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Summary

� Satellite observations of Amazon forests show seasonal and interannual variations, but the

underlying biological processes remain debated.
� Here we combined radiative transfer models (RTMs) with field observations of Amazon

forest leaf and canopy characteristics to test three hypotheses for satellite-observed canopy

reflectance seasonality: seasonal changes in leaf area index, in canopy-surface leafless crown

fraction and/or in leaf demography.
� Canopy RTMs (PROSAIL and FLiES), driven by these three factors combined, simulated

satellite-observed seasonal patterns well, explaining c. 70% of the variability in a key

reflectance-based vegetation index (MAIAC EVI, which removes artifacts that would other-

wise arise from clouds/aerosols and sun–sensor geometry). Leaf area index, leafless crown

fraction and leaf demography independently accounted for 1, 33 and 66% of FLiES-simulated

EVI seasonality, respectively. These factors also strongly influenced modeled near-infrared

(NIR) reflectance, explaining why both modeled and observed EVI, which is especially sensi-

tive to NIR, captures canopy seasonal dynamics well.
� Our improved analysis of canopy-scale biophysics rules out satellite artifacts as significant

causes of satellite-observed seasonal patterns at this site, implying that aggregated phenology

explains the larger scale remotely observed patterns. This work significantly reconciles current

controversies about satellite-detected Amazon phenology, and improves our use of satellite

observations to study climate–phenology relationships in the tropics.

Introduction

A fundamental unanswered question for global change ecology is
the degree to which tropical forests are vulnerable to climate
change. Increasingly, satellite remote sensing is being used to
tackle this question by investigating how forests respond to cli-
matic variations at multiple spatial and temporal scales (Saleska
et al., 2007; Xu et al., 2011; Lee et al., 2013; Saatchi et al., 2013;
Hilker et al., 2014; Zhou et al., 2014; Guan et al., 2015). Many
remote sensing products – such as the moderate-resolution imag-
ing spectroradiometer (MODIS) vegetation indices (VIs), which
are spectral transformations of two or more reflectance bands –
provide estimates of canopy greenness. These products are com-
posite indices of both leaf biochemistry (leaf cellular structure,

Chl content and biochemical composition) and canopy structure
(leaf area, crown geometry, leaf demography) (Huete et al., 2002;
Doughty & Goulden, 2008; Brando et al., 2010; Lopes et al.,
2016; Wu et al., 2016, 2017). If accurate, they can reveal impor-
tant mechanisms regulating the response of tropical forests to sea-
sonal and interannual climatic variability, the same mechanisms
which we rely on to validate and improve Earth system model
simulations.

However, several key issues remain in the understanding and
biophysical interpretation of satellite remote sensing. Recent
studies of satellite observations of Amazon phenology show a sig-
nificant seasonality in tropical evergreen forests (e.g. Jones et al.,
2014; Bi et al., 2015; Maeda et al., 2016; Saleska et al., 2016).
However, seasonal variation in leaf optical characteristics
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(Roberts et al., 1998; Toomey et al., 2009; Chavana-Bryant et al.,
2017; Wu et al., 2017), canopy leaf area index (Brando et al.,
2010; Samanta et al., 2012b), canopy leaf demography (Doughty
& Goulden, 2008; Brando et al., 2010; Lopes et al., 2016) and
canopy structure (Anderson et al., 2010; Tang & Dubayah,
2017) may complicate the biophysical interpretation of true
canopy reflectance seasonality. Furthermore, some studies suggest
that some standardized MODIS products (e.g. enhanced vegeta-
tion index, or EVI), which are processed to provide a coherent
data product across space and time, may still be sensitive to sea-
sonally varying artifacts – particularly atmospheric cloud/aerosol
contamination (Samanta et al., 2010, 2012a), or sun–sensor
geometry (Galvao et al., 2011; Morton et al., 2014) – that may
confound a sensor’s ability to accurately capture the real phenol-
ogy and functional response of tropical forests to climate variabil-
ity. To help untangle these confounding factors we need a
complementary bottom-up approach that considers physically
based canopy radiative transfer models (RTMs) and upscales
observable leaf- and canopy-level properties.

Canopy RTMs, such as PROSAIL (Baret et al., 1992; Jacque-
moud et al., 2009), GEOSAIL (Huemmrich, 2001; Ustin et al.,
2012) and forest light environmental simulator (FLiES;
Kobayashi & Iwabuchi, 2008; Kobayashi et al., 2012), which
encompass the interactive effects of surface optical elements (leaf,
bark, litter and soil) and canopy structural properties within a
forest community, sun–sensor geometry and atmospheric radia-
tion condition, can potentially be used to differentiate the roles
of biophysical processes from potential artifacts in canopy-scale
reflectance and greenness seasonality. These modeling
approaches, parameterized by field-observed leaf and canopy
properties, have been assessed previously across diverse ecosys-
tems (e.g. boreal, temperate and agricultural), showing good
agreements between models and observations (e.g. Verhoef &
Bach, 2003; Koetz et al., 2007; Kobayashi et al., 2012; Schneider
et al., 2014). However, these modeling approaches have rarely
been applied and tested in tropical evergreen forests over seasonal
timescales. Previous studies have investigated the sensitivity of
remote sensing to certain biological effects (e.g. Toomey et al.,
2009; Morton et al., 2014, 2016), or focused on retrieval of
important biophysical variables (e.g. Chl concentration, Hilker
et al., 2017), but few studies have integrated field observations
with RTMs to comprehensively assess the contributions of com-
peting biological processes to the aggregated canopy-scale
reflectance and greenness seasonality.

Here we use canopy RTMs to connect field-observed leaf and
canopy characteristics with satellite remote sensing to mechanisti-
cally interpret canopy-scale reflectance and greenness seasonality
in Amazonian evergreen forests. Specifically, we examine three
phenological factors that could drive seasonality in satellite-
observed tropical forest canopy reflectance, including (1) the leaf
area index (LAI) effect, that is, the change in reflectance due to
the seasonality of LAI and light-scattering by multi-leaf-layer
(Verhoef, 1984; Samanta et al., 2012b), (2) the leafless crown
fraction effect, that is, the change in reflectance due to seasonal
change in whole-canopy optical properties, specifically the frac-
tion of leafless crowns, which is strongly negatively correlated

with LAI seasonality (e.g. Lopes et al., 2016), and (3) the leaf
demography effect, that is, the change in reflectance due to the
seasonality of leaf age distributions, as leaf reflectance and trans-
mittance show strong dependence on leaf age (e.g. Roberts et al.,
1998; Wu et al., 2017).

We used two canopy RTMs, PROSAIL and FLiES. Their
main difference lies in FLiES being a three-dimensional (3-D)
canopy RTM, allowing for more sophisticated and realistic repre-
sentation of canopy structure, relative to PROSAIL, a 1-D
canopy RTM. Comparison of the two models permits an assess-
ment of the more realistic 3-D canopy structure on canopy-scale
reflectance and greenness seasonality.

To assess these phenology-related effects and to compare
PROSAIL and FLiES, we used field-observed leaf and canopy
characteristics collected over the annual cycle in a central–east-
ern Amazonian evergreen forest. These characteristics include
monthly LAI and litterfall of a 1 ha control plot (Brando et al.,
2010); monthly leafless crown fraction of the upper canopy
derived from a tower-camera (Wu et al., 2016); field-observed
leaf reflectance spectra at different leaf ages (Wu et al., 2017);
and an airborne LiDAR survey of 3-D canopy structure (Stark
et al., 2012, 2015; Hunter et al., 2015). PROSAIL and FLiES
were parameterized and driven by the above three phenological
factors separately and in combination to assess the relative con-
tribution of each factor responsible for canopy-scale reflectance
and greenness seasonality. Specifically, we posed two questions:
When driven by all three phenological factors (i.e. LAI, leafless
crown fraction and leaf demography), can PROSAIL and
FLiES capture tropical forest canopy reflectance seasonality?
What is the relative contribution of each phenological factor
towards explaining canopy-scale reflectance seasonality? By
answering these questions, we provide a benchmark for scaling
leaf and canopy characteristics to landscapes and for broad
application across multiple sites, and ultimately increase our
understanding of fundamental biophysical processes that regu-
late tropical canopy reflectance seasonality, enabling more accu-
rate use of existing and future remote sensing platforms in the
tropics.

Materials and Methods

Satellite observations

We used satellite observations targeted at the k67 tower site
where ground observations were made. The k67 site (54°580W,
2°510S) is located in the Tapaj�os National Forest, near Santar�em,
Par�a, Brazil. It is an evergreen tropical forest on a well-drained
clay-soil plateau (Rice et al., 2004), with a mean upper canopy
height of c. 40 m (Hutyra et al., 2007). Mean annual precipita-
tion is c. 2000 mm yr�1 with a 5-month dry season when evapo-
transpiration exceeds precipitation from approximately mid-July
to mid-December (Restrepo-Coupe et al., 2013).

Two kinds of satellite observations were used to evaluate RTM
performance, namely a WorldView-2 (WV-2) image and two
versions of the collection six time-series MODIS land surface
reflectance and VI products.
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The WV-2 image was acquired on 28 July 2011 (Supporting
Information Fig. S1). The image has 2 m spatial resolution, 2°
off-nadir view, 42° solar zenith angle and 2.6% cloud cover. It
includes eight spectral bands (see Table S1 and Fig. S2 for spec-
tral response functions). For details on data availability, image
pre-processing, atmospheric correction and reflectance calcula-
tion refer to Methods S1 and Meng et al. (2017). Based on our
knowledge of the study site and vegetation spectroscopy, we used
a true-color RGB composite to visually identify three
phenophases for fully illuminated upper-canopy crowns within
the 19 1 km2 footprint surrounding the k67 site. These were
young (bright green in color), old (dark green) and leafless
(largely occupied by bare branches) (Fig. S1d). Thirty crowns of
each phenophase were selected, totaling at least 300 pixels per
phenophase, to derive landscape average reflectance. We subse-
quently used the derived phenophase-specific canopy reflectance
to validate the RTMs.

We primarily used the collection six MODIS Multi-Angle
Implementation of Atmospheric Correction product (MAIAC;
Lyapustin et al., 2012) for years 2000–2014 to investigate
remotely sensed vegetation seasonality. For details on data acqui-
sition, processing and quality control refer to Methods S2.
MAIAC incorporates a new bidirectional reflectance distribution
(BRDF; corrected to nadir view and 45° solar zenith angle) and
strict atmospheric corrections for clouds and aerosols (Lyapustin
et al., 2012). It includes four MODIS bands (blue, green, red
and near-infrared (NIR); see Spectral response functions in
Fig. S2) and associated VIs (i.e. normalized difference vegetation
index (NDVI) and EVI; see Table S2 for equations). Here we
focus on the MAIAC data because the data have become com-
monly used for phenology monitoring in the tropics, with several
empirical validations from site-level phenology data (Lopes et al.,
2016; Wagner et al., 2016; Wu et al., 2016), eddy covariance
data (Jones et al., 2014; Guan et al., 2015; Saleska et al., 2016),
and satellite data of other sources (Maeda et al., 2016) and alter-
native approaches (Bi et al., 2015; Saleska et al., 2016). We
expect that the multi-year (2000–2014) average annual cycle of
monthly BRDF-corrected MAIAC data with robust removal of
cloud/aerosols can be used as a benchmark to assess the integrated
phenology effects (i.e. the three phenological factors above) on
modeled canopy reflectance seasonality. We also tested the
robustness of the MAIAC results through retrievals of different
target areas (39 3 km2 and 59 5 km2) and through comparisons
with an alternative MODIS product, the BRDF and Albedo pro-
duct (MCD43A1; Wang et al., 2015). We analyzed the
MCD43A1 product (59 5 km2) for the same sun–sensor geome-
try as MAIAC and two levels of quality control flags (QA3 and
QA5; Methods S2). The results (Figs S3, S4) indicate that the
relative seasonality of MAIAC data of 59 5 km2 is very robust,
especially in the most critical products, NIR and EVI. We
observed some differences in the visible bands between the
MAIAC and MCD43A1 products (Fig. S4), presumably due to
corresponding differences in associated atmospheric corrections.
These differences, however, did not greatly affect the overall sea-
sonality in EVI, which was dominated by NIR and is the main
focus of the study.

Ground observations

To parameterize canopy RTMs and to assess the relative contri-
bution of the three phenological factors to canopy-scale
reflectance seasonality, we used several field observations at the
k67 site, including measurements of tissue optics (i.e. leaves,
bark and litter) and canopy characteristics (i.e. phenology and
structure).

Tissue optics Reflectance spectra of leaves, bark and litter were
measured using a portable spectrometer (ASD FieldSpec Pro;
Analytical Spectra Devices, ASD Inc., Boulder, CO, USA;
spectral range: 350–2500 nm; spectral resolution: 3 nm at
350–1000 nm and 8 nm at 1000–2500 nm). Spectral data were
interpolated to 1 nm before analysis using the default ASD out-
put. For each tree, we obtained spectra of leaves at young
(≤ 2 months), mature (3–5 months) and old (6–14 months) age
classes (Wu et al., 2017). Seven tree species with all three leaf age
classes were used (see Tables S3 and S4 for species identification
and number of leaf replicate): four species were from the upper
canopy (accounting for 22.2% of the local basal area), and the
other three species were from the 20–30 m mid-canopy stratum.
Leaves were sampled to represent three incident canopy light
conditions: upper canopy sunlit, upper canopy shaded and
mid-canopy shaded. For details on this dataset (Fig. 1a) and the
protocols used for spectral measurements and leaf age classifica-
tion see Wu et al. (2017). Bark reflectance spectra were measured
in 2002 by T.M. Bark samples were harvested from 13 canopy
trees at c. 1.3 m above the ground (see Table S5 for species identi-
fication). These samples were kept in sealed plastic bags in a cool-
box, and reflectance measurements (Fig. 1b) were made within
24 h of sampling. The litter spectra (Fig. 1b) were measured in
March 2014, by randomly collecting 40 leaf litters over various
locations across the forest floor. Reflectance measurements were
made within 1 h after sampling.

Together with reflectance, leaf transmittance regulates the leaf
single scattering albedo and is an important component of
canopy RTMs and process models (Sellers et al., 1997; Pinty
et al., 2004). However, acquiring accurate and reproducible mea-
surements of leaf transmittance is challenging, primarily due to
limitations inherent to integrating sphere instrumentation (Shik-
lomanov et al., 2016). Instead, we estimated leaf transmittance
(Fig. 1c) and subsequent absorptance (Fig. 1d) by inverting the
leaf reflectance model PROSPECT (Jacquemoud & Baret, 1990;
Feret et al., 2008) after it was optimized to closely match the
field-observed leaf reflectance. Shiklomanov et al. (2016) showed
that PROSPECT-inverted leaf transmittance is highly consistent
with values obtained with an integrating sphere for fresh leaves.
As a check, we compared our estimated transmittance against a
set of independent measurements made in 2002 by T.M. (see
Methods S3 for more details). Similar to Shiklomanov et al.
(2016), we found strong agreements between measured and
modeled transmittance, in terms of both mean values and stan-
dard deviation (Fig. S5a). Furthermore, similar trends across
leaves of multiple species were found for field-observed leaf NIR
reflectance and transmittance and for field-observed NIR
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reflectance and PROSPECT-inverted NIR transmittance
(Fig. S5b), except that modeled transmittance was biased low
in Manikara huberi leaves with high NIR reflectance (> 0.6).
This might be because M. huberi has thick, waxy leaves which
are not currently well represented/constrained in PROSPECT,
but a more in-depth understanding is still needed. The age-
dependent leaf reflectance, transmittance and absorptance for
each of all 11 tree–canopy light conditions (i.e. four canopy
sunlit, four canopy shaded and three mid-canopy shaded) are
shown in Fig. S6.

Canopy characteristics (phenology and structure) Three com-
ponents of canopy phenology were available at the k67 site.
These were, first, the mean annual cycle of monthly field-derived
LAI (or LAI_field) obtained with the LAI-2000 instrument at
ground level (January 2000–December 2005). See Brando et al.
(2010, fig. 4) and Fig. 2(a) for more details. Second, we used the
mean annual cycle of monthly leafless crown fraction (1 minus
the green crown fraction; Fig. 2a) from tower-mounted camera
image timeseries (January 2010–December 2011). The timeseries
of the green crown fraction was derived using a camera-based tree
inventory approach, and see Wu et al. (2016, fig. S8) for more
details. Third, we used leaf age fractions in three age classes
(Fig. 2b): young (≤ 2 months), mature (3–5 months) and old
(≥ 6 months). These were derived from a leaf age demography
model described by Wu et al. (2016).

Canopy structure was derived from an August 2012 airborne
LiDAR survey at k67 (Hunter et al., 2015). Details of the LiDAR
sensor and airborne survey are given by Stark et al. (2012, 2015).

We estimated canopy area density (CAD) in 3-D canopy voxels
with a 29 29 2 m3 grain, following approaches developed by
Stark et al. (2012, 2015). For details on how we derived 3-D
voxel data from the LiDAR survey refer to Methods S4. Addi-
tionally, a constant was adjusted to set the vertically integrated
landscape-average LiDAR canopy area to match empirical esti-
mates from LAI_field (Fig. 2a) and to extend one-time LiDAR-
derived 3-D canopy structure to the seasonal scale (see Methods
S5). The LiDAR-derived 3-D canopy structure is shown in
Fig. S7, and the landscape average canopy height–CAD relation-
ship is shown in Fig. 2(c).

Canopy radiative transfer models

The two canopy RTMs used are PROSAIL and FLiES. The
former has the advantage of being simple and less computation-
ally demanding, while FLiES uses more realistic 3-D canopy
structure, in this case derived from airborne LiDAR. Here, we
parameterized the two models (see Methods S5) to explore
whether the relative contributions of the three phenological
factors to canopy reflectance seasonality are consistent between
the two, and to assess the impact of using a more realistic 3-D
canopy structure on modeled canopy reflectance by cross-model
comparisons.

PROSAIL

PROSAIL (Jacquemoud et al., 2009) is a combination of the
PROSPECT leaf optical properties model (Jacquemoud &

(a) (b)

(c) (d)

Fig. 1 Plant tissue optics at the k67 site: (a) field observed leaf reflectance of three age classes, young (n = 11 tree–canopy light conditions, see Supporting
Information Table S3; ≤ 2months, blue), mature (n = 11; 3–5months, green) and old (n = 11; 6–14months, red); (b) field observed bark reflectance at
1.3m above the ground (n = 13 tree species, see Table S5; black) and litter reflectance (n = 40 tree species, see the Materials and Methods section;
orange); (c) PROSPECT model inverted leaf transmittance of three age classes (n = 11 tree–canopy light conditions; see the Materials and Methods
section); and (d) modeled leaf absorptance of three age classes (absorptance = 1� reflectance-transmittance; n = 11 tree–canopy light conditions). Color
lines for the mean; shading for � 1 SD.
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Baret, 1990) and the SAIL canopy bidirectional reflectance
model (Verhoef, 1984, 1985). Details of PROSPECT and
SAIL are shown in Methods S6. Coupling of PROSPECT and
SAIL as implemented in PROSAIL allows simulation of the
joint effect of leaf biochemistry (morphological and chemical
parameters), canopy characteristics (LAI and crown geometry),
sun–sensor geometry (sun angle and sensor angle) and clear/
diffuse sky on canopy-scale reflectance. We used MATLAB
version PROSAIL_5B_Matlab, available at http://teledetection.
ipgp.jussieu.fr/prosail/.

FLiES

FLiES consists of a 1-D atmospheric RTM and a 3-D canopy
RTM, based on the Monte Carlo ray tracing method (Kobayashi
et al., 2012). The original FLiES model (e.g. Kobayashi &
Iwabuchi, 2008) used geometric objects such as cone, cylinder
and spheroid to delineate individual tree structure. Here we
extended FLiES for LiDAR-based voxel representation of 3-D
canopy structure, which enables a more realistic depiction of
forest canopies. Each voxel contains leaf and woody elements,
parameterized by using the LiDAR-derived 3-D canopy area,
with 89% assigned to leaf elements and 11% assigned to woody
elements, following a recent field survey in a Costa Rican tropical
evergreen forest (Olivas et al., 2013). Voxel grains of 29
29 2 m3, representing a 3-D forest landscape of 6009 600 m2

surrounding the k67 site (Fig. S7), were used for FLiES simula-
tions. Additionally, shoot-scale clumping, a metric quantifying
foliage clumping within a shoot (Chen et al., 1997), is an impor-
tant parameter in FLiES (Kobayashi et al., 2012). It increases
with increasing clumping, and was set equal to 1 (or no shoot-
scale clumping) for the default model simulations. The FLiES
code in Fortran and the voxelized data for the k67 site are avail-
able from the authors upon request.

Model experiments

We used PROSAIL and FLiES as our main tools (see Method S5
for more details), which were set to the same sun–sensor geome-
try as MAIAC, and performed a suite of model experiments to
assess the relative contributions of the three phenological factors
(P) on canopy-scale reflectance seasonality. Details are shown as
below:

(P1) assess the LAI effect due to light-scattering by multi-leaf
layers. The models were run under different monthly LAI_-
field (Fig. 2a) for PROSAIL and the interpolated LiDAR 3-D
canopy structure for FLiES (Method S5), with fixed tissue
optics (i.e. annual mean leaf demography-weighted leaf
reflectance and transmittance, and multi-species average bark/
litter reflectances).
(P2) assess the leafless crown fraction effect due to the distinct
canopy reflectance characteristics of leafless and green canopy
phenophases. This is described as:

Rcanopy;t ¼ ð1� fleafless;tÞ � Rgreen þ fleafless;t � Rleafless Eqn 1

where Rcanopy,t is canopy-scale reflectance at given month t,
Rgreen and Rleafless are modeled canopy-scale reflectance for
green and leafless phenophases, respectively, and fleafless,t is the
tower camera-derived leafless crown fraction at month t
(Fig. 2a). Rgreen was modeled under fixed LAI_field (i.e. annual
mean LAI_field) for PROSAIL and the corresponding LiDAR
canopy structure for FLiES, and fixed tissue optics (annual
mean leaf demography-weighted leaf reflectance and transmit-
tance, and multi-species average bark/litter reflectances). Rleafless
was modeled under the same fixed LAI and multi-species aver-
age bark/litter reflectances, while leaf optics were set equal to

(a)

(b)

(c)

Fig. 2 Field derived canopy-scale phenological and structural indices at the
k67 site: (a) ground measurements of mean annual cycle of leaf area index
(LAI; monthly measurements from January 2000 to December 2005;
green squares) and tower-camera-derived mean seasonality of leafless
crown fraction (daily measurements from January 2010 to December
2011, adapted fromWu et al., 2016; and see the Materials and Methods
section; black circles); (b) field-estimated seasonality of leaf age fraction
for three leaf age classes (adapted fromWu et al., 2016: Fig. 3a), using a
leaf demography model as in Wu et al. (2016), constrained to sum to total
ground-observed LAI (green squares in a), with young (1–2months, blue),
mature (3–5months, green) and old (≥ 6months, red); and (c) a 2012
airborne LiDAR-estimated and gap-filled mean canopy area density (i.e.
the sum of leaf and woody area density, which were assumed as a
constant fraction, 0.89, for leaves; m2 m�3) along the entire vertical
canopy profile. Error bars in (a) indicate � 1 SD; shadings in (a, b) indicate
the dry season; shading in (c) indicates 95% confidence interval on the
mean of gap-filled data.
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bark optics (field-observed bark reflectance and bark transmit-
tance = 0).

(P3) assess the leaf age effect through seasonally varying leaf
demographics by scaling the age-dependence of leaf optics to
the canopy. We described this as:

Rcanopy;t ¼ fY;t � RY þ fM;t � RM þ fO;t � RO Eqn 2

where RY, RM and RO are modeled canopy-scale reflectance of
young, mature and old phenophases, respectively, and fY,t, fM,t

and fO,t are their relative abundances at month t (Fig. 2b). RY,
RM and RO were again modeled under fixed annual average LAI_-
field for PROSAIL and the corresponding LiDAR canopy struc-
ture for FLiES, multi-species average bark/litter reflectances and
age-dependence of leaf reflectance and transmittance.

(P1 + P2 + P3) assess the joint effects of the three phenological
factors (i.e. P1–P3) on canopy reflectance seasonality. We
described this as:

Rcanopy;t ¼ ð1� fleafless;tÞ � Rgreen;t þ fleafless;t � Rleafless;t Eqn 3

Rgreen;t ¼ fY;t � RY;t þ fM;t � RM;t þ fO;t � RO;t Eqn 4

where Rgreen,t and Rleafless,t are modeled canopy reflectance at
month t for green and leafless phenophases, respectively. RY,t ,
RM,t and RO,t were modeled under seasonally varying LAI_field
for PROSAIL and the interpolated LiDAR 3-D canopy structure
for FLiES, age-specific leaf reflectance and transmittance, and
multi-species average bark/litter reflectances.

We performed the above model experiments parametrized by
the leaf optics from each of the 11 tree–canopy light conditions
(Fig. S6), and the mean and SD of the total 11 modeling runs
were calculated for the final analysis (see Method S5). To assess
the relative importance of three phenological factors (i.e. P1–P3)
on the ‘comprehensive’ model (i.e. P1 + P2 + P3) results, we used
a relative importance of regressors in R (package RELAIMPO, using
the method called ‘betasq’), following the approach of Gr€omping
(2015).

Note that the interaction term, or the scattering between green
and leafless crowns, or among crowns dominated by different
canopy phenophases (i.e. young, mature, old and leafless), was
not considered in this study. At nadir view angle (i.e. WV-2 and
MAIAC data), this interaction term might be a second-order
effect in controlling canopy-scale reflectance seasonality, com-
pared with the three phenological factors already explored here;
future analysis is needed to fully understand such interaction
terms, which is beyond the scope of the current paper.

Results

Age-dependence of leaf optics

Despite marked variation in leaf optical properties across all 11
tree–canopy light conditions, within each tree–canopy light con-
dition, field-measured leaf reflectance and PROSPECT-inverted
leaf transmittance and absorptance show a strong dependence on

leaf ages (Figs 1, S6, S8). The mean visible (400–700 nm)
reflectance shows a continuous decline with leaf age, from 0.08
in young leaves to 0.05 and 0.04 in mature and old leaves, respec-
tively (Fig. 1a). The mean NIR (700–1100 nm) and shortwave
infrared (SWIR) (1100–2500 nm) reflectance initially increase
with leaf ages from 0.44 (NIR) and 0.19 (SWIR) in young leaves,
and then reach a peak at 0.46 and 0.22 after full leaf expansion
(Fig. 1a). By contrast, the mean values of visible, NIR and SWIR
transmittance all decline with leaf ages (Fig. 1c), from 0.10 (visi-
ble), 0.47 (NIR) and 0.26 (SWIR) in young leaves, to 0.03, 0.39
and 0.22 in mature leaves, and 0.01, 0.36 and 0.21 in old leaves.
Our derived leaf absorptance (=1� reflectance-transmittance)
also shows a strong age-dependence, and the mean values of leaf
absorptance continuously increase with leaf ages throughout the
full spectral range (Fig. 1d).

Phenophase effects on canopy reflectance

We used PROSAIL and FLiES, together with observations from
the WV-2 image, to explore the phenophase effects (i.e. young,
mature, old and leafless) on canopy reflectance. Our results show
that canopy reflectance varies in concert with canopy
phenophases with a fixed LAI (i.e. LAI_field = 5 m2 m�2; Fig. 3)
and depends strongly on the combined variation in LAI and
phenophases (Figs S9, S10). Specifically, canopy visible
reflectance, although typically being of low magnitude (< 0.1),
shows strong dependence on canopy phenophases, with the
young phenophase displaying a much higher value than that of
either mature or old phenophases. The leafless phenophase has a
similar mean visible reflectance to that of the young phenophase.
Canopy NIR reflectance shows a much broader magnitude of
variation (> 0.2) across all phenophases, and displays a continu-
ous decline from young to old, with minimum value at the leaf-
less stage. Such phenophase effects on canopy reflectance are
consistent across the two models (Fig. 3a,b for PROSAIL and
Fig. 3c for FLiES), although PROSAIL results show consistently
higher intra-phenophase variability than FLiES. Additionally, we
performed a sensitivity analysis (with and without the thick-
leaved speciesM. huberi, which has bias in modeled leaf transmit-
tance), and our results show that the observed phenophase effects
on canopy reflectance are also consistent (Fig. S11). Finally, both
PROSAIL and FLiES show similar phenophase effects on canopy
reflectance compared with the WV-2 observations (Fig. 3d), sug-
gesting that the two RTMs can reproduce similar phenophase
effects to observations.

Phenology effects on canopy reflectance seasonality

We used PROSAIL and FLiES to explore how including model
representation of three phenological factors influences modeled
canopy-scale reflectance seasonality, as evaluated against the
MAIAC data. The seasonal pattern of MAIAC NIR and EVI
shows an initial decline in the late wet season and then an increase
in the dry season (Fig. 4). Our results show that the models driven
by all three phenological factors (P1 + P2 + P3; or the ‘comprehen-
sive’ model; Fig. 4) are best able to capture the MAIAC data,
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respectively explaining 87 and 75% of seasonal variation in
MAIAC NIR and EVI using PROSAIL, and 64 and 69% using
FLiES, although PROSAIL has larger model bias than FLiES.

We further ran the models separately parameterized by each
of the three phenological factors (P1–P3), aiming to quantify
their relative contributions. The results are shown in Fig. 5 (all
11 tree–canopy light conditions), Fig. S12 (all, but excluding
M. huberi) and Table 1. Our results show that both PROSAIL
and FLiES attributed very comparable phenological contribu-
tion in NIR and green reflectances, but with some variations
in blue and red reflectances, and VIs. Additionally, both mod-
els show that canopy-surface leafless crown fraction (P2) domi-
nated the magnitude of the ‘comprehensive’ modeled NIR and
EVI seasonality; canopy-surface leafless crown fraction (P2)
and leaf demographics (P3) jointly determined the relative sea-
sonality of the ‘comprehensive’ modeled NIR and EVI; canopy
LAI phenology (P1) barely contributed to the ‘comprehensive’
modeled NIR and EVI seasonality. Furthermore, when the
models were run with and without M. huberi, the simulated
relative seasonalities were almost identical to each other
(Fig. S12), suggesting that our results are very robust, despite
some transmittance bias associated with M. huberi (e.g.
Fig. S5b).

We also analyzed both modeled and observed canopy reflectance
seasonality for blue, green and red bands and reflectance-derived
NDVI. The results are summarized in Figs S13 and S14. Overall,

the modeled canopy visible reflectances were low (< 0.05) and had
similar magnitudes to the observations, although their relative sea-
sonalities were different. We also compared the canopy RTM
results with the MCD43A1 product (Fig. S15), and the results are
practically the same as with MAIAC.

Comparing PROSAIL with FLiES, we found that the rela-
tive seasonalities of observed EVI and NIR reflectance were
more closely simulated by PROSAIL than by FLiES, although
FLiES, with less of an offset, more closely matched the abso-
lute value (Fig. 4). This was somewhat unexpected: if the 3-D
structure of the forest matters for reflectance dynamics, we
would in principle expect that a model (like FLiES) represent-
ing forest structure in three dimensions should be able to do
better than a 1-D model (like PROSAIL). This suggests that
some aspects of the 3-D dynamics (which are less constrained
than the 1-D version) are mis-parameterized. For example, the
FLiES 3-D structure is more capable of representing woody
elements than is PROSAIL, but if the woody fraction (which
is not well constrained by observation but has less seasonality)
is overrepresented, this would artifactually reduce modeled
canopy NIR reflectance seasonality. A more complete under-
standing of the role of 3-D vs 1-D structure in driving tempo-
ral variation in canopy reflectance is needed, but for the
purposes of the present seasonality study, it is sufficient to note
that both models appear to capture well the dynamics of vege-
tation indices over seasons.

Fig. 3 Canopy radiative transfer models (RTMs) simulated and WorldView-2 (WV2) observed canopy-scale reflectances at different canopy phenophases
at the k67 site. (a) PROSAIL simulated canopy-scale reflectance spectra for young (leaf age ≤ 2months; blue), mature (leaf age: 3–5months; green), old
(leaf age: 6–14months; red) and leafless (black) phenophases; (b) PROSAIL simulated canopy-scale reflectance convolved to WorldView-2 (WV-2)
spectral bands (see Supporting Information Table S1); (c) FLiES simulated canopy-scale reflectance convolved to WV-2 spectral bands (see Table S1); and
(d) the WV-2 image (acquired on 28 July 2011 with near-nadir view; see the Materials and Methods section) observed canopy-scale reflectances for each
of three phenophases. All RTM results shown here are based on the scenario when canopy LAI = 5m2m�2, tree–environment-specific (n = 11 tree–canopy
light conditions), age-dependent leaf optics for young, mature and old phenophases, respectively, multi-species (n = 13 tree species) average bark optics
for leafless phenophase, solar zenith angle = 45° and nadir view. Shading indicates � 1 SD. See Fig. S2 for WV-2 band spectral response functions; see Figs
S9 and S10 for model simulations of other canopy LAIs.
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Model sensitivity to the clumping effect

We used the ‘comprehensive’ model (P1 + P2 + P3) to explore
the extent to which the clumping effect within a voxel in
FLiES (approximated by shoot-scale clumping; Kobayashi
et al., 2010) affected modeled canopy-scale reflectance seasonal-
ity. We found that although the absolute values varied greatly,
the relative seasonalities of modeled reflectance remained

consistent across a wide range of shoot-scale clumping (from
1.0 to 1.39) (Fig. S16). Because the value of shoot-scale
clumping shows a strong biome dependence (He et al., 2012),
and is difficult to measure in the field, our model sensitivity
results suggest that the shoot-scale clumping effect can be an
important source of uncertainty that causes the absolute mag-
nitude difference between models and observations as shown
in Fig. 4.

(a) (b)

Fig. 4 Comparisons between canopy radiative transfer models (RTMs) simulated and MAIAC version of MODIS observed canopy-scale seasonality of (a)
near-infrared (NIR) reflectance, and of (b) enhanced vegetation index (EVI). The models were parameterized by ‘comprehensive’ monthly phenological
components (leaf area index (LAI), leafless crown fraction and leaf demographics, i.e. P1 + P2 + P3 in the Materials and Methods section), with PROSAIL
(grey) and FLiES (black). RTM results shown here are the mean of their respective 11 RTM simulations (driven by tree–environment-specific leaf optics; see
Methods S5). MAIAC data (in red) represent monthly means for 2000–2014, spatially averaged over a 59 5 km2 window, and fully account for sun–
sensor geometry and cloud/aerosol contamination (see the Materials and Methods section). r2, coefficient of determination, is based on the linear
regression between model and observations with intercept. Error bar indicates� 1 SD; shading indicates the dry season.

(a) (b)

(c) (d)

Fig. 5 Relative roles of different phenological components in accounting for ‘comprehensive’ model-simulated canopy reflectance seasonality in (a, c)
near-infrared (NIR) reflectance, and (b, d) enhanced vegetation index (EVI), convolved to MODIS spectral bands (see Supporting Information Fig. S2).
Upper panel for the PROSAIL model and lower panel for the FLiES model. Canopy radiative transfer models (RTMs) results shown here are the mean of
their respective 11 RTM simulations (driven by tree–environment-specific leaf optics; see Methods S5). The models that include only the direct leaf area
index (LAI) phenology effect (P1) are shown in blue, the models that include only canopy-surface leafless crown fraction seasonality (P2) are shown in red,
the models that include only the leaf demography seasonality effect (P3) are shown in green, and the ‘comprehensive’ models which include all three
phenological components (P1 + P2 + P3) are shown in black. Shading indicates the dry season.
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Discussion

This study provides two main results. First, when field-
observed leaf and canopy characteristics are used to drive
canopy RTMs, they simulate canopy-scale reflectance seasonal-
ity patterns that closely match satellite observations, robustly
vetted to remove known artifacts, of the same region where
the ground observations were made (Fig. 4). Second, simulated
reflectance seasonality is shown to arise in the model directly
from two main phenological factors: changes in canopy-surface
leafless crown fraction and changes in leaf demography, with
only a very minor contribution from changes in LAI (Figs 5,
S12, S13; Table 1). We discuss three broad implications of
these results.

Assessing differential phenological effects on canopy
reflectance seasonality should help to correctly interpret
climate–phenology relationships in the Amazon

We start by discussing the implications of our second main find-
ing that seasonal variations in canopy-surface leafless crown frac-
tion and leaf demography are the two main phenological factors
driving modeled reflectance seasonality (Table 1). This is because
canopy reflectance shows strong dependence on canopy
phenophases (i.e. young, mature, old and leafless) (Fig. 3) and
their seasonally changing fractions (Fig. 2a,b). Although LAI_-
field and the canopy-surface leafless crown fraction were highly
negatively correlated at our site (Fig. 2a), our partitioning analysis
attributes very little of the reflectance seasonality to changes in
LAI (see Table 1): canopy-scale NIR reflectance increases with
LAI through light scattering by the multi-leaf layer (Verhoef,
1984; Samanta et al., 2012b), but LAI-induced NIR increase sat-
urates when LAI exceeds 4 m2 m�2 (Figs S9, S10). This implies
that small seasonal changes detected in LAI (c. 1 m2 m�2; Fig. 2a)
in a dense tropical forest canopy, where LAI exceeds 5 m2 m�2 all
year, will have little direct impact on canopy reflectance seasonal-
ity (Table 1). This also implies that the previously reported corre-
lation between LAI and EVI at several sites in the Amazon (e.g.
Brando et al., 2010; Wu et al., 2016) is probably driven by the
associated correlated decline in canopy-surface leafless crown
fraction (Fig. 2a), which significantly regulates canopy-scale
reflectance seasonality (Fig. 5; Table 1).

Interestingly, although leaf age strongly regulates leaf
reflectance (Fig. 1a; see also Chavana-Bryant et al., 2017; Wu
et al., 2017), NIR reflectance and EVI had opposite trends with
age at the canopy vs leaf scales, with young canopy phenophase
having highest NIR reflectance, while young leaves have the low-
est NIR reflectance (Fig. 1a vs Fig. 3a; Fig. 6). Canopy-scale
reflectance is a joint consequence of overall canopy structure (LAI
and crown geometry) in addition to leaf optical properties (re-
flectance and transmittance) (Roberts et al., 1998; Ollinger,
2011). Young leaves have much higher NIR transmittance (due
to their low absorptance and reflectance; Fig. 1) leading to more
multiple-scattering of NIR light within a very dense canopy (e.g.

Table 1 Relative contributions of the three phenological factors in
accounting for ‘comprehensive’ canopy radiative transfer models
(PROSAIL and FLiES) simulated seasonalities of canopy reflectance and
vegetation indices (see Figs 5, S13)

Spectra\relative contribution P1 P2 P3

PROSAIL Blue 0.00 0.95*** 0.05**
Green 0.00 0.03 0.97***
Red 0.01 0.63** 0.37**
NIR 0.02*** 0.31*** 0.67***
EVI 0.03*** 0.68*** 0.29***
NDVI 0.00 0.83*** 0.17**

FLiES Blue 0.00 0.48*** 0.52***
Green 0.00 0.04*** 0.96***
Red 0.00 0.52*** 0.48***
NIR 0.00 0.30*** 0.70***
EVI 0.01 0.33*** 0.66***
NDVI 0.00* 0.46*** 0.54***

PROSAIL- and FLiES-simulated canopy reflectance and vegetation indices
were convolved to MODIS spectral bands (see Supporting Information
Fig. S2); the three phenological factors are: P1, the leaf area index (LAI)
effect; P2, the canopy-surface leafless crown fraction effect; and P3, the
leaf age effect. Relative contributions were assessed by using a relative
importance of regressors in R (package RELAIMPO; see the Materials and
Methods section); asterisks indicate levels of significance (*, P = 0.05; **,
P = 0.01; ***, P = 0.001).

(a) (b)

Fig. 6 Different leaf age effects on leaf- and canopy-scale (a) near-infrared (NIR) reflectance and (b) enhanced vegetation index (EVI), convolved to
MODIS spectral bands (see Supporting Information Fig. S2). Leaf-scale patterns (red lines) are based on the field observations shown in Fig. 1(a) and
canopy-scale patterns (black lines) are based on the PROSAIL model results shown in Fig. 3. Note the reversal of the age ranks for both NIR reflectance and
EVI when going from leaf scale to canopy scale. Since the FLiES model simulates an age-dependency of canopy reflectance spectra similar to that of
PROSAIL, we expect that FLiES has a similar change in the ranking. Error bars are 1 SD among 11 tree–canopy light conditions (leaf-scale) and associated
PROSAIL simulations (canopy-scale).
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LAI > 3 m2 m�2) dominated by young leaves. The effect of more
multiple-scattering events in a canopy dominates that of lower
NIR reflectance in individual leaves, leading to higher NIR
reflectance at the canopy scale (Figs 3, S9, S10). This highlights
the importance of connecting leaf optics of single scattering
albedo (reflectance + transmittance) to canopy structure to cor-
rectly represent or interpret canopy-scale reflectance signatures.

By identifying the two phenological factors (leafless crown frac-
tion and leaf demography) that explain satellite-detected seasonal-
ity (Figs 4, 5, S15), our work has direct implications for
characterizing both spatial and temporal variation in satellite-
detected tropical phenology (e.g. using MAIAC EVI), as these
two factors represent different ecophysiological strategies for tropi-
cal tree responses to seasonal/inter-annual resource availability:
leafless crowns are a manifestation of deciduous or near-deciduous
habit, related to the hydrological sensitivity of tropical trees.
Higher water stress in dry seasons can lead to higher abundance of
deciduous trees over space (e.g. Bohlman, 2010; Guan et al.,
2015; Xu et al., 2016) or increased drought-induced leaf shedding
and mortality over time (e.g. Nepstad et al., 2007; Xu et al.,
2016), resulting in an increased canopy-surface leafless crown frac-
tion (and thus ‘brown-down’); leaf demography is more regulated
by evergreen trees, which are not water limited and show sensitiv-
ity to dry-season increased sunlight, and associated light-induced
new leaf flushing (‘green-up’) in response to seasonal and/or inter-
annual drought (e.g. Wright & Van Schaik, 1994; Brando et al.,
2010; Doughty et al., 2015; Lopes et al., 2016; Wu et al., 2016).
Leaf demography, especially dry-season leaf turnover, might also
have evolved to avoid herbivory for tropical trees (e.g. Aide, 1988,
1992). Promisingly, these two phenological factors exert different
effects on seasonal variation in visible (especially in the green
band; Fig. S13; Table 1) and SWIR (Fig. 3a) reflectances. It
would therefore be technically feasible and scientifically important
to use remote sensing products from multi-spectral or hyperspec-
tral sensors that include visible and NIR (and ideally also SWIR)
reflectances to differentiate these two processes.

Canopy RTM-modeled seasonality helps reconcile the
Amazon phenology debate

Our findings also have important implications for recent debates
about the mechanisms of satellite-observed ‘green-up’ of Amazon
forest canopies (Huete et al., 2006; Brando et al., 2010; Galvao
et al., 2011, 2013; Morton et al., 2014; Bi et al., 2015; Saleska
et al., 2016). Several studies (Galvao et al., 2011; Morton et al.,
2014) have suggested that satellite-observed seasonality in vegeta-
tion greenness (as captured by EVI) is an artifact of sun–sensor
geometry and not representative of biophysical factors in forests
measured on the ground. However, our modeling of biophysical
factors from the bottom up, by simulating EVI seasonality (with
wet-season declines followed by dry-season green-up, Fig. 4b) that
is consistent with top-down satellite observations corrected for
artifacts of clouds/aerosols and of sun–sensor geometry (e.g.
Brando et al., 2010; Bi et al., 2015; Maeda et al., 2016; Saleska
et al., 2016), suggests that these biophysical factors are in fact
driving the observed vegetation seasonality, at least at this site.

Although derived from one site, these findings reveal general
mechanisms for phenology that effectively rule out the interpreta-
tion that remotely sensed patterns are artifacts of changing sun-
sensor geometry, as suggested by Galvao et al. (2011, 2013) and
Morton et al. (2014). Like this work, Morton et al. (2014), in par-
ticular, sought to use sophisticated RTM simulations to identify
causal mechanisms for observed seasonality, concluding that forest
biophysical factors (e.g. phenology) were dominated by sun–sensor
geometry artifacts in the satellite observations. What accounts for
the different conclusions between the RTM-based study of Morton
et al. (2014) and the RTM-based study presented here?

First, the BRDF correction applied by Morton et al. (2014) to
the satellite observations appears to overestimate the size of the
artifact that needs correction (Bi et al., 2015) and in any case does
not eliminate detectable seasonality in greenness (Saleska et al.,
2016), as determined both by comparison with the BRDF-
corrected EVI used by Morton et al. (2014) (Saleska et al., 2016),
and with the more rigorously validated BRDF-corrected MAIAC
product (Lyapustin et al., 2012).

Second, in investigating the potential effects of vegetation phe-
nology, although Morton et al. (2014) anticipated that individual
leaf reflectances may change with age, they did not account for
the fact that leaf transmittance also changes with age, or for the
possibility of seasonally changing canopy structure caused by the
changing fraction of leafless crowns. As discussed above, the
lower NIR absorptance of young leaves (and consequent higher
multiple-leaf scattering) is what causes canopies composed of
young leaves to have higher overall canopy-scale NIR reflectance
(Fig. 3) and hence higher EVI. Furthermore, leafless crown frac-
tion is observed, in tower-based camera images, to change dra-
matically (by a factor of four, Fig. 2b), with substantial effect on
the modeled reflectance seasonality.

This work thus clarifies the relationships between tropical
canopy phenology and satellite-observed seasonality, helping to
resolve debates regarding satellite-detected Amazon phenology
(e.g. Morton et al., 2014 vs Bi et al., 2015, and Saleska et al.,
2016). In particular, we note that not accounting for higher NIR
transmittance in young leaves, or leafless crown fraction dynam-
ics, will substantially diminish the simulated effect of vegetation
phenology on reflectance seasonality.

Phenological impacts on canopy reflectance, with
implications for hyperspectral retrievals of biophysical traits

By assessing the effects of leaf phenology on canopy reflectance
spectra (Figs 3–5), our results help extend leaf-to-canopy scaling
with RTMs – widely applied to scaling across space (e.g. Wess-
man et al., 1988; Weiss et al., 2000; Clark et al., 2005; Baret &
Buis, 2008; Asner & Martin, 2011; Asner et al., 2011, 2016;
Singh et al., 2015) – to the temporal domain. This extension is
enabled by recent studies that demonstrate strong relationships of
leaf traits and spectra with leaf age across diverse growth environ-
ments and species in tropical forests (Chavana-Bryant et al.,
2017; Wu et al., 2017) and other biomes (e.g. Yang et al., 2014,
2016; Meerdink et al., 2016). Our work builds on these leaf-scale
studies to provide support for the importance of remotely
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detectable temporal convergent relationships in traits and spectra
at the canopy scale as well, suggesting the potential for deriving
temporal variability in plant traits using canopy reflectance spec-
troscopy techniques.

Importantly, our work also provides a practical guide for effec-
tive trait retrieval using canopy reflectance spectroscopy tech-
niques, in the context of both model inversion (Weiss et al.,
2000; Baret & Buis, 2008) and empirical statistical approaches,
such as partial least squares regression (PLSR; Asner et al., 2011;
Singh et al., 2015). These are:

Model inversion: in our work, although RTM-simulated
canopy reflectance captured the seasonal dynamics of satellite
observations (which was our main focus), there was a signifi-
cant offset between the two, especially in the PROSAIL simu-
lation of NIR and EVI (Figs 4, S14). These differences are
probably associated with uncertainty in the foliage clumping
effect (e.g. Fig. S16), which causes uncertainty in the absolute
magnitude of canopy reflectance. More fine-scale measure-
ments and modeling experiments are needed to fully under-
stand such model–observation magnitude differences to better
constrain the RTMs and reduce potential bias in model-
inverted key plant traits.
Empirical statistical approaches (e.g. PLSR): because leaf age
affects both leaf traits and spectra (Wu et al., 2017), as well as
canopy-scale reflectance spectra (Fig. 3), our work highlights
the importance of sampling leaves of different representative
leaf ages and of accounting for leaf demography within
canopies, which will allow development of more reliable
canopy-scale spectra–trait relationships in the tropics. Beyond
the tropical forests studied here, this consideration is also prob-
ably important for any biome that has seasonally changing traits
and spectra (e.g. Meerdink et al., 2016; Yang et al., 2016).

Conclusion

This study demonstrates that different components of leaf phe-
nology (primarily leafless crown fraction and leaf demography)
contribute significantly to satellite-observed seasonal variations in
canopy greenness (i.e. MAIAC EVI). These findings effectively
reconcile current controversies about satellite-detected vegetation
seasonality in the Amazon, and provide a robust basis for using
satellite remote sensing (after being properly processed, like
MAIAC EVI used here) to monitor phenology and study cli-
mate–phenology relationships in the tropics. This work thus lays
the foundation for the study of how these phenological factors,
which represent different ecophysiological strategies by which
tropical trees respond to varying resource availability, structure
the large-scale satellite observations of forest dynamics across
space and over time, thus offering new insight into the study of
tropical climate–phenology relationships.
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