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Abstract

The use of genomic techniques to address ecological questions is emerging as the field of

genomic ecology. Experimentation under environmentally realistic conditions to inves-

tigate the molecular response of plants to meaningful changes in growth conditions and

ecological interactions is the defining feature of genomic ecology. Because the impact of

global change factors on plant performance are mediated by direct effects at the

molecular, biochemical, and physiological scales, gene expression analysis promises

important advances in understanding factors that have previously been consigned to the

‘black box’ of unknown mechanism. Various tools and approaches are available for

assessing gene expression in model and nonmodel species as part of global change

biology studies. Each approach has its own unique advantages and constraints. A first

generation of genomic ecology studies in managed ecosystems and mesocosms have

provided a testbed for the approach and have begun to reveal how the experimental

design and data analysis of gene expression studies can be tailored for use in an

ecological context.
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Introduction

The use of genomic techniques to address ecological

questions is emerging as the important new field

of genomic ecology (Jackson et al., 2002; Ouborg &

Vriezen, 2007; Wullschleger et al., 2007; Roelofs et al.,

2008; Shiu & Borevitz, 2008; Ungerer et al., 2008). Tools

are now available to assess: (1) variation in genome

sequence, (2) patterns of gene expression, and (3) gene

function (Ouborg & Vriezen, 2007). The use of many of

these tools, including quantitative trait loci analysis,

association mapping, and genome sequencing has been

reviewed previously (Lee et al., 2004; Straalen & Roelofs,

2006; Ouborg & Vriezen, 2007). This review focuses on

how experiments investigating plant responses to ele-

ments of global change are becoming a testing ground

for the use of transcript profiling, as a result of strate-

gically targeted funding from U.S. Department of

Energy’s Program for Ecosystem Research (http://per.

ornl.gov/PERprojects-current.html). Support for geno-

mic ecology is timely because the new techniques

available, and specifically gene expression analysis by

transcript profiling, are ideal for addressing many of the

major knowledge gaps in plant responses to global

change. It is well recognized that our ability to predict

the impact of global change on both ecosystem func-

tion and food supply is constrained by our limited
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understanding of plant responses to interacting ele-

ments of global change (e.g., drought� elevated CO2),

intra- and interspecific variation in response, nonlinear

responses, and trophic interactions (Poorter, 1993;

Wullschleger et al., 2002; Fuhrer, 2003; Leakey et al.,

2006a; Long et al., 2006; Bradley & Pregitzer, 2007;

Delucia et al., 2008). Because the impact of global change

factors on plant performance are mediated by direct

effects at the molecular, biochemical, and physiological

scales, investigation of these processes promises under-

standing that has previously been consigned to the

‘black box’ of unknown mechanism (Fig. 1). This can

be done in the traditional hypothesis-testing framework

or in surveys designed to identify novel and unex-

pected aspects of response. In either case, there has

been a move towards broader and more integrative

thinking as transcript profiles are combined with high-

throughput metabolite screening, physiological assess-

ment, and automatic environmental data collection

(Fig. 1).

Incorporation of global transcript profiling and other

‘omic’ approaches into ecological studies constitutes a

major shift in philosophy compared with investigation

of a few physiological and ecological parameters, and

necessitates collaboration among scientists with diverse

skill sets. An additional key feature of genomic ecology

is experimentation under ecologically relevant treat-

ments and conditions, unlike many molecular biology

studies that have used shock treatments for the task of

elucidating gene function. The new genomic ecology

approach requires the physiologist and ecologist to

learn new techniques and optimize the tools for use

within the ecosystem context. This paper is the outcome

of a workshop held at the University of Illinois in

November 2007 to review the opportunities available

for addressing important questions in global change

biology using transcript profiling and associated tech-

nologies. We discuss the different approaches of study-

ing model vs. nonmodel species, the opportunities and

challenges in profiling ecologically relevant gene ex-

pression, and the value and interpretation of ‘omic’ data

in an ecological context.

Investigating model and nonmodel species

Busch & Lohmann (2007) classified the different meth-

ods for gene expression profiling in three categories:

(1) PCR-based methods, such as quantitative real-time

reverse-transcription PCR (qRT-PCR); (2) sequencing-

based methods, such as cDNA-AFLP (amplified frag-

ment length polymorphism), serial analyses of gene

expression (SAGE), and massive parallel signature

sequencing (MPSS); and (3) hybridization-based meth-

ods, such as microarrays. For this discussion, model

species are defined as those for which a sufficiently

large fraction of the genome has been sequenced to

allow relatively easy transcript profiling of most or all

genes by qRT-PCR or microarray analysis. Although

real-time PCR can be high-throughput (Czechowski

et al., 2004), microarray analysis is currently the most

common method of choice for transcript profiling.

Microarrays are glass, plastic, or silicon chips with

thousands of DNA oligonucleotides arrayed across

their surface. Each oligonucleotide spot, or probe, cor-

responds to a specific target mRNA from a specific

gene. The pool of RNA transcripts from sample tissue

is extracted and labeled with a fluorescent tag before

being washed over the microarray. Transcripts bind to

their corresponding probes and the abundance of all

transcripts is quantified by assessing the intensity of

fluorescence associated with each probe. The result is

information on the abundance of transcripts encoding a

large fraction of the protein structures and enzymes in

the sample tissue. A major assumption in interpretation

of microarray data is that transcript abundance is

related to protein synthesis and activity. The method

does not directly assess the rate of gene expression or

transcript degradation, but instead the pool size of

Fig. 1 Schematic describing the integration of plant, commu-

nity, and ecosystem responses to an element of global change.

Elements of global change directly impact molecular, biochem-

ical, and physiological processes (red arrows), which combine to

determine whole plant performance. Genotypic variation in

whole plant responses drives ecological interactions that under-

lie community and ecosystem responses to global change. Feed-

backs from larger scales of organization (dashed arrows) impact

individual plant performance via effects on resource availability

and disturbance that modify the direct effects on global change

on plant function. Transcript profiling and high-throughput

biochemical and physiological screening provide an opportunity

to better understand the ‘black box’ of mechanisms driving plant

responses to various elements of global change under field

conditions.
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transcripts that is the result of the two processes. In

addition, a number of posttranscriptional and posttran-

slation processes can disrupt the link between transcript

abundance and enzyme activity. These assumptions

influence the inferences that can be drawn from such

datasets, but have not prevented the widespread use of

this powerful technique.

To date, microarrays have been produced for at least

38 plant species (Table S1). Affymetrix is the largest

commercial supplier of microarrays, and alone pro-

duces microarrays for Arabidopsis, barley, cotton, citrus

species, grape, maize, Medicago spp., poplar, rice, soy-

bean, sugarcane, tomato, and wheat (www.affymetrix.

com). Other companies and research institutions man-

ufacture microarrays for additional species, but these

are also biased towards economically, rather than eco-

logically, significant species. As of February 2008, the

National Center for Biological Information listed 37

land-plant species for which whole-genome sequencing

was complete or in progress (http://www.ncbi.nlm.

nih.gov/genomes/leuks.cgi). Increasing numbers of

ecologically and evolutionarily important species such

as Arabidopsis lyrata, Capsella rubella, Brachypodium

distachyon, Mimulus lewisii, and Selaginella moellendorffii

are being sequenced. More species will rapidly become

available for genomic investigation as techniques such

as pyrosequencing allow smaller research groups to

generate large amounts of sequence information and

develop tools specifically for their own species of inter-

est (Hudson, 2007). Alternatively, some researchers are

using the technique of heterologous hybridization to

profile transcripts of nonmodel species with microar-

rays designed for a closely related model species (e.g.,

Gong et al., 2005; Travers et al., 2007). These various

tools and approaches for studying gene expression

mean that one can choose between studying model

and nonmodel species to address genomic ecology

questions in global change biology; however, each

approach has constraints that are important to consider.

Limitations to molecular and functional inference in
model and nonmodel species

Generally, in model species that have been fully se-

quenced and for which microarrays have been specifi-

cally designed (e.g., Arabidopsis, Populus sp., and rice),

data describing the abundance of nearly all transcripts

can be attributed to the relevant genes with a high

degree of confidence. Nonspecific binding of products

from two or more genes to a single probe on the

microarray, or cross-hybridization, can cause problems

if genes share very high sequence similarity, but is

relatively rare (Shiu & Borevitz, 2008). Even when a full

genome sequence becomes available, it is not immedi-

ately possible to (1) identify all the genes capable of

being expressed to produce proteins, and (2) assign all

the RNA transcripts being profiled to specific genes.

However, bioinformatic techniques to identify genes are

becoming increasingly efficient, especially when se-

quences from multiple species are analyzed in parallel

(Lin et al., 2007).

High-quality transcript profile data are also available

for species for which microarrays have been produced

from expressed sequence tag libraries but the full

genome sequence is not available, such as maize and

soybean (Wang et al., 2003; Vodkin et al., 2004). How-

ever, there is less certainty that (1) each probe sequence

on the microarray is unique to a single gene, or (2) every

functional gene is detected by the microarray. For

example, the soybean genechip from Affymetrix probes

expression of � 38 000 unique genes, while the recent

Joint Genome Institute (http://www.jgi.doe.gov/)

release of the soybean genome suggests there are

58 556 loci containing protein-coding transcripts

(http://www.phytozome.net/soybean). Further assem-

bly and analysis is needed before it is known how much

the disparity in these numbers is explained by partial

polyploidy (Schlueter et al., 2007).

Using heterologous hybridization to study transcript

profiles of nonmodel species causes greater uncertainty

about cross-hybridization or missing genes. A prelimin-

ary analysis from hybridizing the genomic DNA of the

study species to the microarray can be useful in identi-

fying which probes have no corresponding gene and

therefore can be subsequently ignored. Although this

reduces the number of genes whose expression can be

profiled, heterologous hybridization has been used to

identify genes important to drought stress, cold stress,

and heavy metal tolerance (Gong et al., 2005; Hammond

et al., 2006; Sharma et al., 2007). In studies on a single

nonmodel species, errors associated with heterologous

hybridization should be common to all treatments,

which limit some of the problems in interpretation. By

comparison, if the transcript profiles of multiple species

are assessed with a common microarray platform, then

sequence divergence among species could impact the

efficiency of hybridization and falsely suggest differen-

tial transcript abundance. Comparing among species

the results of hybridizing genomic DNA with micro-

arrays can help quantify the extent of this problem and

again eliminate probes likely to cause problems (Shiu &

Borevitz, 2008).

Functional interpretation of microarray data is de-

pendent on correct annotation of gene function. As

sequence data from plants accumulates, finding means

to efficiently and effectively analyze the sequences and

assign annotation remains a major challenge (Dong

et al., 2005). Arabidopsis has been the primary subject
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of studies determining gene function in plants and,

therefore, more (though far from all) genes have been

annotated in this species, and annotations are generally

accepted with the greatest degree of confidence. Cur-

rently, � 60% of the 28 152 protein coding genes in

Arabidopsis have been annotated to a Gene Ontology

(GO) molecular function, with 50% annotated to a GO

biological process (http://www.geneontology.org). The

majority of annotations are based on a computational

analysis of the gene sequence. Therefore, even in the

most well studied plant species much work remains to

be done to experimentally determine gene function. In

other species the function of some genes may have been

directly determined, but the annotation of the great

majority of genes is inferred from sequence similarity

to genes in Arabidopsis. An automated BLAST search

(Altschul et al., 1997) against a protein database accom-

plishes this task. Top BLAST matches are typically

assigned an expectation value along with a putative

function and GO terms associated with similar protein

sequences. The more evolutionarily distant from Arabi-

dopsis the subject species is, the greater the likelihood

the gene sequence will have diverged, which increases

uncertainty in the annotation. Nonetheless, many genes

are highly conserved and can be annotated with con-

fidence in a large number of distantly related species

(Frickey et al., 2008). The BLAST procedure has the

inherent flaw of propagating annotation errors from

one species to another (Gilks et al., 2002), but remains

the most practical choice for sequence annotation. As

more sequence data from various species becomes

available, interspecific sequence analyses are also prov-

ing valuable for improvement of annotations, automa-

tion of annotation, and identification of novel coding

regions (Windsor & Mitchell-Olds, 2006).

Limitations to ecological inference in model and nonmodel
species

The vast majority of species for which substantial

sequence information and transcript profiling tools are

available have been selected because of their economic

importance (Table S1). This has created enormous po-

tential for investigating the mechanisms underlying the

impacts of global change on crop yield and agroecosys-

tem function. Transcript profiling can reveal changes in

gene expression that drive physiological and ecological

responses, and in doing so improve understanding of

mechanism at all scales (Fig. 1). Managed ecosystems

and mesocosms incorporating model species are an

excellent test bed for genomic ecology because their

low genetic and environmental heterogeneity increases

the statistical power of field experiments and facilitates

detection of subtle treatment differences (Ainsworth

et al., 2006; Casteel et al., 2008; Leakey et al., 2009; Zavala

et al., 2008). In addition, the current group of model

species incorporates considerable diversity including

angiosperms and gymnosperms, herbaceous plants

and trees, C3 and C4 species, legumes and nonlegumes,

and tropical and temperate species. This allows further

fundamental biological questions to be asked regarding

variation in response to global change of major func-

tional and phylogenetic groups. However, these species

are not always ideal subjects for addressing a number of

important ecological and evolutionary questions in

global change biology. The majority are crops bred for

rapid growth and reproductive output on annual

growth cycles. This means that the mechanisms under-

lying their responses to resource availability, distur-

bance, and competition may differ from those of other

species adapted to diverse habitats in natural commu-

nities. Custom-made transcript profiling tools are not

currently available for multiple plant species from even

one natural community. This limits characterization of

species-specific gene expression patterns and its con-

tribution to driving the species interactions that control

community and ecosystem responses (Fig. 1). One

solution would be to accept the limitations and assump-

tions of heterologous hybridization in order to assess

diversity of gene expression responses across a larger

number of species (Travers et al., 2007). Alternatively,

custom genomic tools could be developed for the species

comprising a ‘model’ ecosystem or species possessing

ecological traits of particular interest. Such an approach

is becoming increasingly feasible with continued ad-

vances in the development of high-throughput sequen-

cing technologies (Hudson, 2007).

Expectations, design, and analysis of ecologically

relevant transcript profiling experiments

Expectations of gene expression responses to global change
scenarios

Experimentation under environmentally realistic con-

ditions to investigate the molecular response of plants

to meaningful changes in growth conditions and ecolo-

gical interactions is the defining feature of the genomic

ecology approach. A typical laboratory-based microar-

ray study aiming to elucidate the functions of genes will

subject plants to an acute treatment that precipitates

many-fold changes in the transcript abundance of thou-

sands of genes. In contrast, results from a typical

genomic ecology experiment will reveal markedly

smaller magnitude changes in the abundance of tran-

scripts from a smaller number of genes. This probably

has two main causes: (1) the imposed treatments are

less severe, and (2) the focus is often on plants that have
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acclimated to the treatments, in many cases spending

their entire lifecycle exposed to the given treatment. In

field studies there are the additional distinguishing

factors of greater noise in gene expression resulting

from the variable growth conditions and the greater

resilience of field grown plants than laboratory grown

plants to perturbation.

Treatments in global change biology experiments

are typically mild (e.g., a 40% difference in [CO2]),

because they aim to test the impact of changes between

average field conditions today and those expected for

later this century. By comparison, many molecular

studies aiming to identify stress responsive genes have

ensured significant treatment effects would be observed

by imposing extreme conditions, such as supply of

strong (200–500 mM) salt solutions (Bohnert et al.,

2001), exposure to high (300 ppb) ozone concentrations

(Tosti et al., 2006), and withholding water from plants in

small pots of rapidly drying growth media (Talame

et al., 2007). Important data have been generated from

such experiments, but the results may not always in-

form us about the mechanisms controlling plant perfor-

mance in the field. For example, a cell-death response

leading to lesions on leaves has been identified as an

important component of response in plants exposed to

4300 ppb [O3] (500% above background), but growth at

o100 ppb [O3] (60% above background) impairs pro-

ductivity without causing visible damage to the plant

(reviewed by Long & Naidu, 2002).

When plants experience a change in growing condi-

tions (e.g., transfer from moderate to high temperature),

they display a progression of responses. First, the

altered condition is sensed, activating a signal trans-

duction pathway, which typically drives metabolic

adjustments and concludes with adoption of a new

acclimated state. Well-studied examples are the time

courses of cellular response to ozone exposure and

attack by pathogens (Lamb & Dixon, 1997; Kangasjarvi

et al., 2005). The changes in gene expression immedi-

ately and shortly after the change in condition are

substantial in number and magnitude. Most studies

aiming to understand the molecular basis of plant

responses to abiotic and biotic stimuli have focused

on characterizing the responses to short-term changes

in conditions. This is very important for understanding

the sensing and signaling processes that control the

response. Also, in combination with strong treatments,

the brief shock generates an easy-to-detect response.

However, these short-term changes in gene expression

do not reveal all the important controls of plant perfor-

mance upon acclimation to the growth conditions. For

example, when assessed using a high-density maize

oligonucleotide array, far fewer (o2% vs. 27%) genes

showed differential expression in maize ear tissue un-

der a gradually developing stress than under a sudden

stress (Campos et al., 2004).

Many genomic ecology studies are building on in-

formation from experiments employing acute treat-

ments to determine gene function by characterizing

the more subtle changes in gene expression that differ-

entiate fully acclimated plant performance in different

experimental treatments. This forces microarray studies

to be designed and analyzed differently. For example, it

is very logical to focus primarily on changes in tran-

script abundance of 41.5-fold if the objective is to

identify components of a signal transduction pathway

a specific number of hours following a stimulus

(e.g., Tosti et al., 2006). Equally, fivefold changes in

transcript abundance for metabolic genes are unlikely

to be observed in plants that are fully acclimated to

growth in two mildly different treatments. For example,

in Free-Air Concentration Enrichment (FACE) experi-

ments where, in many cases plants have been grown for

their entire life cycles at current and elevated [CO2], the

largest fold changes in transcript abundance due to the

CO2 treatment are typically ca. twofold (Gupta et al.,

2005; Taylor et al., 2005; Ainsworth et al., 2006; Leakey

et al., 2009). Identifying these moderate changes can

give considerable insight into alterations in metabolic

pathways and allocation to biosynthetic pathways that

occur over time in response to elements of global

change. But the genomic ecologist is faced with the

problem of balancing the cost of transcript profiling

with the need for adequate replication to gain sufficient

statistical power to detect small fold changes in tran-

script abundance.

By comparison with controlled environment facilities,

field conditions can provide growing conditions for

plants that are simultaneously more variable, more

resource rich, and more stressful. For example, many

habitats provide high light and unlimited rooting

volume but also periods of water deficit and disease.

This appears to reduce the sensitivity with which gene

expression responds to stress treatments. For example,

application of benzo(1,2,3)-thiadiazole-7-carbothioic

acid S-methylester (BTH) to induce systemic resistance

against pathogens in wheat caused substantial upregu-

lation of defense-related genes in a greenhouse trial.

However, when the experiment was repeated under

field conditions, defense-related gene expression was

constitutively high and did not increase further with the

BTH treatment (Pasquer et al., 2005).

Experiments that investigate the response of plants

to treatments simulating global change over long time

periods are informative because they can generate un-

derstanding of (1) impacts over the entire life histories of

the subject species, (2) slow ecological responses such as

competition and succession, and (3) complex feedbacks
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from ecological and ecosystem scale to whole plant

performance (Fig. 1). Fewer space restrictions allow

long-term experiments to be done in the field more

successfully than under controlled environment condi-

tions. However, plants in the field, and especially those

in long-term studies, experience variable growth con-

ditions on scales from minutes, hours, and days to

months and seasons. Many of the parameters of ecolo-

gical interest, for example, biomass, yield, and fecund-

ity integrate these growth conditions over long periods

of time. In contrast, transcript profiles in plants are

known to respond rapidly and extensively to tempera-

ture (Seki et al., 2002) and light (Bertrand et al., 2005),

show circadian rhythms (Michael & McClung, 2003;

Blasing et al., 2005) and vary with development (Taylor

et al., 2005; Ainsworth et al., 2006). Because a single

sampling point only represents a snapshot view, it is

important to distinguish responses of the transcriptome

that are due to the experimental manipulation vs. time

or weather-dependent changes (Miyazaki et al., 2004).

This discrimination can be achieved to a significant

extent by sampling at the same time each day, sampling

on multiple occasions over the duration of an experi-

ment and interpreting treatment effects on gene expres-

sion in the context of environmental data. In addition,

efforts to sample homogenous tissue that is at the same

developmental stage and growing under the same

environmental conditions minimize unwanted variabil-

ity that could prevent detection of treatment effects. In

some cases the impact of natural variation in growth

conditions on gene expression can provide novel

understanding of the mechanisms underlying plant–

environment interactions. For example, transcript

profiling of pine trees grown in multiple field sites

in Europe indicated that cold tolerance develops in

response to combined photoperiodic and temperature

cues (Joosen et al., 2006).

Design of experiments assessing gene expression responses
to global change scenarios

Nettleton (2006) reviewed how the basic principles of

experimental design apply to transcript profiling ex-

periments, with emphasis on random assignment of

experimental units to treatments, use of the maximum

affordable replication and applying blocking. These

issues are familiar to ecologists and physiologists,

and have been extensively reviewed (e.g., Scheiner &

Gurevitch, 2001). The more specific importance of un-

derstanding the distinction between, and value of,

technical and biological replication in transcript profil-

ing experiments has been highlighted by Allison et al.

(2006) and Nettleton (2006). Technical replication pro-

vides multiple measures of a single sample from a

single experimental unit. Biological replication involves

measurements of multiple experimental units each of

which is independently exposed to control or treatment

conditions. Without biological replication it is not pos-

sible to statistically attribute observed changes in tran-

script abundance to the effects of a treatment. Most

experiments are limited by the funds available for

transcript profiling. The power to detect treatment

effects will be maximized if the transcripts from each

experimental unit at a given time are profiled with only

one microarray (Nettleton, 2006). However, if the num-

ber of biological replicates is limited (e.g., at a Free-Air

CO2 Enrichment experiment) and there is significant

measurement error, averaging across technical repli-

cates can reduce variability and provide some gain in

statistical power (Nettleton, 2006).

In ecological experiments and especially those in the

field, variation in gene expression responses to experi-

mental treatments over time are of great interest with

respect to circadian/diel rhythms, interactions with

climate, acclimation, and development. With a limited

supply of microarrays, this creates both challenges and

opportunities. If the primary aim of the experiment is to

characterize treatment effects on gene expression at a

single time point (e.g., a single development event

such as flowering), then adding biological replicates

will provide the most statistical power. If the primary

aim of the experiment is to characterize the average

treatment effects on gene expression (e.g., over a grow-

ing season), then it may be desirable to compromise

technical or biological replication in order to allow

additional sampling points over time. Of course, such

trade-offs need to be determined on a case-by-case

basis. Even for studies on the same species at a single

field site, some experiments may necessitate technical

replication (e.g., Ainsworth et al., 2006), while others

benefit most from multiple measurements in time (e.g.,

Casteel et al., 2008).

Subsampling is often used to overcome the variation

among individuals within a replicate plot in field ex-

periments. For instance, averaging the rates of photo-

synthesis of four different sun leaves within individual

plots of maize exposed to either ambient or elevated

[CO2] reduced variation among replicate plots and

ensured there was sufficient statistical power to char-

acterize a subtle, episodic treatment effect (Leakey et al.,

2004, 2006a). In genomic ecology studies, one solution

to the need for sampling variation within replicate plots

without depleting microarray resources needed for

sampling multiple biological replicates or time points

is to pool mRNA from multiple samples collected with-

in a single plot (Allison et al., 2006). Hybridizing this

mixed mRNA sample to a single microarray will reduce

between plot variance when biological variability is
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high relative to measurement error (Kendziorski et al.,

2005). This approach has been used successfully in

transcript profiling studies of poplar and soybean

responses to elevated [CO2] in the field (e.g., Gupta

et al., 2005; Taylor et al., 2005; Ainsworth et al., 2006).

Analysis of gene expression responses to global change
treatments

One of the greatest challenges of transcript profiling is

the data analysis. This is partly due to the large size of

the datasets compared with most physiological or eco-

logical experiments. Selecting from the large number of

rapidly developing analysis tools and techniques that

are available is also challenging. Although it is impos-

sible to comprehensively discuss the advantages and

disadvantages of all the available options here, it is

worth briefly reviewing the major steps in the analysis

process and highlighting a number of specialist reviews

on the subject (e.g., Allison et al., 2006; Nettleton, 2006).

The first analysis step involves processing the images

of the fluorescent spots on each microarray. Many

approaches have been developed, and the service facil-

ities that perform the hybridization and scanning of

microarrays for most investigators can assist in making

the appropriate choices. Before proceeding with data

analysis, it is important to perform quality control steps

and remove or replace data from defective slides or

images. One simple method for eliminating poor qual-

ity data is to discount data from microarrays that do not

meet threshold values of the Pearson correlation coeffi-

cient (e.g., 0.9) or kappa statistic (e.g., 0.75) when

pairwise comparisons are made between microarrays

from a given treatment and time point (Fleiss, 1981;

McIntyre et al., 2006).

A number of microarrays include probes for more

than one species. For example, the Affymetrix soybean

genechip includes probes for genes from soybean, a

nematode species and the phytopthera pathogen. If

only transcripts from soybean are to be profiled, the

data for probes specific to the other species should be

disregarded. The Affymetrix genechip platform pro-

vides a statistic estimating whether each individual

transcript is considered to have been present or absent

from the sample (Affymetrix, 2002). This allows the

investigator to discount data from probes for which a

transcript was not considered present in a sufficient

number of samples for meaningful replication to be

achieved. This reduces the number of tests to be per-

formed and prevents misinterpretation of results from

probes for which there is not sufficient statistical power

for meaningful testing.

Some methods can combine image analysis algo-

rithms with the next analysis step, which is normal-

ization. Normalization is the process that makes

adjustments to minimize the influence of technical

variability across different microarrays and experi-

ments. The simplest approach involves normalizing

the fluorescence intensity for individual genes by the

median fluorescence intensity on an individual micro-

array basis (e.g., Ainsworth et al., 2006; Fung et al., 2008).

This approach has the philosophical advantage of main-

taining the independence of data from individual

replicates, and the practical advantage of requiring a

single normalization to be performed on a given micro-

array, even if the data are to be analyzed as part of more

than one experiment. Alternatively, more complex pro-

cedures have also been developed, some of which

incorporate information from all the chips in an experi-

ment as part of the normalization process. Normaliza-

tion is an area of ongoing research in which there is

an unresolved debate about which method performs

the best, and even how good performance should

be defined (Irizarry et al., 2003; Bolstad et al., 2003;

Choe et al., 2005; Allison et al., 2006). After normal-

ization, log transformation of the data is performed in

nearly all cases to ensure that the data are normally

distributed.

The majority of published microarray studies use

mixed-effects linear models to identify treatment effects

on transcript abundance, with an independent analysis

being performed for each probe in the dataset (Nettleton,

2006). This has the advantage of allowing the physiologist

or ecologist to use familiar statistical tests and software

packages. An additional reason for the approach is that

different genes display different levels of variation in

expression, creating heterogeneity that a single ‘global’

model has difficulty representing. However, it has been

suggested that analyzing each gene independently is

inefficient (Allison et al., 2006). Simulation studies have

indicated that an intermediate approach, called variance

shrinkage, which combines data from specific genes and

all genes may perform better than gene-by-gene testing

(Cui et al., 2005), although optimization of the technique

is still required (Allison et al., 2006).

Because the analysis of most microarray experiments

necessitates tens of thousands of statistical tests on

individual probes, there is a greater likelihood of mak-

ing type I errors (falsely identifying the abundance of

transcripts as responsive to the treatment when in fact

they are not) than in most physiological or ecological

experiments. Consequently, techniques have been de-

veloped that quantify the false discovery rate (FDR) and

allow it to be controlled (Benjamini & Hochberg, 1995;

Storey & Tibshirani, 2003). Most commonly, this is done

by adjusting the probability threshold at which treat-

ment effects on transcript abundance are considered

to be statistically significant, taking into account the
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number of tests performed and the initial P-value

returned for each transcript by the mixed-effects linear

model. Importantly, while applying increasingly strict

FDR corrections reduces the number of transcripts

falsely identified to respond significantly to the treat-

ment, it also increases the number of transcripts falsely

identified not to respond significantly to the treatment

(type II errors; Nettleton, 2006). In other words, there is

a trade-off between identifying fewer genes than actu-

ally responded to the treatment, but with a high degree

of confidence (strict FDR) vs. more genes that actually

responded to the treatment, plus some that did not

(relaxed FDR). During the experimental design and

analysis processes, each researcher must select the

FDR correction level that allows the most meaningful

interpretation of the data.

In many global change biology experiments, where

treatment effects can be small, applying strict FDR can

result in few transcripts being identified as responding

to the treatment. If more relaxed FDR are applied, other

techniques are necessary to increase the confidence with

which ‘responsive’ transcripts are identified. For in-

stance, visualization of transcript data in the context

of known metabolic pathways and signal transduction

cascades can indicate when many transcripts associated

with a common function or response display consistent

responses to an experimental treatment (e.g. Leakey

et al., 2009). If transcripts are identified as a result of

random variation and not a true treatment effect, then

positive and negative responses should be equal in

number. However, for example, if the abundance of

� 50% of all transcripts-encoding enzymes involved

in the synthesis of flavonoids are greater when soybean

grows at elevated [O3], and no transcripts show the

opposite result (Casteel et al., 2008), there is a good

probability that the result is real rather than the result of

random chance.

Difficulties associated with performing many tests

can also be dealt with by putting transcripts into func-

tional groups and performing a Fisher’s exact test or

chi-square test on each group. These two tests allow

identification of groups within which a greater fraction

of transcripts respond significantly to the treatment

than on average across all transcripts, that is, functional

groups of transcripts which disproportionately contri-

bute to the overall transcriptional response. For exam-

ple, the transcriptional response of soybean to growth at

elevated [CO2] was assessed by assigning each of the

profiled transcripts into one of 32 functional groups

(Leakey et al., 2009). A Fisher’s exact test determined

that the fraction of CO2-responsive transcripts in func-

tional groups related to respiration was significantly

greater than the fraction of CO2-responsive transcripts

across all other functional groups.

The standard procedure of repeating an experiment

can also be used to increase confidence in identification

of ‘responsive’ transcripts. Transcripts whose abun-

dance changes as a result of real treatment effects are

more likely to display consistent changes in abundance

of a similar magnitude and in the same direction. In

contrast, false positives that have low P-values from the

initial analysis of variance (ANOVA) as a result of random

variation are equally likely to respond positively or

negatively to the treatment in any given experiment.

Varying the FDR threshold has a substantial impact on

identification of transcripts which respond consistently

in soybean grown at ambient and elevated [CO2] over

two consecutive growing seasons (Fig. 2). At an FDR of

0.2, 76 transcripts responded consistently in the 2 years,

and no transcript displayed opposite responses in the

2 years. By contrast, applying an FDR of 0.5 to the same

data identified 615 transcripts that responded consis-

tently and 12 transcripts displaying opposite responses

in the 2 years. The researcher has to choose between

identifying treatment effects on 76 transcripts with a

higher degree of confidence from a more conservative

FDR correction or 615 transcripts from a less conserva-

tive FDR correction, plus the knowledge the transcript

responded to the treatment in the same direction, and to

a similar magnitude, in 2 consecutive years. Given the

Fig. 2 Comparison of changes in transcript abundance in soy-

bean leaves as a result of growth at ambient [CO2] vs. elevated

[CO2] at SoyFACE during the 2005 and 2006 growing seasons.

At a false discovery rate (FDR) of 0.2, 76 transcripts responded

consistently in the 2 years and no transcript displayed opposite

responses in the 2 years. By contrast, applying an FDR of 0.5 to

the same data identified 615 transcripts that responded consis-

tently and 12 transcripts displaying opposite responses in the

2 years. Data adapted from Leakey et al. (2009).
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need to demonstrate that changes in transcript abun-

dance have an impact on biochemical or physiological

processes, there will be subsequent opportunity to elim-

inate false positives that have passed this initial analysis.

It is a common practice to validate the quantification

of transcript abundance by microarrays using qRT-PCR

on a subset of genes from the original experimental

samples (Rajeevan et al., 2001). However, this practice

has recently been suggested to be of little benefit

because, while qRT-PCR probably provides a more

accurate measure of transcript abundance, there is no

reason to expect the new data will eliminate the types of

errors that cause identification of false positives (Allison

et al., 2006). This may not yet be a consensus view, but

seems to be consistent with most physiological and

ecological practices. For example, measurements of

stomatal conductance using IRGA-based gas exchange

systems are not typically validated with measurements

using a porometer (e.g., Jones, 1999; Leakey et al.,

2006b). On the other hand, qRT-PCR is more sensitive

to changes in transcript abundance than microarrays

and it is incredibly valuable and cost effective if tran-

scripts identified in a microarray study are profiled by

quantitative-PCR in samples from additional biological

replicates, other tissues, or other time points. Such

follow-up studies are vital to extend investigation from

broad profiling analyses to detailed understanding of

specific gene responses.

Linkages from gene expression to physiology and

ecology

The ability to measure gene-specific and genome-wide

patterns of transcript abundance provides a new

opportunity to improve our understanding of how

organisms and ecosystems respond to environmental

change. Different elements of global change can elicit

distinct changes in gene expression (e.g., drought vs.

heat; Roelofs et al., 2008); therefore, the contribution of

two simultaneous treatments in impacting physiologi-

cal performance could start to be dissected by the

molecular phenotypes. Because transcript profiling

with microarrays potentially provides information on

a large proportion of metabolic and signaling compo-

nents, it is an ideal technique to broadly survey intra-

and interspecific variation in response to a given treat-

ment (e.g., Gong et al., 2005). Identifying different

response pathways or magnitudes of response within

a pathway at the molecular level identifies a smaller

group of candidate mechanisms that can then be more

easily examined at the physiological and ecological

scale. For example, Leakey et al. (2009) used microarrays

to characterize a transcriptionally driven acclimation of

soybean to growth at elevated [CO2], which led to

stimulated foliar respiration. The transcript profiling

also allowed a survey of biosynthetic metabolism to

identify pathways that were transcriptionally upregu-

lated coincident with the enhanced supply of energy

and carbon skeletons from respiration. The ecological

significance of these changes can now be evaluated in

more detailed analyses. By comparison, previous meth-

ods would probably have involved laborious and less

systematic investigation of individual biosynthetic

pathways in different species by different research

groups.

Interpretation of transcript abundance depends on

assumptions about the relationship between the levels

of transcripts and the functional activity of the proteins

they encode. This is difficult to predict because post-

transcriptional and posttranslational regulation can sig-

nificantly alter the response predicted from transcript

data alone (Scheible et al., 1997; Kaiser & Huber, 2001;

Hendriks et al., 2003). In addition, the impact of changes

in transcript abundance on a biological response de-

pends on the turnover rate of the encoded proteins,

their contribution to the control of metabolic pathways

and the levels of metabolites associated with those

pathways, which in turn can regulate the expression

of the given gene. Genome-wide transcript profiling

and analyses of enzyme activities have shown that

transcript levels undergo marked and rapid changes

during the diurnal cycles whereas changes in enzyme

activities are often smaller and delayed, and appear to

integrate changes in transcript levels over several diur-

nal cycles (Gibon et al., 2006; Morcuende et al., 2007; Stitt

et al., 2007). Because transcripts, enzymes, and metabo-

lites integrate information over different time scales,

measuring their response provides a wider physiologi-

cal snapshot than transcript abundance alone. Fortu-

nately, unlike transcriptomics (and proteomics) which

relies to a great extent on genomic information, meta-

bolomics is widely applicable with only minimal time

required to reoptimize protocols for a new species

(Schauer & Fernie, 2006). High-throughput analysis of

activity from 420 enzymes is now a reality (Gibon et al.,

2004) and early indications suggest that these methods

can also be transferred relatively easily among species

(Rogers & Gibon, 2009). Although still a nascent field of

investigation, techniques to model metabolic networks

(Sweetlove & Fernie, 2005) and a diversity of bioinfor-

matics tools are becoming available to aid in identifying

genes that underlie important biological functions.

For transcriptomic and metabolomic data, visualization

of the results in a biologically meaningful way is another

challenge to functional interpretation. Thimm et al. (2004)

introduced MAPMAN, a user-driven visualization tool for

displaying transcript, metabolite, and enzyme activity

datasets on plant-specific biological pathways. MAPMAN
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is a flexible program that classifies genes into specific

functional bins (e.g., photosynthesis, glycolysis, second-

ary metabolism), originally developed for Arabidopsis.

It has since been extended to Solanaceous species

(Urbanczyk-Wochniak et al., 2006) and legumes (Goffard

& Weiller, 2006; Leakey et al., 2009) based on BLAST hits

to the Arabidopsis proteome and the nonredundant

protein database at NCBI. MAPMAN is but one example

of a biologically relevant visualization tool. Such re-

sources to interpret gene expression results are becom-

ing ever more sophisticated and available for an

increasing number of species. Many of the genes in-

volved in photosynthesis, respiration, and nutrient ac-

quisition can be identified using such software and

results subsequently related to the response of plants

to altered environmental conditions. Microarrays and

bioinformatics, therefore, make a compelling combination

to characterize mechanisms responsible for how plants

respond to experimental manipulations of temperature,

water, ozone, and CO2 concentration (Watkinson et al.,

2003; Ainsworth et al., 2006; Li et al., 2006; Weston et al.,

2008).

Modeling gene expression data in the context of

existing biochemical frameworks is useful, but requires

that we understand a priori relationships between vari-

ables used to connect genes to physiology and beyond

to ecosystem-scale processes. One challenge with this

modeling approach is in reducing the dimensionality of

the gene expression data before linking with the rest of

the model. There are a number of approaches to accom-

plish this, such as the use of gene function ontologies to

define a subset of genes whose expression values would

subsequently be included in the model. Gene ontologies

are insightful, but the functions of many genes are still

not fully understood and extrapolation of model gene

function to nonmodel genes is potentially problematic.

Therefore, unsupervised approaches for delineating

gene expression into functional clusters are promising.

Weighted gene coexpression network analysis is en-

couraging in this regard because it is an unsupervised

approach for clustering genes that share highly corre-

lated expression patterns across treatment (Zhang &

Horvath, 2005). Furthermore, the input data for this

network approach are from normalized raw intensity

values and thereby avoid multiple testing errors com-

monly associated with most expression array analytical

techniques. Using this technique, Weston et al. (2008)

were able to cluster Arabidopsis genes into functionally

relevant stress responsive clusters (modules) that were

then correlated to phenotypic characteristics. A similar

statistical approach could be used to investigate module

gene correlations with metabolites and enzyme activ-

ities of interest to strengthen understanding of the

metabolic pathways governing phenotype.

Linking the large-scale datasets of genomic ecology to

other predictors of plant responses to global change,

including soil properties, biotic interactions, and cli-

mate conditions, presents several challenges. First, the

spatial and temporal resolution of data collected across

different levels of biological organization (i.e., molecu-

lar, organismal, community, and ecosystem) can vary

significantly. In addition, accounting for the hierarchical

structure of data can improve predictive accuracy when

using multiple variables to explain observed plant

responses. Statistical methods based on probabilistic

graphical models provide a natural framework for mod-

eling responses to environmental treatments. In this

approach, the probabilistic relationships defining a

complex system are specified via a sequence of nodes

that represent random variables, and edges that encode

direct physical or statistical dependencies (Jordan,

2004). The ability of graphical models to include latent

or hidden variables to explicitly model unobserved

relationships is particularly useful in biological re-

search. A variety of computational methods developed

by the statistics and machine-learning communities

have been used to effectively analyze biological data

with complex spatial and temporal structure. Directed

graphical models, or Bayesian networks, are commonly

used in systems biology to learn the structure of com-

plex genetic networks (Blanchard, 2004; Friedman,

2004). Related multivariate modeling approaches such

as structural equation modeling (SEM) have been used

to identify the environmental and biotic predictors that

influence plant response to various global change fac-

tors (Grace, 2006; Clark et al., 2007). Bayesian networks

and SEM are only two examples of tools being used to

analyze complex ecological responses to global change.

These approaches provide powerful statistical tools that

can be used to model plant responses to global change

across levels of biological organization.

Conclusion

In summary, the technology to assess gene expression

through transcript profiling is now available for model

and nonmodel species. Managed ecosystems and

mesocosms are proving to be good testbeds for the

genomic ecology approach. Major advances in under-

standing natural communities are also promised by the

increasing number of species for which transcript pro-

filing tools are available and the accelerating advances

in sequencing technology. This represents a significant

new opportunity to assess the mechanisms underlying

the responses of plants to elements of global change.

The studies that have been performed to date have

revealed some important distinctions between tran-

script profiling in ecological studies vs. molecular stu-
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dies of gene function. This experience has allowed us to

identify the strengths and weaknesses of various ex-

perimental design and analysis options available to the

genomic ecologist. Possibly the biggest change resulting

from the use of genomic tools is a new, integrative

approach to investigating the abiotic and biotic interac-

tions of plants. Using genomic ecology to understand

the mechanisms currently consigned to the ‘black box’

of plant function will significantly advance analysis of

future global change, its impacts on ecosystems and

how we should respond to it.
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