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Abstract
Background: One of the eminent opportunities afforded by modern genomic technologies is the
potential to provide a mechanistic understanding of the processes by which genetic change
translates to phenotypic variation and the resultant appearance of distinct physiological traits.
Indeed much progress has been made in this area, particularly in biomedicine where functional
genomic information can be used to determine the physiological state (e.g., diagnosis) and predict
phenotypic outcome (e.g., patient survival). Ecology currently lacks an analogous approach where
genomic information can be used to diagnose the presence of a given physiological state (e.g., stress
response) and then predict likely phenotypic outcomes (e.g., stress duration and tolerance, fitness).

Results: Here, we demonstrate that a compendium of genomic signatures can be used to classify
the plant abiotic stress phenotype in Arabidopsis according to the architecture of the transcriptome,
and then be linked with gene coexpression network analysis to determine the underlying genes
governing the phenotypic response. Using this approach, we confirm the existence of known stress
responsive pathways and marker genes, report a common abiotic stress responsive transcriptome
and relate phenotypic classification to stress duration.

Conclusion: Linking genomic signatures to gene coexpression analysis provides a unique method
of relating an observed plant phenotype to changes in gene expression that underlie that
phenotype. Such information is critical to current and future investigations in plant biology and, in
particular, to evolutionary ecology, where a mechanistic understanding of adaptive physiological
responses to abiotic stress can provide researchers with a tool of great predictive value in
understanding species and population level adaptation to climate change.

Background
The advent of high-throughput genome sequencing cou-
pled with breakthroughs in the field of functional genom-
ics has provided an unprecedented opportunity to study
the molecular mechanisms that govern the dynamic

behavior of cells, organs, and organisms [1]. Indeed, there
are excellent examples documenting interdisciplinary use
of these emerging technologies, from human genome
SNP scans diagnostic of human disease susceptibility [2,3]
to discovery of the genetic mechanisms underlying beak
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morphology of Darwin's finches [4]. Applications are also
apparent in plant biology, where the use of genomic tech-
nologies have uncovered stress-dependent behaviors in
mechanistic detail (see [5] for a review). Such studies have
led to the elucidation of highly complex and interacting
networks of the abiotic stress response. For example,
salinity, drought, and cold elicit a dehydration response
that shares many common elements and interacting path-
ways [6,7]. These findings have spurred additional inves-
tigations searching for shared signaling cascades or
molecules associated with pathway integration, or cross-
talk, and have led to numerous candidates including reac-
tive oxygen species (ROS) and calcium signaling [8,9],
hormones [10,11] and others [12-14]. However, despite
the advances made possible by "omics"-based technolo-
gies, we still struggle to accurately associate the genes,
transcriptional cascades, and signaling networks with
physiological performance and ecological fitness.

One obstacle to this lack of association is perhaps the
result of two opposing paradigms often used in compara-
tive physiology [15]. The first approach, termed gene-to-
phenotype, is typified by that of many "omics"-based
studies where the effects of specific genes on phenotypic
performance and fitness are evaluated (e.g., a reverse
genetics approach, [16]). This is in contrast to the pheno-
type-to-gene approach where the biologist attempts to
determine the evolutionary potential of a given trait
within a population without identifying the underlying
genes (e.g., ecological genetics [17]). Thus, the latter
approach is interested in the potential for a trait to evolve,
while the former focuses on the underlying genetic mech-
anism of a particular trait. The integration of both
approaches will be an important component of the
emerging field of evolutionary and ecological genomics,
which aims to study adaptation of natural populations to
their environment [18].

To fully understand the genetic mechanisms underlying
physiological adaptation to abiotic stress, we must first
begin to understand the complex biological processes of
how the resultant phenotype is generated from the geno-
type and then seamlessly coalesce our newfound under-
standing with population and evolutionary genetics. To
initiate this task, we have adapted and integrated two
recent analytical advances from the biomedical commu-
nity. The first approach uses a novel weighted gene coex-
pression network to determine signaling networks and
core genes underlying disease states and evolutionary
diversification [19-21]. The second approach explores the
genomic signature concept as recently defined by Lamb et
al. [22], and is currently used to connect the disease state
of an organism with the underlying genes and possible
drug treatments [23]. Our purpose is to determine if these
techniques can be used to associate the abiotic plant stress

transcriptome with common and specific pathways
underlying phenotypic response in a manner that is con-
ducive to current and future genetic studies. We address
this by combining gene coexpression networks with the
genomic signature concept to investigate transcript pro-
files for plants exposed to drought, osmotic, salt, cold,
heat, and UV-B stress. Our intent is not to describe in
exhaustive detail the genes unique to or common among
these stresses, although we do this to some extent, but
rather to illustrate the power of this approach and provide
sufficient information so that we and others can evaluate
the full potential of this technique for plant biologists and
evolutionary ecologists.

Results
Arabidopsis stress gene coexpression network
It is known that the plant stress response is characteristic
of highly complex and often integrated signaling path-
ways [6-12]. To help elucidate the transcriptional net-
works associated with exposure to abiotic environmental
stress, a weighted gene coexpression network was con-
structed as described in Zhang and Horvath [20] and in
Materials and Methods from a subset of the AtGenExpress
abiotic stress dataset [24]. The data subsets were deter-
mined by first analyzing all abiotic stress datasets sepa-
rately for differential gene expression between control and
treatment conditions using the limma package [25] oper-
ated within the R statistical program language [26]. Genes
that had an adjusted p < 0.01 and a log-odds ratio > 1.5
were deemed significantly differentially expressed and
were subsequently included in the data subset. This sub-
set, or initial input gene list, contained 16,036 (~57% of
the genome) unique gene transcripts identifiers with sig-
nificantly higher or lower abundance at least once per
treatment and per time-point [see Additional file 1].

The network construction algorithms were applied to nor-
malized raw intensity transcript abundance values across
all microarray samples (n = 64) for designated genes from
the above subset list. Due to computational constraints,
only the ~66th quantile (4000) of the most highly con-
nected nodes (genes) were subjected to unsupervised hier-
archical clustering to define groups of highly correlated
gene expression patterns, termed modules. Using the
above criteria, six unique modules were found to have
high expression similarity (connectivity), and were subse-
quently assigned individual colors (Fig. 1).

To determine the relationship between module designa-
tion and environmentally-induced expression patterns,
we rank ordered all genes according to the log2 fold-
change in transcript abundance between treatment and
control and then color-coded each gene according to its
corresponding module color. The resultant ranked gene-
lists showed clear patterns in response to treatment dura-
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Visual representation of the AtGenExpress abiotic gene coexpression networkFigure 1
Visual representation of the AtGenExpress abiotic gene coexpression network. (a) A dendrogram of the 4000 most 
connected genes grouped into six distinct coexpression modules. The red line indicates the height at which the tree was cut to 
produce the distinct gene clusters (modules) as denoted by the color bar. (b) Multi-dimensional scaling plot of the gene coex-
pression network. Each circle represents a single gene and the color of the circle corresponds to module designation. The dis-
tance between circles is a function of the topological overlap and provides a visual representation of gene and module 
relationships within the network.
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Relationship between expression abundance and module associationFigure 2
Relationship between expression abundance and module association. (a) Patterning of gene expression architecture 
relative to time of osmotic treatment. The patterns are structured according to expression abundance and the corresponding 
gene module. (b) Relationship between Chi square enrichment (X2) of differentially expressed genes and time of osmotic stress 
treatment. (c) Visual patterning of gene expression architecture relative to 3 h of drought, osmotic, salt, UV-B, heat, and cold 
treatments.
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tion (Fig. 2A & Fig. 2B). In the osmotic condition, for
example, yellow (Pearson X2 test, p < 2.0 × 10-6) and red
module (p = 7.0 × 10-7) genes significantly enriched the
distribution of up-regulated genes at the initial time
point, with both modules maintaining significantly
enriched distributions throughout the treatment period
[see Additional file 2]. However, at three hours of osmotic
treatment, blue module genes began to enrich down-reg-
ulated genes (p = 1.6 × 10-5), while turquoise module
genes enriched up-regulated genes (p = 3.0 × 10-4). Tem-
poral trends for module enrichment of up- and down-reg-
ulated genes were apparent for all treatment conditions
(Fig. 2C), and are summarized [see Additional file 2].

According to network theory [27,28], genes within coex-
pression modules often share conserved biological func-
tions. To investigate the functional relationship between
individual modules and stress response, we used the sin-
gular value decomposition method as developed by Alter
et al. [29] and applied by Oldham et al. and Horvath et al.
[19,30]. This method characterizes the expression of each
module by its first principle component- eigengene value.
In general, the results from the singular value decomposi-
tion corroborated the visual patterns from the rank lists
(Fig. 2) and distribution of module genes within differen-
tially expressed genes [see Additional file 2]. For example,
the greatest eigengene value for the green module was for
the heat treatment (Fig. 3E; p = 5.4 × 10-5, Kruskal-Wallis
test). Using the GOStat program for gene ontology analy-
sis (http://gostat.wehi.edu.au/, [31]), the most overrepre-
sented GO category for the green module was in response
to temperature stimulus (GO:0009408, p = 4.4 × 10-22).

The green module contained genes known to participate
in the heat response pathway including many of the heat
shock proteins (HSP 83- At5g52640, HSP23.5-
At5g51440, HSP17.6-At5g12030, mtHSP70-At5g09590,
HSP21-At4g27670, mtHSP23.6-At4g25200, HSP22-
At4g10250, HSP17.4-At3g46230, HSP70-At2g32120,
HSP101-At1g74310, HSP-17.6-At1g53540). In addition,
the green module eigengene significantly correlated with
the expression of heat responsive markers genes
At5g59720 (Pearson cor = 0.95, p = 10 × 10-20) and
At4g36990 (Pearson cor = 0.78, p = 4.6 × 10-14) as previ-
ously reported [32-34].

The brown module showed a slight yet significant rela-
tionship to the cold treatment (Fig. 3C; p = 1.3 × 10-3,
Kruskal-Wallis test) and was enriched with gene products
targeting the thylakoid (GO:0044436, p = 1.4 × 10-78) and
that participate in photosynthesis (GO:0015979, p = 1.8 ×
10-7). The module was most associated with the early
stages of cold stress as determined by differential gene
enrichment [see Additional file 2] and the -0.57 Pearson
correlation (p = 10 × 10-20) between eigengene value and

the known cold responsive marker genes [33,35,36]
COR15A (At2g42540), but not in At4g25480 (DREB1A),
as previously reported [32].

The turquoise module showed a significant relationship
for both salt (Fig. 3A; p = 5.4 × 10-5, Kruskal-Wallis test)
and osmotic (p = 5.4 × 10-5) treatments. The module is
enriched with GO categories in starch metabolism
(GO:0005982, p = 1.9 × 10-5), protein/peptide degrada-
tion (GO:0009056, p = 1.1 × 10-4), and included dehydra-
tion responsive genes (At5g66400-RAB19, AT5G52300-
RD29B, At5g25610-RD22, At3g56080, At1g01250-DREB
A4), early dehydration responsive genes (At1g08930-
ERD6, At1g69450-ERD4 like) and late embryogenesis
abundant genes (At5g06760, At4g36600, At4g13560,
At2g35300, At1g32560). The module eigengene value sig-
nificantly correlated with known maker genes for salt
[33,37,38] (ATPLC1, Pearson cor = 0.68, p = 7 × 10-10) and
osmotic stress (KIN1, cor = 0.74 p = 3.5 × 10-12; COR78,
cor = 0.64, p = 1 × 10-8) [33,39,40], further suggesting a
role for the turquoise module in the dehydration respon-
sive program.

The blue module showed a significant relationship with
the UV-B treatment (Fig. 3D; p = 2.2 × 10-5, Kruskal-Wallis
test), which is characterized as a down-regulation
response. According to ontology analysis, blue module
genes tend to encode products that are involved in protein
modification (GO:0006464, p = 1.3 × 10-19) including
amino acid phosphorylation (GO:0006468, p = 3.2 × 10-

25) and translation (GO:0043687, p = 9.3 × 10-21).

The yellow module also showed a significant relationship
with the UV-B treatment (Fig. 3B; p = 2.2 × 10-5, Kruskal-
Wallis test), except that the module genes were up-regu-
lated. Ontology analysis indicated that the yellow module
was enriched for macromolecule biosynthetic processes
(GO:0009059, p = 1.3 × 10-90) including organelle bio-
genesis (GO:0006996, p = 4.8 × 10-64) and ribosome bio-
synthesis and assembly (GO:0042254, p = 6.8 × 10-58).
The blue module showed a significant relationship with
the UV-B marker At2g24850 (Pearson cor = 0.7, p = 1.3 ×
10-10), but not At5g52250 (cor = 0.05, p = 0.67). Alterna-
tively, the yellow module displayed a weak yet significant
relationship with At5g52250 (cor = 0.26, p = 0.037), but
not At2g24850 (cor = -0.13, p = 0.29) as previously
reported [32].

According to the singular decomposition values and dif-
ferential gene enrichment analysis, the red module
showed significant relationships with nearly all stress
treatments [see Additional file 2, Fig. 2]. Ontology analy-
sis indicted that the red module was overrepresented with
genes participating in signal transducer activity, including
transmembrane receptor activity (GO:0004888, p = 7.6 ×
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Relationship between modules and plant stress phenotypeFigure 3
Relationship between modules and plant stress phenotype. Red-green heat maps depict mean differential gene expres-
sion between control and treatment conditions (x-axis) for all genes specific to the turquoise (A), yellow (B), brown (C), blue 
(D), green (E), and red (F) modules. Each horizontal line within a heat map shows the expression values (in terms of color) for 
the same gene across treatments. Red is increased expression, black is neutral, and green is decreased expression in compari-
son to the control treatment. The black triangles denote the direction of increasing treatment exposure. The corresponding 
bar plots are the eigengene values, first principle component, as determined from singular value composition for each module. 
Each bar is the average of two eigengene values.
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10-3) as well as response to environmental stimuli
(GO:0050896, p = 0.013). Interestingly, the most con-
nected gene within the red module, or hub, is an unchar-
acterized ankyrin repeat family protein [At5g54720; see
Additional file 3], which has been shown to regulate sali-
cylic acid signaling. Genes involved in calcium-based sig-
naling also enriched the red module, including calcium
dependent protein kinases, calmodulin related proteins,
calcium and calmodulin binding proteins [see Additional
file 3].

Genomic signatures
As illustrated above, genes with significantly higher or
lower transcript abundance were associated with specific
modules depending on the duration of and kind of stress
treatment. To relate patterns of genome-wide mRNA
expression to phenotypic state, we adapted the genomic
signature concept from Lamb et al. [22] where statistical
approaches are used to scan an unknown query signature
against a database of known reference profiles. For our
purposes, the database of reference profiles was created
from the above AtGenExpress dataset specific to UV-B,
heat, salt, cold, osmotic, and drought treatments at the
four initial time-points already detailed above. The 'query'
signatures were derived from independent studies impos-
ing UV-B [41] and cold [42] treatments as well as our own
heat and drought investigations. In contrast to the Lamb
et al. [22] approach, we used ordered list statistics [43-45]
to determine structural similarities among gene ranks of
query and reference signatures.

To investigate the integrity of the reference database and
the concept in general, we generated a rank-based signa-
ture from an independent expression profiling experi-
ment conducted by Lee et al. [42]. The authors imposed a
0°C cold treatment starting at 12 PM under light for 0
(untreated control), 3, 6, and 24 h on two-week old Ara-
bidopsis seedlings grown in agar medium. Query signa-
tures from the 3 and 6 h time-points had the highest
similarity scores against the 6 h cold reference, 380 and
533, respectively (Table 1, Fig. 4A). The intersect between
query and reference signatures (genes driving the similar-
ity score, see Material and Methods) consisted of known
dehydration responsive marker genes, namely DREB fam-
ily genes, including DREB-1A (At4g25480), DREB-2A
(At5g05410), DREB-1C (At4g25470), and DREB 1B
(At4g25490), [see Additional file 4]. The 24 h cold query
list showed similarity to the 6 h cold reference signature
(similarity = 157), but also had similarity to the 3 h
osmotic (similarity = 218) and the beginning stage of the
drought reference signature (0.5 h drought, similarity =
148). Previous research has shown a close link between
dehydration and cold responsive signaling in the past and
our results support this notion [6,7].

Next an independent UV-B specific query signature was
generated from Brown et al. [41] data to scan against our
reference database. Despite differences in growth and
treatment induction conditions, the query signature
showed strong similarity with the UV-B 3 h and 6 h refer-
ence signatures (Table 1, Fig. 4B). Interestingly, the com-
mon intersect genes between reference and query
signatures were enriched with transcription factors, partic-
ularly the WKRY family At1g80840, At2g38470,
At5g24110 and zinc finger family At1g27730, At5g27420,
At5g27420, At5g59820, [see Additional file 4].

Under field conditions, plants are often exposed to multi-
ple environmental conditions that impact yield and fit-
ness [46]. To test if the signature concept could be applied
to multiple stress treatment conditions, we conducted an
expression profiling experiment on plants exposed to
heat, drought, and then heat and drought in combination
(refer to Materials and Methods). The singular heat stress
scan yielded high similarity scores specific to heat at 1 h
and 3 h, with similarity scores 192 and 196, respectively
(Table 1, Fig. 5A). Intersect genes common to query and
heat reference signatures contained genes known to par-
ticipate in heat responsive pathways, particularly the heat
shock proteins (mt-HSP At4g25200; sm-HSP At2g29500,
sm-HSP At2g19310, HSP 17.6 At1g53540). The scan from
the singular drought treatment showed high similarity to
dehydration responsive signatures including drought at 6
h and osmotic 3 h and 6 h references (Table 1, Fig. 6A).
Nine genes were common to query signature, and drought
and osmotic reference signatures [see Additional file 4]
including a water responsive transcription factor
(At1g52890), salt stress responsive gene (RD20,
At2g33380), and fungal defense response (respiratory
burst) (At5g64120).

We next created a signature from the simultaneously
imposed heat and drought treatments to query the refer-
ence database. Interestingly, the two highest similarity
scores were 3 h heat (Table 1, Fig. 5B) and 6 h drought
(Table 1, Fig. 6B), indicating that the genomic signature
concept as applied here has the potential to detect more
than one environmental perturbation within a single
treatment. Unfortunately, the significance of the similar-
ity score is difficult to interpret. To address this more spe-
cifically, we decomposed the dual stress signature into its
6 independent replicates [see Additional file 5]. The
results still place drought and heat as the two most similar
signatures yet the significance of the drought similarity is
weak. However, the similarity score becomes significant
when the depth of the signatures is increased [see Addi-
tional file 5 for further discussion]. Nonetheless, the query
signature had 17 genes in common with the drought sig-
nature including the drought responsive marker RD20
(At2g33380), and contained 26 genes in common with
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Gene expression signature comparisonsFigure 4
Gene expression signature comparisons. (a) Visual display of the 3 h reference cold signature and identification of simi-
larly ranked genes, as denoted by adjacent black and gray lines, with the query cold signature. The rank, identification, and 
annotation for the 10 most similarly ranked up- and down-regulated genes are described. (b) Display of the 6 h UV-B reference 
signature and identification of similarly ranked genes with UV-B query signature. The rank, identification, and annotation for the 
10 most similarly ranked up- and down-regulated genes are described.
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the heat reference including many of the heat shock pro-
tein encoding genes and a number of genes encoding
DNA heat shock N-terminal domain-containing proteins
[see Additional file 4].

Discussion
The goal of our study was to demonstrate the use of an
integrative systems approach for connecting gene expres-
sion patterns to physiological characteristics, thereby pro-
viding mechanistic insight into genome function under
abiotic stress conditions. Central to our approach is the
use of the genomic signature concept to characterize the
plant stress phenotype and provide a link to the underly-
ing network pathways, modules, and eventually genes.
The use of expression array data to create a signature cata-
loging system (reference signature database) has been
used previously to characterize chemical perturbations on
tissue samples and cell culture populations [47,48], and
more recently to link genes and disease states to potential
therapies [22,23]. In the present study, we extend the sig-
nature cataloging approach to plant biology/ecological
genomics by using the ATGenExpress abiotic stress dataset
to compile our first-generation reference signatures data-
base.

Validation of the reference database, and the approach in
general, was accomplished with independent datasets for
UV-B [41], cold [42] and our own datasets for heat,
drought, and the simultaneously imposed heat-drought
treatments. Altogether, more than half of the stress treat-
ments included in the signature database were scanned by
independent query signatures. Our results are encourag-
ing and show that despite differences in array platform,
growth conditions, and even the application of treat-
ments, the signature approach is robust in classifying the
plant stress phenotype. This was particularly evident with
highly conserved stress specific responses such as heat and
UV-B. At the same time, our results illustrate the complex-
ity of the stress response that is characteristic of cross-talk

pathways [8-14] and multiple secondary effects from pro-
longed treatments. For example, the early cold stress query
signatures (3 h and 6 h) showed very high similarity to
cold signatures with only weak similarity scores to other
signature phenotypes. Alternatively, the 24 h cold query
showed similarity to cold signatures as well as drought
and osmotic signatures. This result likely reflects the sec-
ondary effects of the prolonged (3 h and 6 h vs. 24 h) cold
treatment. Not surprisingly, the co-occurrence of cold and
dehydration response reflected in their signaling path-
ways, or cross-talk, is widely reported in the literature
[7,49].

One promising aspect of the signature approach as
applied in this study is in the potential use for classifica-
tion of the dual imposed heat/drought treatment. In
nature, a departure from the homeostatic equilibrium, or
stress, is often brought about by multiple environmental
factors [46]. Heat and drought, for example, are co-occur-
ring stresses that have been implicated in severe yield
losses ([46], and citations within). In this study, the high-
est similarity scores were observed with the heat and
drought reference signatures, but the significance of the
drought score was dependent upon the depth the signa-
ture lists interrogated (see Additional File 5). One expla-
nation for this finding is that the drought responsive
transcripts were further down the signature list than the
more responsive heat induced transcripts, thereby requir-
ing a greater depth of the signature lists to be compared.
This suggests that care must be taken with comparisons
between multiple stress phenotypes. However, our results
are encouraging in this regard and future research should
consider additional statistical means for determining
depth of signature list comparisons.

Network theory and analysis was used in an attempt to
relate the phenotypic signature information to genome-
wide transcriptional programs. Network theory, in gen-
eral, is promising in this regard because it allows us to

Table 1: Signature comparisons. Similarity score comparisons for independently derived query signatures for cold at 3 h, 6 h, and 24 h 
[42]; UV-B [41]; heat alone, drought alone, and heat and drought applied simultaneously; scanned against the reference signature 
database. The most similar scores per treatment are bolded. The top row represents time in (h) for stress treatment duration of the 
reference signature.

Cold (h) Drought(h) Heat(h) Osmotic(h) Salt(h) UV-B(h)

0.5 1 3 6 0.5 1 3 6 0.25 0.5 1 3 0.5 1 3 6 0.5 1 3 6 0.5 1 3 6
Cold 3 h 63 89 96 380 89 176 171 73 11 4 37 42 109 166 37 47 36 10 10 4 110 180 63 29
Cold 6 h 38 148 159 533 169 173 159 24 1.5 8 8 1 116 153 154 82 14 35 35 36 199 198 110 42
Cold 24 h 25 54 54 157 148 76 76 35 8.4 17 20 20 41 56 218 160 16 50 50 139 123 94 63 57
UV-B 22 10 11 75 66 45 46 30 3 32 20 21 69 131 219 175 13 21 21 89 168 181 458 380
Heat singular 3 14 18 49 17 35 32 139 10 108 192 196 27 24 48 88 49 13 13 112 3 3 30 108
Drought 
singular

12 10 12 87 79 67 63 183 1 16 4 4 96 53 219 191 9 11 11 164 62 73 157 146

Heat & 
Drought 
Simultaneous

5 28 30 78 29 44 45 127 11 116 181 186 40 26 62 96 48 8 8 103 15 8 52 117
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Gene expression signature comparisonsFigure 5
Gene expression signature comparisons. (a) Visual display of the 3 h reference heat signature and identification of simi-
larly ranked genes, as denoted by black lines, with the singular query heat signature. The Rank, identification, and annotation for 
the 10 most similarly ranked up and down genes are described. (b) Display of the 3 h heat reference signature and identifica-
tion of similarly ranked genes with simultaneously imposed heat and drought query signature. The Rank, identification, and 
annotation for the 10 most similarly ranked up and down genes are described.
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Gene expression signature comparisonsFigure 6
Gene expression signature comparisons. (a) Visual display of the 3 h reference drought signature and identification of 
similarly ranked genes, as denoted by black lines, with the singular query drought signature. The Rank, identification, and anno-
tation for the 10 most similarly ranked up and down genes are described. (b) Display of the 3 h drought reference signature 
and identification of similarly ranked genes with simultaneously imposed heat and drought query signature. The Rank, identifica-
tion, and annotation for the 10 most similarly ranked up and down genes are described.
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view the biology as a system of networks and interacting
modules [27]. Here, we use the weighted gene coexpres-
sion network approach recently proposed by Zhang and
Horvath [20], which has been used successfully to link
molecular targets to oncogenic signals [30], complex traits
(e.g., mouse weight; [50]), and even network divergence
between human and chimpanzee neural patterns [19].
This approach is particularly relevant for our application
because it is based on unsupervised clustering, bypasses
multiple testing problems when relating gene informa-
tion to physiological traits, and does not need a priori gene
ontology information. The latter point is especially
important for ecological genomics, which continues to
transition from the use of model organisms to those of
more ecological relevance.

Results from weighted gene coexpression network analy-
sis produced six distinct modules from the abiotic stress
dataset. Importantly, this unsupervised approach grouped
genes into network modules that are reflective of biologi-
cal process. For example, brown module genes clearly par-
ticipate in photosynthetic processes while turquoise
module genes contribute to starch and sucrose regulation.
In addition, specific stress responsive modules were iden-
tified. The green module, for example, was almost entirely
unique to the heat stress pathway and was, in fact,
enriched with genes known to participate in heat respon-
sive programs. Equally interesting was the identification
of module genes participating in multiple stress respon-
sive pathways. This was apparent for modules consisting
of conserved metabolic pathways i.e., brown (photosyn-
thesis) and blue (starch/sucrose metabolism) modules.

One of the more promising aspects of weighted gene coex-
pression network analysis was the identification of a com-
mon abiotic stress responsive module (red module) that
enriched differentially expressed genes for all treatments
investigated. The most connected gene, or hub, within
this module was an uncharacterized ankyrin repeat family
protein that was specific to our analysis. Ankyrin proteins
have been reported to act as regulators in salicylic acid sig-
naling, which is a key molecule in signal transduction of
biotic stress responses [51]. The discovery of this ankyrin
family member as the hub in our common stress respon-
sive module suggests that salicylic acid signaling may play
a role in abiotic stress response, which would corroborate
results from exogenously applied salicylic acid [52]. In
addition, this common stress responsive module was
enriched with genes known to participate in calcium and
calmodulin signaling pathways, which have been shown
to participate in a multitude of cellular functions includ-
ing cell death [53].

Although our findings are robust within the current con-
text, a number of questions remain to be answered. For

example, the reference database is generated from imme-
diately perturbed systems that typically exhibit marked
and highly significant changes in transcript abundance,
and does not include acclimated states where changes in
transcript abundance are typically smaller. This has
recently been shown in studies investigating changes in
gene expression in response to long-term growth at ele-
vated carbon dioxide concentration [54-56]. Therefore the
feasibility of scanning the database with a signature from
a fully acclimated organism and obtaining a highly corre-
lated signature is uncertain. However, we hypothesize that
the acclimated state will also be characterized by unique
expression patterns that, in theory, should be amenable to
our approach. Like Lamb et al. [22], we are also uncertain
how to interpret the significance of the similarity score.
Unique to our approach is the use of ordered lists statistics
to compare signatures. This statistical test provides a p-
value based on permuted data that indicates if signature
comparisons are more similar than by chance alone.
Unfortunately, the interconnectedness among stress
responsive pathways resulted in low p-values even for
some low similarity score comparisons (data not shown).
However, we are reluctant to disregard the p-value
entirely, because as the reference signature database grows
and more diverse datasets are included, the p-value may
help assign phenotypes to general category (e.g., abiotic
stress vs. development).

Here, a first-step approach toward classifying and under-
standing the processes behind the plant stress phenotype
is presented. We integrated two analytical techniques that
have traditionally been applied only within the biomedi-
cal community. Results from our adaptation of the these
techniques show that one can take an unknown query sig-
nature and through pattern matching software scan a ref-
erence database to classify both singular and multiple
plant stress phenotype(s). Then, one can use a number of
inferential techniques to link phenotypic attributes to
their corresponding signaling modules and genes. In
essence, this technique provides a tool allowing one to
navigate the potential phenotypes of a given Arabidopsis
genotype. In the current context, the approach is restricted
to a single organism. However, a number of technical
advances, including sequence-based transcriptomics [57],
comparative gene ontology algorithms [58], and analyti-
cal approaches for linking network characteristics to
quantitative genetics [59] illustrates the potential to
enrich our methodology to address questions of evolu-
tionary and ecological interest, particularly physiological
trait development.

There are two attributes of our approach that facilitate its
use for such purposes. First, the technique is applied
within a network framework. Network theory, has been
well received in molecular biology for providing a 'sys-
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tems biology' framework for the discipline (see [60] for a
historical perspective), and has more recently been pro-
posed as possible means for determining the evolutionary
basis of complex phenotypic traits [61]. Second, and just
as important, is the potential to link our approach with
population-based genetic analyses. Many of the molecu-
lar-based, systems biology experiments are conducted
within a narrow adaptive context, with little or no regard
for other nonadaptive evolutionary forces (drift, muta-
tion, recombination, gene flow). The inclusion of a
genetic association with network analysis, as demon-
strated by [59], and placed within a population genetic
context allows the appropriate testable null models (e.g.,
genetic drift) to be included in such studies. Therefore,
relating genomic information to genetic information, e.g.,
quantitative trait loci, is not only possible, but crucial for
those interested in exploring the full potential of the evo-
lutionary mechanisms shaping phenotypic development.

Although useful in its current form, we envision that the
true potential of our approach will be realized when the
scientific community accepts, critiques, and eventually
amends our methods with current and future applicable
analytical and technological improvements. To facilitate
this process, we conducted our analysis within the pub-
licly available R statistical language and make available to
the scientific community our signature compendium, R
scripts used within, and a brief tutorial illustrating the
process, with the near-term goal of providing the commu-
nity with an integrative systems tool for connecting genes
and signaling networks to phenotypic characteristics in
order to further the continuing goal of understanding
plant genome function.

Conclusion
In the present study, we detail the initial stages of a theo-
retical and analytical framework for classifying the plant
stress phenotype according to the architecture of the tran-
scriptome, and relate that information to underlying coex-
pression networks and genes. Our results confirm the
existence of known stress-specific genomic signatures,
report previously unknown stress-responsive modules
and genes, and successfully scale such information to the
physiological state of the phenotype. We are encouraged
by the results of our present investigation and believe that
the approaches developed and information gained here
will be critical as we continue to use these tools to better
understand species and population-level adaptation to
environmental stress, including stress resulting from cli-
mate change. Future research in our laboratory is centered
on linking functional genomic approaches to genetic
information, thereby providing a clear means to pursue
evolutionary and ecological genomics at the level of indi-
vidual organisms, populations, and ecosystems.

Methods
Plant growth and treatments
For hydroponic plant production, seeds of Arabidopsis
thaliana 'Columbia' wild-type were cultivated in a modifi-
cation of the system described in Norén et al. [62]. Briefly,
seeds were sterilized in 70% ethanol 5 min, gently agi-
tated in 0.5% SDS solution 15 min, then triple rinsed in
sterile Type I water and stratified for 3 d at 4°C. Sterilized
seeds were suspended in a 0.1% agarose solution for dis-
pensing onto nutrient agar. Nutrient agar for germination
contained 0.5X MS (Sigma-Aldrich) pH 5.7 plus 0.3%
phytagar/0.3% phytagel. Approximately 200 μl sterile
nutrient agar was placed in the barrel of a 200 μl pipet tip
in a 96-well cell well plate. After 2–3 seeds were placed on
the cooled and solidified agar, plates were covered with
lids, sealed with parafilm, and placed in a CMP 3244-con-
trolled Conviron growth cabinet under 10 h, 22°C days/
16 h, 18°C nights with fluorescent lighting (~45 μmol m-

2 s-1) for 2 weeks until the seedlings had produced 6–8
leaves. The seedlings were then transferred to holes cored
into a Styrofoam lid floating atop a 10L plastic tub filled
with 1 mM N nutrient solution (1.0 mM KNO3, 1.5 mM
CaCl2, 1.0 mM MgSO4·7H20, 1.0 mM K3PO4·7H20, 0.5
mM NH4Cl; micronutrients and Fe-EDTA as described in
Norén et al. 2004; and 0.5 gL-1 MES, pH 5.7). Tubs were
transferred to a Conviron BWD80-controlled growth
room programmed for 10 h, 22°C days/16 h, 18°C
nights, 80% RH with aeration provided by aquarium
stones attached via tubing to an air pump. Metal halide
and tungsten incandescent lamps provided an average of
110 μmol m-2 s-1 within the growth chamber. Seedlings
were misted twice daily for approximately one week and
lightly covered with a dome to reduce desiccation. A series
of shadecloth coverage (70%-50%-30%-no shade) was
used to acclimate the plants to MH lights over the course
of 7–10 d. During the fourth week the plants were gradu-
ally introduced to lower humidity by loosening and
finally removing domed lids. After complete chamber
acclimation (week 5), plantlets were transferred to JetFlo®

Econo Mini hydroponic systems (American Agritech). The
system consisted of a 22" × 22" × 7" ebb and flow tray
mounted to a 20 gallon reservoir containing 1 mM N
nutrient solution as described above with aeration pro-
vided by a circulating pump and aquarium stones in both
upper and lower chambers.

In total, there were 10 hydroponic systems resulting in a
population of over 200 Arabidopsis plants at a relatively
mature pre-flowering stage. At the end of 11 weeks, 24
plants were randomly chosen and six each were subjected
to the following treatments: (1) Drought- systems drained
and roots exposed to air until ~10 % fresh weight had
been lost; (2) Heat – systems placed in 38°C chamber for
3 h; (3) plants subjected to combined treatments 1 & 2;
and (4) no change (control). At the end of the treatment,
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plant shoots were harvested and immediately flash frozen
in liquid nitrogen for subsequent RNA isolation.

RNA preparation, design, and microarray hybridization
Total RNA was isolated and labeled from control and
treatment shoot tissue using methods from the Vicki
Chandler Lab [63]. Briefly, the TRIZOL reagent procedure
was initially used to isolate total RNA that was further
purified with RNA clean-up spin columns (Qiagen). This
two-step process ensured for high quality RNA deter-
mined spectrophotometircally (Nanodrop) and with
denaturing agarose gels. For each treatment, RNA was
transcribed into cDNA primed with T7 Oligo (dT). Amino
Allyl-modified RNA was then amplified and purified
using manufacturer directions (Ambion) as modified by
the Vicki Chandler lab (refer to [63] for protocol). Six μg
of each amplified RNA (aRNA) sample was coupled to
either CY3 or CY5 monochromeric dye (Amersham) also
according to the Chandler protocols. Three μg of labeled
aRNA were subsequently used for hybridization onto Ara-
bidopsis slides printed with Operon v 3.1, 70 mer oligos
obtained from the laboratory of David Galbraith at the
University of Arizona [64]. A formamide-based (50%)
hybridization solution was applied at 42°C for 14 h and
then washed according to Galbraith protocols [64].

The experiment consisted of one control and three treat-
ments (heat alone, drought alone, heat and drought
together) with six replicate plants RNA samples per treat-
ment. To maximize the full power of the design, we used
a direct loop design in which half of the samples from
each treatment were labeled with CY3 and the other half
were labeled with CY5. Therefore, each treatment was
directly compared with all other treatments with the pos-
sible confounding effects of dye bias controlled for by the
inclusion of dye reversals [see Additional file 6].

Microarray data analysis
Arrays were imaged with a Scan Array 5000 system (Perkin
Elmer, Wellesley, MA) and the resultant image files were
imported into Imagene v.6.0 for data extraction and ini-
tial data diagnostics. All statistical calculations were per-
formed using the limma (v.2.10.5) Bioconductor open
access package run in the R statistical framework (R Devel-
opment Core Team, 2005). Quality of the hybridization
was assessed with the Bioconductor packages arrayMagic
v.1.14.0 and arrayQuality v.1.12.0. Log-fold (M) over var-
iance (A) plots (M-A plots) were used to determine the
most appropriate background correction method. We
used basic subtraction in this study, but normexp,
normexp offset = 50, and no correction at all were investi-
gated. Arrays were normalized with print-tip loess and no
between array normalization was applied. Using limma, a
linear model was fitted to compare control to all treat-
ment conditions as contrasts and empirical Bayes was

used to compute a moderated t-statistic [25,65]. Multiple
testing errors were accounted for by using a false discovery
rate (FDR) correction [66].

Construction of gene coexpression network
Data for network construction came from the AtGenEx-
press consortium [67] using the first four time-points for
cold (4°C), heat (38°C), osmotic (300 mM mannitol),
salt (150 mM NaCL), drought (15 min air dry, about 10%
loss of fresh weight) and UV-B stresses (15 min exposure,
1.18 w/m2 Phillips TL40W/12). A complete description of
experimental design and treatments for the abiotic por-
tion of the AtGenExpress was recently reported by [24]. All
hybridizations were performed on the ATH1 affymetrix
microarray platform [68]. To reduce noise of the subse-
quent network, the input gene list was restricted to genes
that were differentially expressed at a minimum of one
time-point and one treatment. This resulted in a list of
16,036 (~71% of the all non-control array identifiers on
the ATH1 slide) unique gene transcript identifiers [see
Additional file 1]. Raw intensity values from the gene list
were downloaded and log2 transformed before being sub-
jected to network construction algorithms.

Construction of the gene coexpression network has been
described in detail [20] and R scripts for our network con-
struction were modeled after the Weighted Gene Co-
Expression Network [69]. Briefly, the framework for the
weighted gene coexpression network (WGCNA) consists
of 4 steps: (1) A similarity matrix of gene coexpression is
initially determined by the absolute value of the Pearson
correlation for all genes across all treatments; (2) transfor-
mation of coexpression similarities into connection
strengths (connectivity) using a power adjacency func-
tion; (3) identification of network modules (highly corre-
lated gene expression patterns across samples) by
coupling linkage hierarchical clustering with topological
overlap matrix; and (4) relating external gene or sample
information to network properties. Details and tutorials
of the WGCNA are available at the website.

Signature comparisons
Similar to Lamb et al. [22], the first step in our process was
to create a catalog of reference signatures representing
known biological states, plant stress phenotypes in our
case. As a first step in this process, raw .cel files from the
AtGenExpress dataset were downloaded and analyzed for
differential expression. We again used the limma
(v.2.10.5) Bioconductor open access package run in the R
statistical framework. The entire dataset was normalized
using gcRMA procedures and the linear model was fitted
and contrasts were restricted to within treatment condi-
tions. A moderated t-statistic was computed using empir-
ical Bayes [25,65] and a FDR correction [66]. The log-fold
change in expression relative to the control was used to
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rank the lists. Therefore, the first gene on the list repre-
sented the most over-expressed gene in relation to the
control while the last gene in the signature represented the
most down-regulated gene in relation to the control.

The reference signature database therefore consisted of six
treatments for the first four time-points, resulting in 24
independent signatures. The rank-based nature of the sig-
natures allowed us to use list statistical tests from the
OrderedLists Bioconductor statistical package [43,44].
The test includes a user defined value for how many genes
to consider in the list comparison. In our case, we found
that an alpha level of 0.3 interrogated a substantial por-
tion of the list while focusing on list portions that were
significantly differentially expressed for all conditions.
The similarity score is computed as the shared number of
genes between both signatures (lists) including the
weighted sum score as determined by a weighting vector
(refer to [27]). Therefore, the ends of the list are weighted
most highly and contribute more to the similarity score,
ensuring that the most differentially expressed genes con-
tribute most to the score. Similar to Lamb et al. [22], the
output consists of a non-parametric similarity score gener-
ated from the number and weights of the rank-based com-
parison between query and reference signatures. In
addition, a p-value is calculated based on the rank of the
query signature genes compared to the rank of the refer-
ence profile genes and a 1000 random permutations of
the reference profile (refer to [43]). Therefore, a significant
p-value means that the genes in common to the lists are
not due to chance.

Availability of the methods and data
As mentioned in the manuscript, we present only a proto-
type version with limited number of signature phenotypes
represented. The full potential of this resource, however,
will become apparent when the representative pheno-
types grow and began to exhaust that realized by the
genome, and eventually genomes from other ecotypes
and closely related species. Therefore, our microarray
analysis has been deposited in the Gene Omnibus data-
base (GEO: GSE9415). In addition, a the R scripts to
reproduce our weighted gene coexpression network
results [see Additional file 7] as well as the complete file
of all reference genomic signature lists has been provided
[see Additional file 8]. Information regarding network
theory and R-code tutorials for weighted gene coexpres-
sion networks is available from the Steve Horvath Lab
[69].
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