% 0.58

Rdark25 Species 168 12 - 11 0.23 2.8 8.4% 0.50

Nobs represents the total number of observations in the training and validation datasets. Nval represents the number of observations in the validation dataset from which

the Root Mean Square Error (RMSE), the percent RMSE (%RMSE) and R2 are calculated. Ncomp is the number of components of the PLSR model. The range

corresponds to the difference between the maximum value of the parameter and its minimum over the whole dataset and is used to calculate the %RMSE.

https://doi.org/10.1371/journal.pone.0258791.t003

PLOS ONE PLSR models for rapid estimation of tropical plant photosynthetic parameters using reflectance spectrometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0258791 October 19, 2021 12 / 22

https://doi.org/10.1371/journal.pone.0258791.t003
https://doi.org/10.1371/journal.pone.0258791


the model from [38] built on 21 species had a good prediction performance, with a R2 of 0.89

and low RMSE of 6.6 μmol m-2 s-1 using 11 components. This accuracy was obtained when it

was applied on the same species as in their training dataset, i.e., similar to our use of random

split. That team, however, obtained a lower accuracy when tested on independent species and

site (R2 = 0.23; RMSE = 38.8 μmol m−2 s−1). We applied their PLSR model to our data acquired

in 2020 and also found a low R2 (R2 = 0.05), which suggests that the model was not valid out-

side the conditions of their training dataset, perhaps due to limitations of the spectra or trait

data ranges [55]. Comparison of this study with past examples [e.g., 39] both demonstrates the

challenges of using empirically-derived PLSR models, but also highlights the value in

Fig 3. Observed vs predicted value of the core photosynthetic parameters using PLSR models on the random split validation

dataset. The points correspond to the mean value of the variables, the vertical lines correspond to the interval of confidence of the

parameters estimated by the fitting of the A-Ci curves. The horizontal dark lines correspond to the interval of confidence of the

PLSR models, and the light lines correspond to the interval of the prediction. The black line corresponds to y = x.

https://doi.org/10.1371/journal.pone.0258791.g003
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preserving the underlying data to enable continued model development that can encompass

greater variation in leaf traits and ultimately improve model fidelity.

For Jmax25, the quality of prediction and number of components was similar to the model

developed by [37] on temperate species who obtained a R2 of 0.70 and a RMSE of 27.77 μmol

m-2 s-1 with 20 components. On poplar species, [36] showed high PLSR model accuracy for

Jmax25 (R2 = 0.93, RMSE = 18.67 μmol m-2 s-1) using 13 components. In addition, other previ-

ous work [56] used two-channel spectral vegetation indices to estimate Jmax25 of oak trees with

good accuracy (R2 = 0.84). Our results are similar but for a dataset that includes a much greater

range of biotic and abiotic variation. This suggests the spectroscopy approach is robust and

could be adapted to estimate Jmax25 of tropical plants.

For Rdark25, a similar R2 of 0.56 and RMSE of 0.14 μmol m-2 s-1 was reported for wheat

leaves [57]. A similar performance with a R2 of 0.48 was also obtained in the tropics [39] using

a relatively small dataset (n = 40). The lower quality of prediction for Rdark25 compared to the

other photosynthetic parameters of this study was expected due to several methodological lim-

itations. Measurement of the dark respiration via the use of gas exchange systems is known to

be imprecise [58]. Such systems measure the flux of CO2 and not the O2 consumed by the res-

piration, and since the amount of CO2 produced by the dark respiration is low the sensitivity

limits of the gas exchange sensors make this measurement less precise. Secondly, the release of

CO2 in leaves can result from multiples reactions and include several metabolic pathways and

enzymes [59] and even transport from other plant organs [60] making the identification of a

spectral signature challenging.

Fig 4. Coefficients of the PLSR model of Vcmax25, Jmax25, Rdark25 and Tp25. The reflectance spectra are given in panel (a) and the

coefficients are given below (b, c, d and e). The black curve corresponds to the mean and the green area corresponds to 95% of the

values. The grey area corresponds to spectral region where the VIP score is above one.

https://doi.org/10.1371/journal.pone.0258791.g004

Fig 5. Difference between Vcmax25 and Jmax25 PLSR coefficients. The black line corresponds to the mean of the difference and the green

band corresponds to 95% of the values. The areas where the green band does not overlap with the grey horizontal line highlight wavelengths

where the difference is statistically different from zero.

https://doi.org/10.1371/journal.pone.0258791.g005
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To our knowledge, no previous studies have explored the capacity to estimate Tp25 using

reflectance spectroscopy. The PLSR for Tp25 used a surprisingly low number of components

(3) and had good prediction quality (R2 greater than 0.64), suggesting that the properties of the

leaves governing the Tp25 could be simpler to detect spectrally than those involved in Vcmax25

prediction. It is important to note however that the sample size was lower for Tp25 prediction

with notably few samples from the Brazil study site (Fig 2) and that more measurements and

sites will be necessary to validate this model. The difference in the training dataset could

explain a lower number of components than for Vcmax25. In TBMs, the use of the Ap limitation

has been shown to be an unnecessary complexity [61], however a rapid estimation of Tp25

could be of interest in other models [62].

Interpretation of the PLSR models and their ability to predict the net

photosynthesis parameters of new species or conditions

We showed in this study that the PLSR models could be used to predict four parameters

required to model leaf net photosynthesis in new species not included in the training dataset.

The mechanisms behind this capability must be examined to fully understand the limits and

potential caveats of those models. The capacity to predict these parameters on new species

could be due to two possibilities (assumptions 1 and 2 hereafter). Assumption 1), as with chlo-

rophyll or other pigments [63,64], the PLSR models could specifically identify the spectral sig-

nature of the enzymes or molecules involved in the different net photosynthesis reactions (Ac,

Aj, Ap and Rdark) and the model thus could allow the prediction of their quantity and therefore

the potential rates of the reactions. This would be the most desirable property for the PLSR

models as it would be then straightforward to predict net photosynthesis parameters in new

leaves. However, the assumption that the PLSR specifically captures the absorption wave-

lengths of the enzymes and molecules corresponding to each net photosynthesis reaction is

unlikely given our results, the processes involved and the PLSR method. Indeed, the coeffi-

cients of the PLSR models can be used to understand the spectral features (Figs 4 & 5) that are

most influential to the prediction of the response variables. In our study, these spectral features

showed very similar shapes for Vcmax25 and Jmax25 and to a lesser extent with Rdark25. This

strong similarity advocates against the assumption (1) as these two physiological variables are

mechanistically linked with the activity of different enzymes in photosynthesis [9] which have

different absorption wavelengths [37,65,66]. Moreover, the specific signals associated with

Rubisco (Vcmax) or, cytochrome b6f (Jmax), are likely to be a minor component of the overall

reflectance signal associated with other constituents of the leaves [37]. Assumption 2), a more

likely assumption, is that the PLSR captures a range of direct and indirect correlations among

a host of leaf traits and properties also known to influence leaf reflectance [67] to enable the

estimation of the net photosynthetic parameters. That is, the PLSR method develops a model

based on the strongest covariance between the reflectance spectra and response variable so

direct or indirect correlations between the response variable and other traits are likely to be

equally captured. This would explain the similarity in PLSR coefficients between Vcmax25 and

Jmax25 and to a lower extent with Rdark25 as the net photosynthesis parameters are known to be

strongly correlated in leaves and this was also the case in this study (Fig 6). Note that for Tp25

and Rdark25 it is less relevant to compare their PLSR coefficients with those of Vcmax25 as we did

not use the same number of components to model them.

[33,35,37] previously discussed the assumptions (1) and (2). Specifically, they analyzed if

the nitrogen and the chlorophyll content, which have a strong spectral signature, were the con-

stituents that enabled prediction of Vcmax25 and Jmax25 with PLSR (assumption 2). They also
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analyzed to what extent the PLSR models were also capturing more mechanistic links with the

net photosynthesis enzymes (assumption 1).

The fact that PLSR models used to estimate net photosynthesis parameters are at least par-

tially driven by correlations with a host of underlying traits does not minimize their applicabil-

ity in plant science. Indeed, we empirically showed that our spectra approach was accurate

even when applied to new species or sites. We also think that our PLSR models could be

applied more generally in the tropics, as there is a strong coordination among the traits of

leaves and their function; known as the leaf economic spectrum [68,69]. This strong coordina-

tion could explain why a PLSR model trained on a sufficient number of species and conditions

allowed that PLSR model to be sufficiently general for other species of the same biome [29,55].

However, the net photosynthesis parameters of species that depart the most from the leaf eco-

nomic spectrum could be less predictable as would leaves with a transient change in their com-

position due to a strong stress.

Utility of the spectra-trait and traditional gas exchange approaches for

enhancing tropical plant trait studies

The calculation of the uncertainty of the photosynthetic parameter estimation by the A-Ci fit-

ting procedure and by the spectroscopy was important in this study as it allowed us to define

which applications are compatible with the estimated levels of uncertainty. When using leaf

level gas exchange, the precision in the estimation of the photosynthetic parameters was, as

expected, very good. When using the PLSR models, prediction uncertainty for an individual

leaf was much higher than compared with the leaf gas exchange technique. This was expected,

but also, importantly, the accuracy of the PLSR models were similar to previous studies. This

limits the use of PLSR models for studies requiring very precise physiological parameter esti-

mates on individual leaves. On the other hand, studies aiming to estimate average parameters

over a forest or large population of individuals, like those used to inform TBMs, represent a

much more appropriate use of the spectroscopy approach as a means to obtain a large number

of estimates quickly (a reflectance measurement takes less than one minute as compared to

around two hours for gas exchange measurements). The benefit of the spectra-trait approach

Fig 6. Scatter plot between Vcmax25 and Jmax25, Tp25 and Rdark25. The coefficient of correlation (r) is indicated on each plot.

https://doi.org/10.1371/journal.pone.0258791.g006
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also lies in the ability to estimate a large number of traits from the measurement of the reflec-

tance i.e. Vcmax25, Jmax25, Tp25 and Rdark25 as done in this study but also other traits (nitrogen,

chlorophyll, leaf mass per area etc. [29–31]). From past studies, however, it was difficult to take

full advantage of this measurement technique because the PLSR predictions of photosynthetic

traits were only valid within the trait space included in the training dataset which was relatively

narrow compared to the variation in the tropics. The result of this study is important because

we showed that our models had the same accuracy outside the training dataset for new species

and a new site. In the future, additional efforts will be needed to cover broader axes of varia-

tion, associated with, for example, different levels of water, heat and nutrient stress. Therefore,

we advocate for the continued combination of traditional leaf gas exchange measurements and

spectroscopy to further enable the development of generalized PLSR models that can be

applied across a broader range of plant material and environments. We also strongly advocate

for the use of standardized data reporting formats [70], and preservation of the underlying

data in spectra-trait libraries, such as EcoSIS (https://ecosis.org/), which can be used by the

community to continually expand and improve trait prediction using PLSR models.
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