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Abstract
Stomata	regulate	CO2	uptake	for	photosynthesis	and	water	loss	through	transpiration.	 
The	approaches	used	to	represent	stomatal	conductance	(gs)	in	models	vary.	In	par‐
ticular,	current	understanding	of	drivers	of	the	variation	in	a	key	parameter	in	those	
models,	the	slope	parameter	(i.e.	a	measure	of	intrinsic	plant	water‐use‐efficiency),	
is	still	limited,	particularly	in	the	tropics.	Here	we	collected	diurnal	measurements	of	
leaf	gas	exchange	and	leaf	water	potential	(Ψleaf),	and	a	suite	of	plant	traits	from	the	
upper	canopy	of	15	tropical	trees	in	two	contrasting	Panamanian	forests	throughout	
the	dry	season	of	the	2016	El	Niño.	The	plant	traits	included	wood	density,	leaf‐mass‐
per‐area	(LMA),	leaf	carboxylation	capacity	(Vc,max),	leaf	water	content,	the	degree	of	
isohydry,	and	predawn	Ψleaf.	We	first	investigated	how	the	choice	of	four	commonly	
used	leaf‐level	gs	models	with	and	without	the	inclusion	of	Ψleaf	as	an	additional	pre‐
dictor	variable	influence	the	ability	to	predict	gs,	and	then	explored	the	abiotic	(i.e.	
month,	 site‐month	 interaction)	 and	biotic	 (i.e.	 tree‐species‐specific	 characteristics)	
drivers	of	slope	parameter	variation.	Our	results	show	that	the	inclusion	of	Ψleaf did 
not	 improve	model	performance	and	 that	 the	models	 that	 represent	 the	 response	
of	 gs	 to	 vapor	 pressure	 deficit	 performed	 better	 than	 corresponding	models	 that	
	respond	to	relative	humidity.	Within	each	gs	model,	we	found	large	variation	in	the	
slope	parameter,	and	this	variation	was	attributable	to	the	biotic	driver,	rather	than	
abiotic	 drivers.	We	 further	 investigated	 potential	 relationships	 between	 the	 slope	
parameter	and	the	six	available	plant	traits	mentioned	above,	and	found	that	only	one	
trait,	LMA,	had	a	significant	correlation	with	the	slope	parameter	(R2	=	0.66,	n	=	15),	
highlighting	a	potential	path	towards	improved	model	parameterization.	This	study	
advances	understanding	of	gs	dynamics	over	seasonal	drought,	and	identifies	a	prac‐
tical,	 trait‐based	 approach	 to	 improve	modeling	 of	 carbon	 and	water	 exchange	 in	
tropical	forests.
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1  | INTRODUC TION

Stomata	regulate	the	exchange	of	carbon	and	water	between	plants	
and	 the	 atmosphere	 (Cowan	 &	 Farquhar,	 1977;	 Lawson	 &	 Vialet‐
Chabrand,	2018;	Sperry	et	al.,	2017).	At	large	scales,	control	of	sto‐
matal	aperture	regulates	regional	and	global	biogeochemical	cycles	
of	 carbon,	 water	 and	 energy,	 and	 influences	 the	 climate	 through	
vegetation‐mediated	 climate	 feedbacks	 (Bonan,	 2008;	 Pielke	 
et	al.,	1998;	Zeng	et	al.,	2017).	Therefore,	the	representation	of	sto‐
matal	 conductance	 (gs)	 is	 a	 fundamental	 component	 of	 Terrestrial	
Biosphere	Models	(TBMs),	and	is	essential	to	formulate	correctly	be‐
cause	it	also	captures	the	impacts	of	ongoing	global	change	on	the	
climate	system.

Four	 previously	 developed	 and	 widely	 used	 leaf‐level	 models	
of	gs	have	been	adopted	by	current	TBMs.	These	 include	the	phe‐
nomenological	Ball–Berry	(BB;	Ball,	Woodrow,	&	Berry,	1987),	Ball–
Berry–Katul	 (BBK;	 Katul,	 Manzoni,	 Palmroth,	 &	 Oren,	 2010),	 and	
Ball–Berry–Leuning	(BBL;	Leuning,	1995)	models,	and	the	optimal‐
ity‐based	unified	stomatal	optimization	model	(USO;	Medlyn	et	al.,	
2011).	The	phenomenological	models	are	based	on	empirical	obser‐
vations	of	stomatal	behavior	 in	response	to	environmental	stimuli,	
whereas	the	optimality	model	is	based	on	the	principle	that	stomata	
act	to	maximize	carbon	gain	while	minimizing	water	loss	(Cowan	&	
Farquhar,	 1977).	 Among	 these	models,	 the	 BB	 and	 BBK	 formula‐
tions	 use	 relative	 humidity	 (RH)	while	 the	BBL	 and	USO	 formula‐
tions	represent	gs	responses	to	vapor	pressure	deficit	(D).	Although	
D‐type	models	more	closely	reflect	stomatal	mechanics	and	are	di‐
rectly	proportional	to	water	loss	(e.g.	Aphalo	&	Jarvis,	1991;	Eamus,	
Taylor,	Macinnis‐NG,	Shanahan,	&	de	Silva,	2008),	both	RH‐type	and	 
D‐type	gs	models	are	still	widely	used	in	TBMs	(e.g.	Franks	et	al.,	2018;	
Knauer	et	al.,	2017;	Rogers,	Medlyn,	et	al.,	2017).	Moreover,	the	per‐
formance	of	RH‐type	and	D‐type	models	has	rarely	been	evaluated	
in	natural	 forests	across	diverse	species	with	 in‐situ	gas	exchange	
measurements,	particularly	in	tropical	forest	biomes	where	changes	
in RH and D	are	typically	tightly	coupled.	Despite	these	fundamental	
differences,	phenomenological	and	optimality‐based	gs	models	are	
structurally	similar	(Medlyn	et	al.,	2011)	and	they	generate	compa‐
rable gs	predictions	under	many	biotic	and	abiotic	conditions	(Sperry	
et	al.,	2017).	Common	to	all	these	models	 is	a	representation	of	gs 
that	varies	approximately	linearly	with	net	CO2	assimilation	rate	(A) 
for	a	given	set	of	environmental	conditions	(temperature,	humidity	
and	leaf‐surface	CO2	concentration).	Therefore,	the	slope	parameter	
of	 this	 coupled	gs–A	 relationship,	which	 is	 an	 indicator	 of	 intrinsic	
plant	water	use	efficiency	(referring	to	the	amount	of	water	release	
through	stomata	for	given	A	and	environmental	conditions	as	shown	
in	Figure	1),	is	fundamental	to	all	these	models.

Although	it	has	been	shown	that	the	value	of	the	slope	param‐
eter	can	have	a	large	impact	on	simulated	carbon	and	water	fluxes	
(Bauerle,	Daniels,	&	Barnard,	2014;	Franks	et	al.,	2018;	Jefferson,	
Maxwell,	&	Constantine,	2017),	our	understanding	of	the	variabil‐
ity	in	the	slope	parameter	is	far	from	complete.	Particularly,	it	is	un‐
clear	what	drives	variation	in	the	slope	parameter,	which	has	been	
shown	to	change	with	both	biotic	 (i.e.	 tree‐species	 identification	

and	associated	leaf	characteristics)	and	abiotic	factors	(i.e.	growth	
environment,	 and	 seasonal	 and	 inter‐annual	 environmental	 vari‐
ability	 such	 as	 drought	 and	 warming;	 e.g.	 Heroult,	 Lin,	 Bourne,	
Medlyn,	&	Ellsworth,	2013;	Lin	et	al.,	2015;	Medlyn	et	al.,	2011;	
Pantin,	Simonneau,	&	Muller,	2012;	Wolz,	Wertin,	Abordo,	Wang,	
&	Leakey,	2017).	This	lack	of	a	clear	understanding	of	the	impact	of	
biotic	and	abiotic	controls	on	the	slope	parameter	has	contributed	
to	the	current	controversy	on	the	choice	of	the	most	appropriate	
and	parsimonious	formulation	of	gs	models	to	implement	in	TBMs.	
For	 example,	 recent	 experimental	 and	 seasonal	 drought‐based	
studies	have	shown	that	the	abiotic	control	of	the	slope	parame‐
ter	can	be	as	important	as	the	biotic	control,	especially	under	soil	
moisture	stress	(e.g.	Drake	et	al.,	2017;	Heroult	et	al.,	2013;	Zhou	
et	al.,	2014).	This	can	arise	either	from	the	shorter	timescale	(e.g.	
diurnal)	coordinated	variation	between	leaf	water	potential	and	D 
(Anderegg	 et	 al.,	 2017),	 from	 the	 increasing	 soil	moisture	 stress	
that	 can	 induce	 the	 associated	 change	 in	 plant	 water	 potential	

F I G U R E  1  The	slope	parameter	of	the	unified	stomatal	
optimization	model	(USO;	Medlyn	et	al.,	2011)	is	an	indicator	
of	intrinsic	water	use	efficiency.	The	regression	slope	
between	stomatal	conductance	(gs)	and	the	USO	model	index	�
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	shown	below	is	almost	linearly	proportional	
to	the	stomatal	slope	of	the	USO	model	(see	Figure	S1).	For	a	given	
CO2	assimilation	rate	(A),	atmospheric	CO2	concentration	(Ca),	
and	leaf‐to‐air	vapor	pressure	deficit	(D)	a	higher	regression	slope	
(and	thus	stomatal	slope)	means	that	plants	maintain	a	higher	gs 
to	keep	the	same	photosynthetic	rate.	As	such,	the	stomatal	slope	
parameter	is	an	indicator	of	intrinsic	plant	water	use	efficiency,	
and	a	greater	stomatal	slope	equates	to	a	lower	intrinsic	water	
use	efficiency.	The	background	scatterplots	include	diurnal	gas	
exchange	measurements	for	two	example	tree‐species	(Vochysia 
ferruginea,	blue	and	Terminalia amazonia,	red)	at	the	San	Lorenzo	
site	in	Panama	(see	Table	1	for	more	details),	and	the	regression	
coefficients	and	model	performance	were	summarized	in	Table	2
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which	down‐regulates	gs	and	thus	the	slope	parameters	(e.g.	Drake	
et	 al.,	 2017;	Heroult	 et	 al.,	 2013;	 Zhou	 et	 al.,	 2014),	 or	 there	 is	
coordinated	 acclimation	 of	 the	 slope	 parameter	 with	 seasonal	
variation	 in	 soil	moisture	 and	 plant	water	 potential	 (e.g.	 Koepke	
&	Kolb,	2012;	Xu	&	Baldocchi,	2003).	Regardless	of	 the	reasons,	
the	 inclusion	of	 a	plant	or	 leaf	water	potential	 variable	with	 the	
original gs	formulations	has	recently	been	increasingly	advocated	
as	a	way	to	improve	prediction	of	gs	(Anderegg	et	al.,	2017;	Drake	
et	 al.,	 2017;	 Zhou	 et	 al.,	 2014).	 Despite	 the	 recommendation	 of	
these	previous	 studies,	 it	 remains	unclear	whether	 these	 results	
are	representative	of	wider	natural	plant	communities,	and	impor‐
tantly,	 systems	 such	 as	 the	 tropics	where	 tall	 canopy	 evergreen	
trees	have	evolved	root	systems	to	adapt	to	seasonal	variability	in	
soil	moisture	content	(Giardina	et	al.,	2018;	Meinzer	et	al.,	1999).

Although	large	variability	in	the	slope	parameter	has	been	pre‐
viously	observed	within	and	across	biomes	(Dietze	et	al.,	2014;	Lin	 
et	al.,	2015),	many	TBMs	use	just	two	slope	parameters	to	differen‐
tiate	between	vegetation	with	the	C3	and	C4	photosynthetic	path‐
ways	 (e.g.	Kowalczyk	et	al.,	2006;	Oleson	et	al.,	2013;	Sitch	et	al.,	
2003).	Other	TBMs	 incorporate	 additional	 slope	 values	 for	 differ‐
ent	plant	functional	types	(PFTs),	for	example	needleleaf	evergreen	
trees,	broadleaf	deciduous	trees	and	C3	crops	(Baldocchi	&	Meyers,	
1998;	Oleson	et	al.,	2010),	or	by	using	different	slope	parameters	for	
temperate	and	tropical	plants	(Medvigy,	Wofsy,	Munger,	Hollinger,	&	
Moorcroft,	2009).	While	past	efforts	to	define	the	values	of	stomatal	
slope	across	different	PFTs	were	limited	by	data,	recent	syntheses	
and	analyses	have	provided	improved	understanding	of	global‐scale	
variation	in	the	slope	parameter,	enabling	the	data‐driven	parame‐
terization	of	stomata	control	 in	up	to	10	different	global	PFTs	 (Lin	 
et	al.,	2015;	Miner,	Bauerle,	&	Baldocchi,	2017).

Tropical	 forests	account	 for	around	one‐third	of	annual	 terres‐
trial	photosynthesis	(Beer	et	al.,	2010),	and,	through	stomatal	control	
of	transpiration,	mediate	tropical	convection	and	the	timing	of	dry‐
to‐wet	season	transitions—a	potentially	important	climate	feedback	
(Wright	et	al.,	2017).	However,	for	such	a	globally	important	and	hy‐
perdiverse	biome,	typically	only	one	value	for	the	slope	parameter	is	
assigned	in	current	TBMs	(Lin	et	al.,	2015;	Miner	et	al.,	2017;	Rogers,	
Medlyn,	et	al.,	2017).	One	approach	to	improve	the	representation	
of	stomatal	response	in	TBMs	is	to	establish	empirical	relationships	
between	the	slope	parameter	and	other	plant	traits	 (e.g.	Lin	et	al.,	
2015).	Not	only	do	such	relationships	provide	an	empirical	way	to	
link	plant	traits	to	the	variability	in	the	slope	parameter	within	vege‐
tation	communities	(Xu,	Medvigy,	Powers,	Becknell,	&	Guan,	2016),	
but	they	might	also	elucidate	the	biological	mechanisms	underlying	
such	variability	 (Lin	et	al.,	2015).	However,	whether	the	previously	
observed	 global‐scale	 relationships	 between	 the	 slope	 parameter	
and	key	plant	 traits	as	shown	 in	Lin	et	al.	 (2015)	also	holds	within	
forest	communities,	 that	 is,	across	tropical	 tree‐species	and	forest	
sites,	remains	uncertain.

The	goal	of	this	study	was	to	identify	the	best	potential	model	
representation,	and	explore	the	underlying	ecological	understand‐
ing,	of	 the	 response	of	gs	 to	 seasonal	drought	 in	 tropical	 forests.	
Specifically,	 we	 examined	 the	 impact	 of	 stomatal	 model	 choice	 

(i.e.	BB,	BBK,	BBL	or	USO),	inclusion	of	leaf	water	potential	(Ψleaf),	
as	well	 as	 abiotic	 and	 biotic	 drivers	 of	 variation	 in	 the	 slope	 pa‐
rameter	 on	 the	 ability	 to	 predict	 gs	 dynamics	 in	 the	 tropics.	We	
collected	 a	 unique	 field	 dataset	 consisting	 of	 fifteen	 evergreen	
tree‐species	 in	 two	 forests	over	 the	course	of	 the	2016	dry	 sea‐
son,	which	 due	 to	 a	 strong	 2015–2016	 El	 Niño	 event	 (Liu	 et	 al.,	
2017)	was	drier	 than	 the	historical	mean.	 Since	both	 growth	 en‐
vironment	 and	 leaf	 phenology	might	 affect	 stomatal	 response	 to	
diurnal	and	seasonal	environmental	variability,	here	we	aim	to	first	
standardize	these	effects	by	focusing	solely	on	canopy‐top,	sunlit	
leaves	at	their	fully	mature	status.	By	controlling	the	leaf	age	vari‐
ation	in	this	way	together	with	environmental	variability	captured	
by	the	gs	models,	the	primary	abiotic	drivers	of	the	slope	parameter	
that	we	 considered	 included	 forest	 sites	 and	 the	month	 of	mea‐
surement	 (which	 represented	 seasonal	 variability	 in	 soil	moisture	
content	and	atmospheric	humidity).	The	biotic	factors	included	tree‐ 
species	 specific	 response	 and	 their	 associated	plant	 traits,	which	
are	either	mechanistically	or	phenomenologically	linked	to	photo‐
synthesis	or	transpiration	(e.g.	Wright	et	al.,	2004;	Xu	et	al.,	2016).	
The	six	plant	traits	we	considered	include	wood	density,	leaf‐mass‐
per‐area	 (LMA),	 leaf	 carboxylation	 capacity	 (Vc,max25),	 leaf	 water	
content,	the	degree	of	isohydry	(Martinez‐Vilalta,	Povatos,	Aguadé,	
Retana,	 &	Mencuccini,	 2014),	 and	 predawn	Ψleaf.	We	 asked	 four	
questions:	(a)	Does	the	inclusion	of	Ψleaf	as	an	additional	predictor	
variable	 improve	 the	 simulation	of	gs	 of	 tropical	 trees?	 (b)	Which	
model	 formulation	best	captures	observed	gs?	 (c)	How	do	abiotic	
and	biotic	drivers	of	variation	in	the	slope	parameter	influence	the	
ability	to	predict	gs?	(d)	Are	there	any	key	relationships	with	plant	
traits,	particularly	those	widely	observed	or	easily	measured,	that	
could	be	used	to	constrain	variation	in	the	slope	parameter	within	
models?	 Through	 answering	 these	 questions,	we	 aim	 to	 improve	
understanding	 of	 gs	 dynamics	 in	 tropical	 forests,	 and	 potentially	
provide	 a	 practical	 approach	 to	 advance	 TBM	 representation	 of	
gs,	thereby	enabling	a	more	accurate	representation	of	carbon	and	
water	dynamics	in	tropical	ecosystems.

2  | MATERIAL S AND METHODS

2.1 | Sites and materials

This	study	was	conducted	at	two	lowland	tropical	moist	forest	sites	
separated	by	80	 km	on	opposite	 sides	 of	 the	 Isthmus	of	 Panama.	
At	each	site,	the	Smithsonian	Tropical	Research	Institute	maintains	
a	 canopy‐access	 crane	 that	 enables	 access	 to	 the	 forest	 canopy.	
These	 sites	 include	 a	 seasonally	 dry	 forest	 in	 the	 Parque	Natural	
Metropolitano	(PNM;	8°59′41.55″N,	79°32′35.22″W)	near	Panama	
City	and	a	wet	evergreen	forest	in	the	San	Lorenzo	Protected	Area	
(SLZ;	 9°16′51.71″N,	 79°58′28.27″W),	 Colon	 Province.	 Historic	
(1998–2015)	mean	annual	air	temperature	is	26.3°C	and	25.8°C,	and	
mean	annual	precipitation	is	1,826	and	3,286	mm	for	PNM	and	SLZ,	
respectively,	with	~90%	of	 the	 rainfall	 in	 the	May–December	wet	
season	(Figure	2).	For	more	details	on	these	sites	see	Wright	et	al.	
(2003).
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Fifteen	 evergreen	 canopy	 tree‐species	 with	 no	within	 species	
replication	(n	=	7	for	PNM	and	n	=	8	for	SLZ;	Table	1)	were	selected	
for	 intensive	 field	 measurements	 of	 leaf	 gas	 exchange	 and	 plant	
traits.	 These	 tree	 species	 were	 within	 the	 canopy	 crane	 access	
footprint	and	were	selected	to	capture	the	diversity	of	tree	species	
and	plant	trait	space	present	at	each	site.	 In	order	to	minimize	the	
effects	of	leaf	phenology	and	canopy	environments	on	variation	in	
field‐measured	stomatal	conductance,	we	restricted	measurements	
to	current‐season,	fully‐expanded,	upper	canopy	sunlit	foliage.	We	
conducted	four	campaigns	 in	2016	at	monthly	 intervals	 from	mid‐
February	until	mid‐May,	 covering	 the	middle	of	dry‐season	 to	 the	
beginning	of	wet‐season	 (Figure	2;	Figure	S2).	We	spent	2	days	at	
each	location	each	month	and	conducted	diurnal	measurements	of	
leaf	gas	exchange	and	leaf	water	potential	(Ψleaf),	measured	photo‐
synthetic	CO2	 response	curves	and	collected	additional	 leaf	 traits.	
The	May	campaign	had	a	reduced	scope	and	only	focused	on	mea‐
surements	of	diurnal	leaf	gas	exchange	and	Ψleaf.

2.2 | Measurements of leaf gas exchange and traits

We	used	six	portable	gas	exchange	systems	 (LI‐6400XT,	LI‐COR	
Inc.)	 equipped	with	 a	2	×	3	 cm2	 leaf	 chamber	 and	 red‐blue	 light	
source.	 These	 gas	 exchange	 systems	 were	 zeroed	 with	 a	 com‐
mon	 nitrogen	 standard	 prior	 to	 each	 campaign.	Diurnal	 leaf	 gas	
exchange	measurements	were	made	in‐situ	using	cranes	to	access	
the	canopy	throughout	the	day.	Each	tree‐species	was	measured	
five	to	seven	times	per	day,	and	at	each	time	point	two	leaves	were	
measured	and	then	harvested	for	subsequent	trait	measurements.	
Measurements	 of	 diurnal	 gas	 exchange,	 including	A,	gs,	 leaf	 sur‐
face	CO2	 concentration	 (Ca),	 intercellular	CO2	 concentration	 (Ci),	
RH,	 leaf‐to‐air	 vapor	 pressure	 deficit	 (D)	 and	 leaf	 temperature,	
followed	 the	method	 of	 Bernacchi	 et	 al.	 (2006),	 and	 were	 used	
to	evaluate	 leaf	 level	gs	models	 (see	below).	Prior	 to	 the	gas	ex‐
change	 measurements,	 the	 temperature	 of	 each	 measured	 leaf	
was	recorded,	and	chamber	conditions	were	matched	to	the	ambi‐
ent	 environment.	 For	 each	measurement	 round	 (time	point),	 the	
sample	 chamber	 temperature	 (Tblock)	 was	 set	 to	 the	 ambient	 air	

temperature.	For	each	tree,	the	sample	chamber	 light	was	set	to	
the	photosynthetically	active	 radiation	 incident	on	 the	 leaf.	This	
was	adjusted	throughout	each	measurement	time	point	to	account	
for	changing	light	conditions	due	to	intermittent	cloud	cover	and	
leaf	 aspect.	 For	 each	 tree‐species,	 chamber	 CO2	 concentration	
was	 set	 to	 ambient	 CO2	 concentration	 plus	 the	 differential	 ex‐
pected	due	to	CO2	assimilation.	The	RH	of	the	air	entering	the	leaf	
chamber	was	not	reduced	so	as	to	keep	it	close	to	ambient	condi‐
tions.	A	high	flow	rate	(500	μmol/s)	was	used	to	minimize	the	time	
taken	for	A and gs	to	stabilize.	After	clamping	in	the	chamber,	rates	
were	 monitored	 using	 the	 instrument's	 graphical	 interface	 and	
statistical	output,	and	data	logged	after	A and gs	reached	stability.	
To	 ensure	we	were	 capturing	 gas	 exchange	 rates	 representative	
of	ambient	conditions	data	were	logged	within	a	maximum	of	90	s	
after	clamping	the	leaf	in	the	measurement	chamber.

Over	the	course	of	the	season	we	made	c.	46	measurements	per	
tree‐species	for	a	total	694	individual	measurements.	Prior	to	data	
analysis	we	 filtered	our	 initial	dataset	of	 survey	measurements	by	
removing	spurious	data	(e.g.	negative	values)	and	data	where	we	be‐
lieved	values	were	not	reliable	due	to	a	mismatch	between	sample	
and	reference	IRGAs,	or	where	measured	values	indicated	an	artifact	
(e.g.	dew	on	the	leaves	early	in	the	morning,	or	poor	contact	with	the	
leaf	thermocouple)	or	poor	replication	of	ambient	conditions.	These	
data	were	identified	by	flagging	data	where	the	Ci:Ca	ratio	was	<0.2	
or	>0.9,	or	where	RH	was	<35%	or	>90%.	Following	examination	of	
these	flagged	data	 records	83%	of	 the	total	dataset	 remained	and	
was	used	for	subsequent	analysis.

Measurement	of	 the	 response	of	A	 to	Ci,	 commonly	 known	as	 
A–Ci	 curves,	 was	 conducted	 on	 detached	 branch	 sections.	 All	
branches	were	 sampled	before	dawn	using	 the	 canopy	 crane.	We	
took	steps	to	protect	the	samples	from	xylem	embolism,	and	where	
possible	branches	were	cut	underwater	by	bending	the	branch	into	
a	bucket	filled	with	water.	In	all	cases	>1	m	of	branch	was	removed	
within	15	min	of	the	initial	cut	by	recutting	the	branch	section	under‐
water	in	a	large	container.	Samples	were	stored	in	individual	buckets	
and	kept	in	deep	shade	until	used	for	measurements.	Measurement	
of	A–Ci	curves	closely	followed	the	approach	recently	described	by	

F I G U R E  2  Four	field	campaigns	were	conducted	in	each	of	the	two	Panamanian	crane	sites	in	2016.	These	are	(a)	the	Parque	Natural	
Metropolitano	crane	site	(PNM)	and	(b)	the	San	Lorenzo	crane	site	(SLZ).	Campaigns	included	diurnal	measurements	of	gas	exchange,	leaf	
water	potential	and	leaf	traits.	The	rainfall	data	for	historic	(1998–2015;	black	broken	line)	and	2016	(red	line)	trends	were	obtained	from	
bioge	odb.stri.si.edu/physi	cal_monit	oring	;	the	shading	indicates	one	standard	deviation	(std)	of	the	historic	mean.	The	soil	moisture	index	
(blue	line)	measures	the	relative	soil	water	content,	where	1	=	fully	saturated	soil.	The	soil	moisture	index	was	calculated	using	a	daily	
integrated	value,	and	was	obtained	by	averaging	soil	moisture	values	across	three	different	soil	depths	(at	10,	40,	and	100	cm)	and	time	(at	
5	min	interval	across	the	day),	divided	by	the	maximum	value	in	the	record

1,200 1,200

1,0001,000

(a)

SD

(b)

year year

http://biogeodb.stri.si.edu/physical_monitoring
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Rogers,	Serbin,	Ely,	Sloan,	and	Wullschleger	(2017).	Apparent	maxi‐
mum	photosynthetic	capacity	standardized	to	a	reference	tempera‐
ture	 of	 25°C	 (Vc,max25)	 was	 estimated	 using	 the	 kinetic	 constants	
and	temperature	response	functions	presented	by	Bernacchi	et	al.	
(2013)	as	described	by	Rogers,	Serbin,	et	al.	 (2017).	A	total	of	120	
estimates	of	Vc,max25	were	used	in	this	study	(c.	8	per	tree‐species),	
with	tree‐species‐specific	mean	and	standard	deviation	summarized	
in	Table	1.

Following	in‐situ	gas	exchange	measurement,	the	leaves	were	
immediately	 harvested	 for	 Ψleaf	 and	 trait	 measurement.	 Leaves	
were	sealed	 in	humidified	plastic	bags	and	stored	 in	 the	dark	on	
ice	 for	 a	maximum	of	 two	hours	before	 further	processing.	Ψleaf 
was	measured	 using	 a	 Scholander‐type	 pressure	 chamber	 (PMS)	
as	 described	 previously	 (McDowell,	 Brooks,	 Fitzgerald,	 &	 Bond,	
2003).	We	 also	 tested	 the	 robustness	 of	 our	methodology	 used	
to	measure	Ψleaf	 through	 an	 experimental	 test	 by	 examining	 the	
impact	of	the	time	duration	of	wait	time	prior	to	measurement	on	
the	Ψleaf	 observed,	 and	 the	 results	 showed	 that	within	 the	 2‐hr,	
leaf	storage	in	the	dark	on	ice	had	little	 impact	on	the	estimated	
Ψleaf.	 These	experimental	 results	 are	 summarized	 in	Methods	S1	
and	Figure	S3.	We	then	sampled	a	known	leaf	area	using	cork	bor‐
ers	and	weighed	 leaf	 fresh	mass	with	a	precision	balance	 (Fisher	
Science	 Education,	Model	 SLF303).	 Once	 weighed,	 the	 samples	
were	 dried	 to	 constant	 mass	 at	 70°C.	We	 then	 determined	 dry	
mass	 to	calculate	LMA	 (g/m2)	 and	 leaf	water	content	 (LWC;	as	a	
percentage	of	fresh	mass,	%).	We	also	collected	leaf	samples	(2–3	
replicates	per	tree‐species	per	campaign)	before	dawn	to	measure	
pre‐dawn	Ψleaf.	Based	on	the	predawn	and	diurnal	measurements	
of	Ψleaf,	we	derived	a	tree‐species‐specific	plant	hydrological	trait,	
degree	of	isohydry,	which	is	defined	by	the	slope	of	pre‐dawn	and	
mid‐day Ψleaf,	following	the	approach	as	Martinez‐Vilalta,	Povatos,	
Aguadé,	Retana,	and	Mencuccini	(2014).	In	addition,	we	used	the	
existing	data	on	stem	wood	density	for	our	target	tree‐species	col‐
lected	from	the	same	forests	(Wright	et	al.,	2010).	Canopy	height	
and	diameter	at	breast	height	for	the	target	tree‐species	referred	
to	Dickman	et	al.	(2019).

Independent	 of	 the	 diurnal	 measurement	 campaigns,	 for	 the	
same	 tree‐species	 at	 each	 site,	 we	 also	 measured	 stem	 hydraulic	
conductivity	as	a	function	of	stem	water	potential	(i.e.	hydraulic	vul‐
nerability	 curves)	 in	 terminal	 branches	 of	 canopy	 trees.	 Following	
the	 approach	 described	 by	Wolfe,	 Sperry,	 and	 Kursar	 (2016),	 we	
measured	hydraulic	conductivity	on	20–52	stem	segments	per	tree‐
species	 (mean	stem	diameter	=	5.9	mm)	that	had	been	air	dried	to	
reach	varying	stem	water	potential.	For	each	tree‐species,	stem	hy‐
draulic	conductivity	was	plotted	as	a	function	of	stem	water	poten‐
tial	 and	 a	Weibull	 function	was	 fit	 through	 the	90th	percentile	 to	
obtain	the	vulnerability	curve	parameters	(summarized	in	Table	1).

We	recognize	that	there	are	alternative	approaches	to	deriving	
fitted	parameters	and	additional	value	in	many	of	the	traits	we	have	
collected.	Therefore,	all	the	data	associated	with	this	study	including	
raw	gas	exchange	data,	 fitted	photosynthetic	parameters	 and	 leaf	
trait	are	publicly	available	at	the	NGEE‐Tropics	dataset	archive	(Ely	
et	al.,	2018a,	2018b;	Rogers	et	al.,	2018a,	2018b;	Wolfe	et	al.,	2018),	

the	 TRY	 database	 (Kattge	 et	 al.,	 2011)	 and	 the	 database	 (www.
BETYd.org)	associated	with	the	PEcAn	project	(LeBauer	et	al.,	2018).

2.3 | Stomatal conductance models

We	utilized	the	four	common	models	to	describe	the	coupled	gs–A 
relationship	to	environmental	variables,	including	BB,	BBK,	BBL	and	
USO	(as	described	in	the	Introduction).

The	BB	model	(Ball	et	al.,	1987)	is	formulated	as	follows:

where	RH	is	the	leaf‐surface	RH,	Ca	is	the	leaf‐surface	CO2	concentra‐
tion	(μmol/mol),	A	is	the	net	photosynthesis	rate	(μmol	CO2 m−2	s−1),	m 
is	the	slope	parameter	(unitless),	and	g0	(mol	m

−2	s−1)	is	the	intercept	of	
the	regression,	representing	baseline	gs.

The	BBK	model	(Katul	et	al.,	2010)	as	Equation	(2)	is	an	extended	
version	of	the	BB	model	that	also	accounts	for	the	CO2	compensa‐
tion	point	(Γ*)	of	assimilation	in	the	absence	of	dark	respiration.

where	m1	is	the	slope	parameter,	and	Γ*	is	a	function	of	leaf	tempera‐
ture	using	the	same	formula	as	Leuning	(1995),	shown	in	Table	S1.

The	BBL	model	(Leuning,	1995)	is	an	alternative	way	to	relate	gs 
to	the	environment	incorporating	an	empirical	dependence	on	leaf‐
to‐air	vapor	pressure	deficit	(D,	kPa)	as	follows:

where	a1	is	the	slope	parameter	and	D0	is	a	fitted	parameter.	A	practi‐
cal	issue	with	Equation	(3)	is	that	the	parameters	a1 and D0	are	highly	
correlated	(Medlyn,	Robinson,	Clement,	&	McMutrie,	2005)	and	thus	
not	 statistically	 valid	 to	 interpret	 values	 of	a1	 across	 different	 tree‐ 
species	when	D0	is	fitted	simultaneously.	To	avoid	this	issue,	we	em‐
ployed	a	two‐stage	fitting	procedure	where	we	initially	fitted	BBL	for	
the	full	dataset	to	derive	D0	 (=0.61),	and	then	assigned	the	same	D0 
throughout	all	tree‐species	when	estimating	tree‐species‐specific	a1.

The	USO	model	as	follows	is	an	optimality	model	developed	by	
Medlyn	et	al.	(2011),	with	the	slope	parameter	of	g1.

Of	 particular	 note,	 in	 the	 original	 derivation	 of	 the	 gs	 models	
shown	 above,	 the	 intercept	 term	 g0	 ensures	 correct	 gs	 response	
when	A	approaches	zero.	The	term	g0	is	often	thought	to	represent	
the	cuticular	gs,	or	the	conductance	with	closed	stomata.	Similar	to	
Lin	et	al.	 (2015),	we	did	not	fit	g0.	First,	fitted	values	of	g0	and	the	
slope	parameter	tend	to	be	correlated,	meaning	that	the	estimated	
slope	parameters	can	be	 ill‐posed	and	differences	 in	the	slope	pa‐
rameters	 among	 datasets	 cannot	 be	 clearly	 interpreted.	 Second,	

(1)gs=g0+m×
A×RH

Ca

,

(2)gs=g0+m1×
A×RH

Ca−Γ∗
,

(3)gs=g0+a1×
A

(

Ca−Γ∗
)

×
(

1+D∕D0

) ,

(4)gs=g0+1.6×

�

1+
g1
√

D

�

×
A

Ca

.

http://www.BETYd.org
http://www.BETYd.org
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measuring	cuticular	conductance	instead	of	fitting	the	parameter	is	
likely	a	better	means	 to	capture	g0.	 Since	we	did	not	measure	cu‐
ticular	conductance,	 in	our	data	analysis,	we	assume	g0	=	0	 for	all	
tree‐species.

To	 evaluate	 whether	 inclusion	 of	Ψleaf	 as	 an	 additional	 model	
variable	improves	predictions	of	the	four	gs	models	(Equations	1–4),	
we	adapted	the	equation	below	from	Anderegg	et	al.	(2017):

where	b and c	are	two	tree‐species‐specific	parameters,	which	de‐
scribe	the	Weibull	form	of	the	xylem	conductivity	functions,	and	hy‐
draulic	conductivity	=	kmax× fΨleaf

,	where	kmax	describes	the	maximum	
rate	of	hydraulic	conductance	in	the	absence	of	water	stress,	that	is,	
Ψleaf	=	0	MPa	(Sperry	et	al.,	2017).

Taking	BBL	as	an	example,	 the	model	 that	 incorporates	Ψleaf	 is	
shown	below:

2.4 | Modeling experiments, model fit and 
drivers of the slope parameter variation

We	 first	 evaluated	 model	 choice	 and	 whether	 inclusion	 of	Ψleaf 
would	improve	predictions	of	the	four	gs	models	through	the	fol‐
lowing	three	tests:	(a)	we	calculated	the	model	residuals	(that	we	
defined	 as	 the	modeled	 gs	 minus	 observed	 gs)	 for	 the	modeling	
scenarios	without	Ψleaf	and	quantified	the	extent	 to	which	these	
model	 residuals	 can	 be	 explained	 by	measured	Ψleaf;	 (b)	we	 per‐
formed	model	 optimization	 for	 each	 of	 the	 four	 gs	 models	 with	
(including	 three	 parameters:	 the	 slope	 parameter,	 b and c) and 
without	 (that	has	 just	one	parameter:	 the	slope	parameter)	Ψleaf,	
and	evaluated	the	model	selection	with	the	coefficient	of	determi‐
nation	(R2),	the	root‐mean‐squared	error	(RMSE)	of	the	model	and	
the	Akaike	information	criterion	(AIC).	AIC	allows	for	the	determi‐
nation	of	 relative	 statistical	model	 robustness	and	parsimony	by	
estimating	the	degree	to	which	the	inclusion	of	additional	param‐
eters	between	models	 improves	model	fit	versus	the	 loss	of	sta‐
tistical	power;	and	(c)	performed	a	second	model	optimization	at	
the	tree‐species	level,	but	instead	of	using	the	optimized	Weibull	
parameters	(b and c;	Equation	5)	for	describing	the	xylem	conduc‐
tivity	 function	 as	 in	 the	 second	 test,	 we	 used	 the	 tree‐species‐ 
specific	 Weibull	 parameters	 derived	 from	 laboratory‐measured	
stem	hydraulic	vulnerability	curves	(Table	1).	The	model	selection	
was	then	evaluated	through	corresponding	R2,	RMSE,	and	AIC.

In	 addition	 to	 the	 tests	 including	Ψleaf,	 we	 also	 evaluated	 the	
models	 in	 their	 original	 forms	 (Equations	 1–4).	 For	 each	 gs model 
we	 examined	 how	 the	 abiotic	 (i.e.	 site:	 PNM	 and	 SLZ;	 month‐of‐ 
measurement:	February,	March,	April	and	May)	and	biotic	(i.e.	tree‐
species,	n	=	15)	factors	separately	and	jointly	influence	the	estima‐
tion	of	the	slope	parameter	used	to	predict	gs.	We	started	with	the	
scenario	that	only	accounts	for	the	fixed	effect,	that	is,	assuming	a	

common	slope	parameter	 for	 the	 full	dataset.	We	then	performed	
the	 analysis	 iteratively	 by	 adding	 one	 level	 of	 the	 random	effects	
(i.e.	 allowing	 for	 variation	 in	 the	 slope	 parameter	 associated	with	
different	 abiotic	 and/or	 biotic	 factors)	 in	 each	 analytical	 scenario,	
following	the	order	of	random	effects	induced	by	month,	site‐month	
interaction,	 tree‐species	 and	 tree‐species‐month	 interaction,	 re‐
spectively,	until	the	full	random	effects	were	represented	in	the	final	
analysis.	Three	metrics	(R2,	RMSE	and	AIC)	were	also	calculated	to	
compare	different	analytical	scenarios.

Additionally,	we	bootstrapped	 the	 full	 dataset	1,000	 times	 for	
cross‐model	 performance	 comparisons.	 For	 each	 bootstrap,	 we	
randomly	selected	70%	of	the	data	to	fit	parameters	and	used	the	
remaining	30%	for	validation.	For	the	validation	results	 (quantified	
using	both	the	R2	and	RMSE	statistics	calculated	for	each	iteration),	
statistical	 differences	 between	model	 pairs	were	 identified	with	 t 
tests.

Last,	we	derived	tree‐species‐specific	slope	parameters	for	each	
of	the	four	gs	models	in	their	original	forms	using	the	ordinary	least	
squared	 nonlinear	 model	 fit.	We	 assessed	 these	 slope	 parameter	
correlations	with	all	six	available	plant	traits,	which	have	previously	
been	linked	with	either	plant	photosynthesis	or	transpiration.	These	
six	plant	traits	included	wood	density,	LMA,	Vc,max25,	LWC,	degree	of	
isohydry	and	pre‐dawn	Ψleaf.

3  | RESULTS

3.1 | gs model performance with and without Ψleaf 
as an additional model variable

Regardless	 of	 the	 gs	model	 chosen,	 our	 results	 showed	 that	 adding	
Ψleaf	as	an	additional	model	predictor	variable	did	not	appreciably	im‐
prove	model	predictions	of	gs	across	all	three	of	our	tests	of	inclusion,	
that	is,	(a)	examining	the	relationships	between	the	model	residuals	of	
gs	resulting	from	predictions	of	gs	by	the	original	model	formulations	
(Equations	1–4)	and	from	model	formulations	that	included	represen‐
tation	of	field	measured	Ψleaf	(Figure	S4),	(b)	adding	in	a	single	pair	of	
statistically	optimized	additional	parameters	 (i.e.	Weibull	parameters	
b and c;	Equation	5)	to	describe	xylem	conductivity	response	to	Ψleaf 
(Figure	3),	and	(c)	adding	in	tree‐species‐specific	Weibull	parameters	
derived	from	laboratory‐measured	stem	hydraulic	vulnerability	curves	
(Table	1)	 to	describe	xylem	conductivity	 response	 to	Ψleaf	 (Figure	4;	
Figure	S5).	As	shown	 in	Figure	S4,	we	found	that	the	model	residu‐
als	showed	no	or	very	weak	relationships	(R2	=	0.00–0.04)	with	Ψleaf 
across	all	the	four	gs	models	analyzed	here.	This	thus	provides	direct	
evidence	that	accounting	for	the	variability	in	Ψleaf	did	not	appreciably	
improve	model	predictions	of	gs	for	these	tropical	trees.

When	using	the	optimized	tree‐species‐specific	Weibull	parame‐
ters	 (Figure	3),	we	found	the	optimization	results	 for	the	model	 for‐
mulations	 that	 include	 Ψleaf	 have	 very	 similar	 predictive	 power	 (in	
terms	of	R2	and	RMSE)	compared	with	the	corresponding	cases	with‐
out	Ψleaf,	while	AIC	values	indicated	that	the	inclusion	of	Ψleaf	did	not	
significantly	improve	model	fit	and	instead	reduced	model	parsimony.	
This	 is	 especially	 apparent	 for	 the	 scenario	 of	 “tree‐species‐month	
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interaction”	(Figure	3c).	For	each	of	the	four	gs	models	the	AIC	value	
when	including	Ψleaf	is	far	higher	than	the	corresponding	case	without	
Ψleaf,	and	is	also	even	higher	than	the	scenario	of	“all”	(Figure	3c;	which	
assumes	 a	 common	 slope	parameter	 for	 the	 full	 dataset),	 indicating	
that	the	models	with	Ψleaf	were	over	parameterized.

When	using	 the	derived	 tree‐species‐specific	Weibull	 parame‐
ters	(as	in	Table	1)	rather	than	optimized	parameters,	we	found	that	
the	performance	of	gs	models	coupled	with	Ψleaf	was	markedly	lower	
than	 the	 corresponding	 cases	 without	 Ψleaf	 (Figure	 4;	 Figure	 S5;	
Table	S2).	Particularly,	at	the	tree‐species	level,	regardless	of	the	gs 

model	chosen,	the	former	cases	(with	Ψleaf)	only	have	the	predictive	
power	of	R2	=	0.17–0.19	across	all	15	tree‐species	(Figure	4b,d,f,h),	
while	the	later	cases	(without	Ψleaf)	have	much	better	model	perfor‐
mance	(R2	=	0.64–0.74;	Figure	4a,c,e,g).

3.2 | RH‐type versus VPD‐type gs models

We	now	focused	on	the	original	gs	models,	without	further	considera‐
tion	of	the	addition	of	a	leaf	water	potential	formulation	(i.e.	Equation	
5).	When	using	a	common,	model	specific,	slope	parameter	for	the	full	

F I G U R E  3  Model	performance	comparisons	across	different	
gs	models	and	with/without	including	leaf	water	potential	(Ψleaf). 
Statistics	for	the	four	gs	models	(color	symbols)	that	exclude	(solid	
lines)	or	include	(dash	lines)	Ψleaf	as	an	additional	model	predictor	
variable,	including	(a)	the	coefficient	of	determination	(R2),	(b)	
root‐mean‐square‐error	(RMSE)	between	modeled	and	observed	
gs,	and	(c)	Akaike	information	criterion	(AIC),	for	the	entire	dataset	
(n	=	574	observations	from	15	tree	tree‐species).	The	x‐axis	
represents	different	scenarios	for	model	treatments	of	the	whole	
dataset,	by	separating	them	according	to	different	combinations	
among	month,	site	and	tree‐species.	The	results	shown	here	are	
based	on	the	statistically	optimized	nonlinear	model	fitting.	AIC	
is	a	statistic	metric	that	allows	inference	on	the	relative	quality	of	
statistical	models,	and	the	models	with	relatively	lower	AIC	values	
are	generally	chosen	over	another.	The	four	gs	models	are	Ball–
Berry	(BB),	Ball–Berry–Katul	(BBK),	Ball–Berry–Leuning	(BBL),	and	
Unified	Stomatal	Optimization	(USO)
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F I G U R E  4  Model	performance	comparisons	across	gs	models	
with	and	without	tree‐species‐specific	Weibull	parameters.	The	
tree‐species‐specific	Weibull	parameters	were	derived	from	
laboratory‐measured	stem	hydraulic	vulnerability	response	curves	
(parameters	are	shown	in	Table	1)	and	field	measurements	of	leaf	
water	potential	(Ψleaf).	The	left	hand	panels	(a,	c,	e,	g)	show	the	
results	from	the	four	models	in	their	original	forms	(see	Equations	
1–4),	and	the	right	panels	(b,	d,	f,	h)	show	those	same	models	with	
formulations	that	include	Ψleaf	and	derived	Weibull	parameters.	The	
four	gs	models	are	Ball–Berry	(BB),	Ball–Berry–Katul	(BBK),	Ball–
Berry–Leuning	(BBL),	and	Unified	Stomatal	Optimization	(USO).	The	
model	results	shown	here	are	based	on	the	entire	dataset	(n	=	574	
observations	from	15	tree‐species);	tree‐species‐specific	model	
evaluation	is	reported	in	Figure	S5	and	Table	S2.	R2	for	coefficient	
of	determination,	RMSE	for	root‐mean‐square‐error,	and	p	for	
significance	level	of	modeled	versus	observed	gs	correlations.	Black	
lines	indicate	the	1:1	relationships
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dataset,	the	gs	models	captured	56%	(BB),	55%	(BBK),	64%	(BBL)	and	
65%	(USO)	of	the	variability	in	field‐measured	gs	(Figure	3).	Notably,	the	
two	D‐type	models	(BBL	and	USO),	which	represent	the	gs	response	to	
vapor	pressure	deficit,	outperformed	the	other	two	RH‐type	models	
(BB	and	BBK),	which	represent	the	gs	response	to	RH.	Our	bootstrap‐
ping	analysis	and	associated	t	tests	also	suggested	the	D‐type	models	
had	significantly	higher	model	performance	compared	to	the	RH‐type	
models	(Figure	S6;	Table	S3),	with	the	relative	rank	among	these	four	
models	as	follows:	USO	>	BBL	>>	BB	>	BBK.

3.3 | Abiotic versus biotic control on the stomatal 
slope parameter

We	 examined	 the	 relative	 impacts	 of	 biotic	 (i.e.	 tree‐species)	 and	
abiotic	(i.e.	month,	site‐month	interaction)	drivers	of	variation	of	the	
slope	parameters	used	 in	 the	 four	gs	models	on	 the	ability	 to	pre‐
dict	gs.	 For	 all	 four	models,	we	observed	 that	 accounting	 for	 tree‐ 
species‐specific	 and	 tree‐species‐month‐specific	 variation	 in	 the	
slope	parameter	provided	the	most	significant	 improvement	 in	 the	
prediction	of	field‐observed	gs,	with	a	>10%	increase	in	R

2	and	~20%	
decrease	 in	 RMSE%	 (Figure	 3),	 relative	 to	 a	 common,	 model	 spe‐
cific,	slope	parameter	for	the	full	dataset.	In	contrast,	accounting	for	
month‐specific	variation	 in	the	slope	parameter	did	not	 improve	gs 
prediction	 (Figure	3).	 In	addition,	our	 results	showed	that	account‐
ing	for	site‐month‐specific	variation	in	the	slope	parameter	improved	
gs	prediction	only	for	the	two	RH‐type	models	but	not	for	the	two	
D‐type	models.	In	addition,	our	results	also	showed	that	the	two	RH‐
type	models	had	similar	model	performance,	but	consistently	yielded	
lower R2	and	higher	RMSE	than	the	two	D‐type	models	(Figure	3).

3.4 | Large inter‐tree‐specific variation in slope 
parameters and their relationships with plant traits

Given	 the	 role	 of	 tree‐species	 in	 driving	 stomatal	 slope	 variation	
(Figure	3),	we	 further	 explored	 the	potential	 for	 important	 relation‐
ships	 between	 stomatal	 slope	 and	 tree‐species‐specific	 plant	 traits.	
To	do	this	we	first	examined	inter‐tree‐specific	variation	in	the	slope	
parameters	 and	 then	 assessed	 their	 correlations	 with	 six	 field‐col‐
lected	plant	traits.	We	found	large	inter‐tree‐specific	variation	in	the	
slope	parameters	(Figure	5;	Figures	S7–S9;	Table	2),	with	around	two	
to	three	fold	variation	depending	on	the	model	choice.	Such	high	inter‐ 
tree‐specific	variation	 in	 the	slope	parameter	was	also	 found	within	
each	of	the	two	tropical	forests,	with	seven‐tree‐species	average	slope	
parameters	and	standard	deviations	of	7.38	±	1.12	(BB),	6.34	±	0.95	
(BBK),	12.65	±	2.18	(BBL),	and	2.68	±	0.59	(USO)	for	PNM,	and	eight‐
tree‐species	 average	 slope	 parameters	 and	 standard	 deviations	 of	
6.64	±	1.55	(BB),	5.78	±	1.35	(BBK),	10.72	±	2.40	(BBL),	and	2.17	±	0.70	
(USO)	 for	SLZ.	Similarly,	we	also	observed	 relatively	high	 inter‐tree‐
specific	variation	in	our	plant	traits	(see	Table	1	and	Figure	5),	including	
wood	density	 ranging	 from	0.34	 to	0.75	g/m3,	 LMA	 (84–154	g/m2),	 
Vc,max25	 (18–85	 µmol	 m

−2	 s−1),	 LWC	 (46%–65%),	 degree	 of	 isohy‐
dry	 (−0.21	 to	 1.96;	 unitless)	 and	 pre‐dawn	Ψleaf	 (−1.9	 to	 −0.8	MPa).	
Exploring	the	relationship	between	derived	tree‐species‐specific	slope	

parameters	and	plant	traits	(Figure	5;	Figures	S7–S9)	yielded	only	one	
significant	correlation,	LMA	(R2	=	0.66–0.67),	consistent	among	all	four	
gs	models.	The	other	five	traits	we	examined,	that	is,	a	wood	trait	(wood	
density),	a	leaf	photosynthetic	trait	(Vc,max25),	and	three	hydraulic	traits	
(LWC,	degree	of	isohydry	and	pre‐dawn	Ψleaf),	showed	no	significant	
relationships	with	the	slope	parameters.

4  | DISCUSSION

Understanding	abiotic	and	biotic	controls	of	gs	and	exploring	accu‐
rate	 representation	 of	 gs	 in	 TBMs	 has	 been	 a	 core	 focus	 in	 ecol‐
ogy	 of	 climate	 regulation	 and	 plant	 physiology	 ecology.	Here,	we	
used	data	from	two	contrasting	tropical	forests	that	spanned	a	large	
range	of	environmental	conditions	associated	with	diurnal	and	sea‐
sonal	variation.	We	demonstrated	that	in	tropical	forests,	including	
Ψleaf	 in	model	 formulations	did	not	 improve	predictions	of	gs,	 and	

F I G U R E  5  Correlations	between	the	tree‐species‐specific	
slope	parameter	(g1;	using	the	unified	stomatal	optimization	
model;	Medlyn	et	al.,	2011)	and	associated	plant	traits,	including	
(a)	wood	density,	(b)	leaf	mass	per	area,	(c)	Vc,max25,	(d)	leaf	water	
content,	(e)	degree	of	isohydry	(approximated	by	the	slope	between	
predawn	and	mid‐day	leaf	water	potential;	Martinez‐Vilalta	et	al.,	
2014),	and	(f)	predawn	leaf	water	potential	(Ψleaf).	Points	show	
tree‐species	means	from	the	Parque	Natural	Metropolitano	(dry)	
site	(n	=	7	tree‐species,	circles),	and	the	SLZ	site	(n	=	8	tree‐species,	
triangles).	R2	for	coefficient	of	determination,	and	p	for	significance	
level	of	slope	parameter‐trait	correlation.	Fitted	lines	(ordinary	
least	square	regression,	OLS)	were	only	shown	for	significant	
relationships.	Similar	results	were	found	for	the	Ball–Berry	model	
(Figure	S7),	the	Ball–Berry–Katul	model	(Figure	S8),	and	the	Ball–
Berry–Leuning	model	(Figure	S9)
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the	models	that	represent	gs	response	to	vapor	pressure	deficit	(i.e.	
D‐type	models,	BBL	and	USO)	performed	better	 than	 the	models	
based	on	RH	 (i.e.	RH‐type	models,	BB	and	BBK).	Additionally,	we	
demonstrated	that	accounting	for	the	variation	in	the	slope	param‐
eters	 across	 tree‐species	 significantly	 improved	 model	 estimates	
of	gs,	while	accounting	for	the	variation	in	the	slope	parameters	in‐
duced	by	abiotic	factors	(i.e.	month	and	site‐month	interaction)	did	
not	appreciably	 improve	model	performance.	Finally,	we	explored	
potential	relationships	between	the	slope	parameters	and	six	plant	
traits	that	correlate	with	photosynthesis	or	transpiration,	and	iden‐
tified	 only	 one	 leaf	 trait,	 LMA,	 that	 had	 a	 significant	 correlation	
with	 the	 slope	parameter	derived	 from	each	of	 the	 four	gs model 
formulations.

4.1 | Modeling gs with or without Ψleaf

Several	 recent	 studies	 have	 suggested	 that	 Ψleaf	 should	 be	 in‐
corporated	 into	models	 of	 gs	 (e.g.	 Anderegg	 et	 al.,	 2017;	 Drake	 
et	al.,	2017;	Sperry	et	al.,	2017;	Venturas	et	al.,	2018;	Zhou	et	al.,	
2014).	However,	 in	our	study	the	data	do	not	support	this	argu‐
ment,	 at	 least	 for	 the	 tropical	 evergreen	 canopy	 trees	 analyzed	
here	(Figures	3	and	4;	Figure	S5).	This	result,	while	in	contrast	with	
previous	work,	 is	not	unexpected.	For	example,	 in	a	 recent	syn‐
thesis	study,	Anderegg	et	al.	 (2017)	used	a	dataset	of	24	woody	
plant	species	spanning	global	forest	biomes	to	examine	the	effect	
of	Ψleaf	on	model	prediction	of	gs.	Their	 results	 showed	 that	 for	
the	majority	of	tree	species	analyzed,	inclusion	of	Ψleaf	did	not	sig‐
nificantly	improve	prediction	of	gs,	which	is	consistent	with	what	
we	found	here.	Meanwhile,	they	did	find	that	for	four	tree‐species	
gs	prediction	was	significantly	improved	with	Ψleaf	(i.e.	Δ‐AIC	>	3	
with	 increase	 in	 R2	 by	 10%	 or	 more).	We	 note	 that	 those	 four	
tree‐species	 were	 derived	 from	 studies	 that	 examined	 drought	
impacts	 on	 a	 water‐limited	 glasshouse	 plant	 (Arango‐Velez,	
Zwiazek,	Thomas,	&	Tyree,	2011),	saplings	(Wolfe	et	al.,	2016),	and	
two	woody	 plants	 (including	 an	 evergreen	 tree	 in	 an	Australian	
tropical	dry	forest,	and	a	juniper	tree	in	northern	Arizona	pinyon‐ 
juniper	woodland)	without	 explicitly	 accounting	 for	 the	 interac‐
tive	effect	of	both	leaf	phenology	and	seasonal	variability	in	soil	
moisture	 content	 (Choat,	 Ball,	 Luly,	 Donnelly,	 &	 Holtum,	 2006;	
Koepke	&	Kolb,	2012).

Since	 our	 analysis	 focused	 on	 evergreen	 tropical	 canopy	
trees	 that	experience	seasonal	variability	 in	 soil	moisture	content	
(Figure	 2),	 we	 hypothesize	 that	 there	 are	 two	 major	 reasons	 for	
the	discrepancy	between	previous	results	and	those	of	this	study.	
First,	 including	Ψleaf in gs	 formulations	 might	 be	 more	 important	
for	water‐limited	plants	(Arango‐Velez	et	al.,	2011;	Venturas	et	al.,	
2018;	Zhou	et	al.,	2014),	for	example,	saplings	or	glasshouse	plants,	
but	might	not	 improve	model	predictions	for	mature	trees.	This	 is	
especially	 relevant	 for	 evergreen	 tropical	 trees	 that	 can	maintain	
green	leaves	year‐round,	and	have	deep	and	extensive	root	systems	
that	enable	access	to	moist	soil	during	seasonal	droughts	(Giardina	
et	 al.,	 2018;	 Guan	 et	 al.,	 2015;	 Meinzer	 et	 al.,	 1999;	 Nepstad	 
et	al.,	1994).	Therefore,	conclusions	drawn	from	glasshouse	plants	

or	saplings	should	be	used	with	caution	when	considering	natural	
forest	ecosystems,	particularly	 tropical	 forests.	Second,	 the	slope	
parameters	in	the	original	gs	models	(i.e.	Equations	1–4)	likely	vary	
with	leaf	age	(e.g.	Albert	et	al.,	2018),	which	covaries	with	Ψleaf	(and	
many	other	traits)	over	the	season	in	seasonal	forests	(e.g.	Koepke	
&	 Kolb,	 2012;	 Xu	 &	 Baldocchi,	 2003),	 but	 not	 in	 evergreen	 for‐
ests	where	mixed	leaf	ages	are	often	found	year	round	(e.g.	Lopes	 
et	al.,	2016;	Wu	et	al.,	2016).	Thus,	including	Ψleaf	can	improve	pre‐
dictions	of	gs	seasonality	over	leaves	of	different	ages,	but	may	not	
be	a	significant	 factor	when	controlling	 for	 leaf	age	as	 this	study.	
This	hypothesis	is	consistent	with	several	studies	(e.g.	Albert	et	al.,	
2018;	Jordan,	Brown,	&	Thomas,	1975;	Pantin	et	al.,	2012;	Rogers	
et	 al.,	 2012)	 that	 show	a	 strong	 age‐dependence	of	 leaf	gs under 
controlled	environmental	conditions.	However,	additional	field	and	
manipulation	studies	are	needed	to	fully	elucidate	the	mechanisms	
and	scales	at	which	leaf	properties,	such	as	Ψleaf,	may	regulate	gs in 
addition	to	other,	potentially	correlated	leaf	properties.

There	was	still	a	weak	but	significant	relationship	between	Ψleaf 
and	the	gs	 residuals	 in	 three	of	 the	 four	gs	models	 in	 their	original	
forms	 (Figure	S4).	Higher	 residuals	 at	 lower	Ψleaf	 indicate	 that	 the	
models	tended	to	overestimate	gs	at	low	Ψleaf	and	suggest	that	there	is	
indeed	room	to	improve	the	models	by	incorporating	Ψleaf.	However,	
the	proposed	model	 improvements	with	Ψleaf	 (i.e.	Anderegg	et	 al.,	
2017)	that	we	tested	failed	to	improve	model	performance	(Figures	
3	and	4;	Figure	S5;	Table	S2).	We	identified	three	potential	reasons.	
First,	 it	 is	 likely	 true	 that	Ψleaf	 can	 help	 regulate	 gs	 variation,	 par‐
ticularly	when	 leaf	or	 soil	water	potential	 is	below	certain	 thresh‐
olds	(e.g.	under	severe	droughts	or	when	Ψleaf	is	close	to	leaf	turgor	
loss	point;	Brodribb	&	Holbrook,	2003;	Rodriguez‐Dominguez	et	al.,	
2016;	Venturas	et	al.,	2018),	but	not	within	the	range	of	variability	
we	witnessed.	As	such,	Ψleaf	does	not	play	a	large	role	in	regulating	
the	range	of	observed	gs	values	 in	this	study	 (Figure	3;	Figure	S4).	
Second,	the	additional	parameters	(i.e.	Weibull	parameters	of	b and 
c	as	shown	in	Equation	5)	required	to	fit	the	model	come	with	their	
own	uncertainties,	since	they	are	based	on	the	laboratory‐measured	
hydraulic	conductivity	responses	(e.g.	Wolfe	et	al.,	2016).	Such	un‐
certainty	can	propagate	 into	the	fitting	scheme	 leading	to	a	 lower	
model	performance	as	observed	in	Figure	4	and	Figure	S5.	Lastly,	the	
water	potential	 in	the	leaves	can	be	more	negative	than	the	water	
potential	 in	the	stem	xylem,	and	this	should	be	taken	into	account	
when	using	Ψleaf	to	parameterize	stem	vulnerability	curves	within	gs 
models.	For	example,	as	in	Figure	S5,	the	stem	hydraulic	vulnerabil‐
ity	curves	suggest	that	most	of	trees	we	studied	would	close	their	
stomata	(i.e.	fψleaf

=0)	when	Ψleaf	is	lower	than	−2MPa,	while	field	ob‐
servations	showed	that	the	stomata	were	still	open	and	that	leaves	
were	photosynthesizing,	even	when	Ψleaf	<	−2MPa.	The	difference	in	
water	potential	between	leaf	and	stem	is	quite	difficult	to	quantify	
in	nature,	as	it	varies	largely	with	tree‐species,	growth	environment	
and	plant	traits	(Christoffersen	et	al.,	2016;	Nolf	et	al.,	2015).	For	ex‐
ample,	in	tropical	plants,	water	storage	and	plant	atmospheric	water	
absorption	have	been	shown	to	be	effective	in	buffering	diurnal	fluc‐
tuation	 of	 xylem	water	 potential	 (Bartlett,	Detto,	&	 Pacala,	 2019;	
Binks	 et	 al.,	 2019;	Meinzer,	 James,	Goldstein,	&	Woodruff,	 2003).	
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Thus,	 including	Ψleaf	 in	 the	gs	models	 should	be	done	by	consider‐
ing	 a	 more	 comprehensive	 quantification	 of	 the	 entire	 soil‐plant‐ 
atmosphere	continuum	(e.g.	Giardina	et	al.,	2018).

Regardless	of	the	above‐mentioned	limitations,	plant	hydraulics	
models	(e.g.	Sperry	et	al.,	2017;	Wolf,	Anderegg,	&	Pacala,	2016)	that	
rely	 on	 stem	 xylem	 conductivity	 response	 functions	 (as	 Equation	
5)	can	still	provide	a	useful	framework	for	theoretical	simulation	or	
deduction	of	plant	optimal	response	to	soil	and	atmospheric	water	
stress.	 However,	 the	 uncertainty	 associated	 with	 the	Weibull	 pa‐
rameters	(based	on	direct	measurements	of	hydraulic	conductivity),	
the	fact	that	the	optimal	theory	of	stomata	control	might	operate	at	
a	 longer	 timescale	 (e.g.	Buckley,	Sack,	&	Farquhar,	2017;	Lin	et	al.,	
2018),	rather	than	at	the	instantaneous	timescale	as	explored	here,	
as	well	as	that	the	exact	biological	mechanisms	that	contribute	to	the	
hydraulic	cost	(e.g.	damage,	repair	or	loss	of	opportunity)	underlying	
the	optimality	 theory	have	not	yet	been	 identified	or	 readily	mea‐
sured,	further	suggests	that	more	research	is	needed	to	determine	
the	most	appropriate	means	of	incorporating	such	optimal	plant	hy‐
draulics	theory	into	process‐based	gs	models	that	are	integrated	into	
TBMs.

4.2 | Stomatal model choice: D‐type versus RH‐type 
gs models

Although	 D‐type	 models	 have	 been	 increasingly	 advocated	 by	
plant	 physiologists	 (e.g.	 Medlyn	 et	 al.,	 2011;	 Rogers,	 Medlyn,	 
et	al.,	2017),	both	D‐type	versus	RH‐type	models	are	still	widely	
used	in	many	TBMs	(e.g.	Franks	et	al.,	2018;	Knauer	et	al.,	2017).	
Meanwhile,	 in‐situ	gas	exchange	measurements	 from	mature	 tall	
trees	to	examine	the	difference	across	these	two	model	types	are	
rare.	Furthermore,	 in	moist	 tropical	 forests,	 seasonal	variation	 in	
air	temperature	is	small	(e.g.	Figure	S2b),	and	consequently	D and 
RH	are	typically	more	correlated	than	in	other	biomes;	therefore,	
we	 expected	 only	 minor	 differences	 in	 performance	 between	 
D‐	and	RH‐type	models	in	the	tropics.	To	evaluate	the	correlation	
between	 RH‐	 and	D‐type	models,	 we	made	measurements	 over	
full	 diurnal	 cycles	 and	 a	 dry	 season	 in	 a	 particularly	 dry	 El	Niño	
year	(Figure	2),	which	captured	a	wide	range	of	natural	variability	
in RH and D	experienced	in	these	forests.	The	two	D‐type	models	
significantly	 outperformed	 the	 two	RH‐type	models	 both	 across	
and	within	our	dataset	(n	=	15	tree‐species;	Figure	3;	Table	2),	sug‐
gesting	 that	D‐type	models	 should	 be	 used	 for	modeling	 carbon	
and	 water	 fluxes	 in	 tropical	 forest	 ecosystems,	 and	 potentially,	
also	in	many	other	ecosystems,	particularly	those	where	D and RH 
are	not	tightly	correlated,	for	example,	savanna.	The	cross‐model	
comparisons	between	BB	(which	accounts	for	the	RH	effect)	and	
BBK	(which	accounts	for	RH	and	includes	CO2	compensation	point,	
Γ*),	 shows	 that	 including	Γ*	 did	not	 improve	model	performance	
(Figure	3).	Therefore,	the	improved	performance	of	BBL	(which	ac‐
counts	for	D and Γ*	effects)	relative	to	BB	was	primarily	because	
BBL	captures	gs	 response	 to	D,	 consistent	with	 the	 concept	 that	
stomata	respond	directly	to	D	rather	than	to	RH	(Aphalo	&	Jarvis,	
1991;	Eamus	et	al.,	2008).

Our	 results	 also	 show	 that	 the	 two	D‐type	models	 generated	
comparable	model	performance	for	our	dataset,	with	USO	yielding	a	
small	but	significantly	better	model	performance	than	BBL	(Figure	3;	
Figure	S6;	Table	S3).	This	 finding	 is	 consistent	with	 several	 recent	
studies	 both	 relying	 on	 empirical	 observations	 (e.g.	Medlyn	 et	 al.,	
2011)	 and	mathematical	 simulations	 of	 optimal	 stomatal	 behavior	
(e.g.	Wolf	et	al.,	2016)	for	a	range	of	environmental	conditions	(e.g.	
Ca	within	the	range	of	375–425	ppm).	However,	as	Wolf	et	al.	(2016)	
point	out,	due	to	the	fundamental	difference	in	the	forms	of	D re‐
sponse	in	BBL	(~D−1)	and	USO	(~D−1/2),	the	predictions	of	BBL	and	
USO	models	will	differ	when	Ca	exceeds	425	ppm,	which	is	expected	
to	occur	 in	 the	next	one	 to	 two	decades.	Therefore,	we	advocate	
that	USO	should	be	favored	for	modeling	gs	response	to	D,	particu‐
larly	in	TBMs	that	aim	to	capture	the	impact	of	global	change	on	the	
climate	system.

4.3 | Variation in the slope parameter, sources of 
variability, and its impact on gs modeling

We	 observed	 large	 variation	 in	 the	 slope	 parameter	 across	 the	
sampled	 15	 tree‐species.	 Such	 biotic	 slope	 parameter	 variation	
(e.g.	g1	used	 in	USO	varied	 from	1.14	 to	3.58)	 is	present	at	both	
sites	(Figure	5;	Table	2),	and	corresponds	roughly	to	the	range	as‐
signed	to	six	of	10	global	PFTs	in	a	recent	synthesis	using	the	USO	
approach	 (Lin	 et	 al.,	 2015).	 In	 particular,	 our	 observed	 g1 range 
encompasses	 the	g1 value	of	1.84	 for	a	 tropical	 tree	 in	Caxiuana	
National	Forest	Reserve	 in	the	eastern	Amazon	(Lin	et	al.,	2015),	
overlaps	extensively	with	the	g1	(3.00–3.79)	for	three	tropical	tree‐
species	 in	 Australia	 (Lin	 et	 al.,	 2015),	 and	 is	within	 the	 range	 of	
g1	(0.9–6.2)	for	21	tree‐species	surveyed	in	central	tropical	Africa	
(Hasper	et	al.,	2017),	including	canopy	and	understory	trees.	Such	
agreement	with	previous	findings	suggests	that	our	results	could	
be	broadly	applicable	to	other	forests	in	the	tropics.	Additionally,	
we	observed	that	our	g1	range	is	largely	lower	than	an	average	g1 
of	4.23	across	a	set	of	tree	species	sampled	in	a	tropical	forest	in	
French	Guiana.	This	might	be	attributable	to	the	inconsistent	ap‐
proach	 used	 for	 g1	 estimate,	 for	 example,	 only	 one	 g1 value	was	
estimated	for	the	whole	dataset	due	to	insufficient	replication	(Lin	
et	al.,	2015).	In	the	analysis	presented	by	Lin	et	al.	(2015)	they	es‐
timated	a	g1	of	3.77	for	a	generic	tropical	rainforest	PFT,	which	is	
higher	than	our	observed	g1	range	(1.14–3.58).	However,	this	mean	
g1	included	the	high	estimate	from	French	Guiana.	When	excluding	
the	French	Guiana	data‐point,	the	mean	g1	estimate	based	on	Lin	
et	al.	(2015)	is	3.02,	which	is	well	within	our	g1	range.	The	particu‐
larly lower g1	values	(i.e.	all	lower	than	3.77	and	13/15	tree‐species	
lower	 than	3.02)	 observed	 in	 our	 study	 could	 also	 reflect	 an	 ac‐
climation	to	interannual	climate	variability	(e.g.	Reyer	et	al.,	2013),	
for	example,	the	drier	El	Niño	year	experienced	in	our	study,	which	
started	at	the	end	of	2014,	peaked	in	late	2015,	and	ended	in	May	
2016	(Liu	et	al.,	2017).	The	increasing	atmospheric	water	deficit	in	
the	drought	year	could	push	plants	to	evolve	a	more	conservative	
strategy	in	order	to	cope	with	increasing	hydrological	stress	with	
El	Niño	droughts	(Cowan	&	Farquhar,	1977).	Clearly	there	is	a	need	
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for	 a	 deeper	 understanding	 of	 variation	 in	 g1	 in	 tropical	 forests,	
of	particularly	value	would	be	replicated	measurements	that	span	
variation	in	soil	fertility,	climate,	canopy	structure,	and	leaf	phenol‐
ogy	and	morphology.

With	 the	 observed	 large	 inter‐tree‐specific	 variation	 in	 slope	
parameter,	we	further	showed	that	accounting	for	such	biotic	vari‐
ation	led	to	improved	model	estimates	of	gs	(Figure	3).	This	finding	
is	 consistent	with	previous	work,	which	 illustrated	 the	diversity	 in	
stomatal	slope	is	integral	to	modelling	plant	water	fluxes	(Wolz	et	al.,	
2017).	Our	results	did	not	show	that	accounting	for	the	abiotic	(e.g.	
month,	site‐month	interaction)	effects	of	slope	parameter	variation	
improved	D‐type	gs	modeling	(Figure	3).	However,	we	observed	that	
variation	in	the	slope	parameter	induced	by	the	tree‐species‐month	
interaction	was	the	second	most	important	factor	for	improving	gs 
modeling	of	 the	 full	dataset.	This	may	 reflect	differential	drought‐
induced	 acclimation	 of	 the	 slope	 parameter	 across	 tree‐species	
as	 reported	previously	 (e.g.	Heroult	 et	 al.,	 2013;	Zhou,	Medlyn,	&	
Prentice,	2015).	Furthermore,	we	controlled	for	 leaf	age	in	our	ex‐
perimental	design	but	 it	 is	clear	that	accounting	for	potential	phe‐
nological	 variation	 in	 the	 slope	 parameter	 at	 the	 longer	 timescale	
will	be	critical	 to	more	accurately	represent	the	seasonal	variation	
in	 canopy	 fluxes	 and	 the	modeling	 of	 gs	 under	 natural	 conditions	
(Albert	et	al.,	2018)	and	warrants	further	exploration.

We	did	not	find	that	month‐associated	 (i.e.	month‐specific	and	
site‐month‐specific)	slope	parameter	variation	was	important	for	gs 
modeling,	particularly	for	D‐type	models.	This	suggests	that	D‐type	
gs	models	are	able	to	accurately	represent	gs	 response	to	seasonal	
environmental	 variability.	 Further	 extension	 of	 our	 leaf‐level	 find‐
ings	 to	 interpret	 ecosystem‐scale	 transpiration	 seasonality	 would	
require	 the	 understanding	 of	 leaf	 phenology	 and	 forest	 compo‐
sition,	 in	 particular	 how	 the	 slope	parameter	 varies	with	different	
phenophases,	including	leaf	age	(as	discussed	above)	and	leaf	habits	
(evergreen	vs.	deciduous	trees;	Bohlman,	2010),	as	well	as	the	sea‐
sonal	and	 interannual	variation	 in	these	phenophases	 (e.g.	Detteo,	
Wright,	 Calderón,	&	Muller‐Landau,	 2018;	 Lopes	 et	 al.,	 2016;	Wu	 
et	al.,	2018).

4.4 | Plant trait relationships with the inter‐tree‐
specific slope parameter

Our	 results	 show	 that	 LMA	was	 highly	 correlated	 with	 the	 inter‐
tree‐specific	slope	parameter	for	all	four	gs	models	(Figure	5;	Figures	
S7–S9).	The	five	other	traits	we	investigated	showed	weak	or	no	cor‐
relation	with	the	slope	parameter.	Wood	density	has	recently	been	
shown	 to	have	 a	 significant	 relationship	with	 the	 slope	parameter	
at	 the	global	 scale	 (Lin	et	 al.,	 2015),	 but	was	not	 significantly	 cor‐
related	with	the	slope	parameter	in	this	study.	It	is	possible	that	over	
a	 narrower	 geographic	 range	with	 less	 variability	 in	wood	density	
(the	range	of	wood	density	is	0.34–0.75	in	this	study	vs.	0.35–1.1	in	
Lin	et	al.,	2015)	the	relationship	may	not	hold.	We	hypothesized	that	
Vc,max25	may	have	a	negative	relationship	with	the	slope	parameter	
because	as	the	slope	parameter	decreases,	water	use	efficiency	rises	
and	the	effective	Ci/Ca	 in	a	low	slope	parameter	tree‐species	(with	

a lower gs	for	a	given	A)	might	require	a	higher	Vc,max25	 in	order	to	
maintain	the	same	A	compared	with	plant	with	a	larger	value	of	the	
slope	parameter.	The	lack	of	a	relationship	may	imply	that	it	will	be	
important	to	consider	the	role	of	mesophyll	conductance,	especially	
for	model	 applications	 (Sun	et	 al.,	 2014).	We	also	 anticipated	 that	
measurements	of	leaf	hydrological	traits,	that	is,	leaf	water	content,	
degree	of	 isohydry	and	pre‐dawn	Ψleaf,	may	have	correlations	with	
the	slope	parameter,	given	the	link	between	these	parameters	and	
model	 formulations	 that	 include	 hydraulic	 limitations	 (e.g.	 Rogers,	
Medlyn,	et	al.,	2017;	Tuzet,	Perrier,	&	Luening,	2003;	Williams	et	al.,	
1996).	The	lack	of	a	correlation	in	this	study	suggests	that	Ψleaf,	which	
changes	markedly	during	the	day,	may	not	share	a	clear	mechanistic	
link	to	the	slope	parameter,	which	likely	acclimates	to	the	environ‐
ment	over	much	longer	timescales.

The	underlying	reason	for	the	observed	slope	parameter–LMA	
relationship	 might	 be	 that	 LMA	 is	 subject	 to	 hydrological	 con‐
straints	(Cavaleri,	Oberbauer,	Clark,	Clark,	&	Ryan,	2010),	and	re‐
sults	from	a	long‐term	evolutionary	tradeoff	between	carbon	gain	
and	water	 loss	 (Terashima,	Miyazawa,	&	Hanba,	 2001).	As	 such,	
thicker	leaves	(with	higher	LMA)	are	more	resistant	to	water	loss,	
resulting	 in	 a	 higher	 intrinsic	 water	 use	 efficiency	 (and	 a	 lower	
slope	 parameter;	 Figure	 1).	 Consequently,	 a	 negative	 slope	 pa‐
rameter–LMA	 relationship	was	 observed	 in	 this	 study.	 Likewise,	
higher	LMA	enables	leaf	temperature	to	remain	nearer	to	the	pho‐
tosynthetic	optimum	under	conditions	of	varying	air	temperature	
(Michaletz	 et	 al.,	 2015,	 2016),	 again	 maximizing	 water	 use	 effi‐
ciency	and	promoting	a	negative	slope	parameter–LMA	relation‐
ship.	Furthermore,	 leaves	with	higher	LMA	generally	have	 lower	
mesophyll	conductance	 (Niinemets,	Díaz‐Espejo,	Flexas,	Galmés,	
&	Warren,	 2009),	 which	 could	 increase	 photosynthesis	 without	
excessive	water	cost.	Consequently,	photosynthesis	of	high	LMA	
tree‐species	might	be	less	sensitive	to	stomatal	conductance,	re‐
sulting	in	a	lower	slope	parameter	value.	Although	these	previous	
studies	 provide	 some	 explanation	 of	 the	 observed	 slope	 param‐
eter–LMA	 relationship,	 elucidation	 of	 the	mechanism	underlying	
this	 relationship	 is	 still	 required.	 In	 addition,	 the	 LMA–slope	pa‐
rameter	 relationship	 presented	 in	 this	 study	 is	 based	 on	 upper	
canopy	 leaf	 samples	 of	 only	 15	 evergreen	 canopy	 tree‐species.	
Therefore,	whether	 the	 relationship	can	be	extended	to	broader	
scenarios,	 for	 example,	 across	 vertical	 canopy	profiles,	 different	
tropical	forests,	variation	in	leaf	age	and	soil	moisture	content,	is	
pending	further	examination.

The	finding	that	LMA	correlates	with	the	slope	parameter	 is	en‐
couraging,	as	LMA	is	an	easy‐to‐measure	leaf	trait	that	is	widely	used	
in	 the	 plant	 ecology	 community	 and	well	 represented	 in	 plant	 trait	
databases;	 for	example,	 the	TRY	database	has	LMA	entries	 for	over	
10,000	 species	 (Díaz	 et	 al.,	 2016).	Our	observation	 suggests	 that	 it	
might	be	possible	for	next	generation	TBMs	to	implement	trait‐based	
parameterization	of	the	slope	parameter	following	the	approach	used	
for	other	trait‐based	modeling	components	(e.g.	photosynthesis,	phe‐
nology	 and	 plant	 hydraulics)	 already	 explored	 in	 TBMs	 (e.g.	 Fisher	 
et	al.,	2015;	Franks	et	al.,	2018;	Xu	et	al.,	2016)	and	thereby	improve	
representation	of	carbon	and	water	dynamics	in	tropical	ecosystems.	
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Additionally,	 recent	work	on	 spectroscopic	 remote	 sensing	 suggests	
that	 it	 is	 feasible	 to	 remotely	 estimate	 LMA	at	 the	 leaf	 and	 canopy	
scales	(Asner	et	al.,	2011;	Serbin,	Singh,	McNeil,	Kingdon,	&	Townsend,	
2014;	 Singh,	 Serbin,	 McNeil,	 Kingdon,	 &	 Townsend,	 2015),	 and	 as	
such,	if	this	LMA–stomatal	slope	relationship	holds	it	may	be	possible	
to	derive	 large‐scale	estimates	of	 the	 slope	parameter	 across	 space	
and	time	using	the	suite	of	current	and	planned	remote	sensing	sys‐
tems	(Stavros	et	al.,	2017).
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