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Summary

� Leaf trait relationships are widely used to predict ecosystem function in terrestrial biosphere

models (TBMs), in which leaf maximum carboxylation capacity (Vc,max), an important trait for

modelling photosynthesis, can be inferred from other easier-to-measure traits. However,

whether trait–Vc,max relationships are robust across different forest types remains unclear.
� Here we used measurements of leaf traits, including one morphological trait (leaf mass per

area), three biochemical traits (leaf water content, area-based leaf nitrogen content, and leaf

chlorophyll content), one physiological trait (Vc,max), as well as leaf reflectance spectra, and

explored their relationships within and across three contrasting forest types in China.
� We found weak and forest type-specific relationships between Vc,max and the four morpho-

logical and biochemical traits (R2 ≤ 0.15), indicated by significantly changing slopes and inter-

cepts across forest types. By contrast, reflectance spectroscopy effectively collapsed the

differences in the trait–Vc,max relationships across three forest biomes into a single robust

model for Vc,max (R
2 = 0.77), and also accurately estimated the four traits (R2 = 0.75–0.94).

� These findings challenge the traditional use of the empirical trait–Vc,max relationships in

TBMs for estimating terrestrial plant photosynthesis, but also highlight spectroscopy as an effi-

cient alternative for characterising Vc,max and multitrait variability, with critical insights into

ecosystem modelling and functional trait ecology.

Introduction

An accurate understanding and representation of the relation-
ships among plant traits has been an essential prerequisite to
quantify their roles in determining key ecological processes, rang-
ing from instantaneous physiological response and resource use
to carbon allocation, long-term adaptation and community
assembly (Wright et al., 2004; D�ıaz et al., 2016). Given their
importance in shaping emergent ecosystem function, the process
modelling community has started to include these processes and
mechanisms by simultaneously representing multiple important
traits and trait variability in ecosystem models (Rogers et al.,
2017a; Bonan & Doney, 2018; Berzaghi et al., 2020). These rep-
resentations of trait variability have been shown to improve simu-
lations of ecosystem-scale resilience and the sensitivity to climate
change (Bonan & Doney, 2018). As it is difficult to measure the
full suite of leaf traits at the same time, but also redundant to
incorporate many of these traits as they are highly correlated,
empirical and well established leaf trait relationships, including

the worldwide leaf economics spectrum (Wright et al., 2004;
D�ıaz et al., 2016), are often adopted in the ecosystem models.
With leaf trait relationships, several important but difficult-to-
measure traits (e.g. leaf life span and light saturated photosyn-
thetic rate) can be indirectly inferred from other relatively easier-
to-measure traits (e.g. leaf mass per area (LMA) and leaf nitrogen
(N) content) with more extensive spatial coverage (Wright et al.,
2005; Reich et al., 2007; Berzaghi et al., 2020).

One of the most important but difficult-to-measure traits is
the leaf maximum carboxylation rate of the enzyme RuBisCo
standardised to a reference temperature of 25°C (Vc,max25; Rogers
et al., 2017a). Vc,max25 directly mediates biotic controls on
whole-plant to canopy photosynthetic carbon uptake and interac-
tions with climate (Kattge et al., 2009; Wu et al., 2016). In ter-
restrial biosphere models (TBMs), Vc,max25 is an important
biochemical parameter that regulates modelled leaf photosyn-
thetic rate, and its parameterisation largely determines the accu-
racy of TBM simulations of terrestrial photosynthesis and carbon
uptake (Bernacchi et al., 2013; Rogers et al., 2017a). However,
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Vc,max25 also displays large variability in nature and is affected by
multiple abiotic and biotic factors, such as climate conditions,
soil properties, plant species, leaf morphology and leaf age (e.g.
Walker et al., 2014; Ali et al., 2015; Albert et al., 2018; Smith &
Dukes, 2018; Wu et al., 2019). Therefore, efficient and accurate
estimation of Vc,max25 variability across scales from individual
organisms to forest ecosystems remains an essential step to
improve the characterisation of the drivers of Vc,max25 variability
and the subsequent parameterisation and evaluation of TBMs.

At present, Vc,max25 is parameterised in TBMs in a few differ-
ent ways (Rogers, 2014). For example, the default approach for
some models is to use a single static value for each discrete plant
functional type (PFT), often parameterised with mean values for
the PFT derived from the literature (Kattge et al., 2009; Rogers,
2014; Berzaghi et al., 2020). As an alternative to the fixed param-
eterisations, some groups have explored the capacity to develop
custom parameterisations based on trait databases and statistical
methods to derive the best estimate for each PFT (e.g. Lebauer
et al., 2013; Dietze et al., 2014). Other approaches include a
more direct parameterisation through model inversion, for exam-
ple using eddy covariance-derived photosynthesis (gross primary
productivity, GPP) (Zheng et al., 2017; Schimel et al., 2019) or
satellite-based solar-induced chlorophyll fluorescence data
(Zhang et al., 2018; Camino et al., 2019; L. M. He et al., 2019)
to tune Vc,max25. Others may instead build in a broad range of
trait variance into simulations to explore which trait value combi-
nations result in simulation more closely related to benchmarks,
such as eddy covariance-derived GPP (Koven et al., 2020). More
recently, researchers have also explored the use of optimality
approaches (e.g. Prentice et al., 2014) that rely on the photosyn-
thetic least-cost theory (Wright et al., 2003) to infer Vc,max25

given ambient climate conditions (Wang et al., 2017; Smith
et al., 2019; Jiang et al., 2020). These various approaches vary in
their accuracy and remain limited to the estimation of Vc,max25 at
the ecosystem scale rather than at the individual organism level.

Alternatively, to capture the variability at the finer scale,
Vc,max25 is often indirectly inferred through its empirical relation-
ships with other leaf traits, such as LMA (Kattge et al., 2009;
Walker et al., 2014), leaf N content per unit leaf area (Na) (Kattge
et al., 2009; Walker et al., 2014), chlorophyll (Chl) content (Croft
et al., 2017), and leaf phosphorus (P) content (Walker et al., 2014;
Norby et al., 2017). However, as shown by many field-based stud-
ies, the empirical trait–Vc,max25 relationships can generate large
uncertainties in characterising Vc,max25 variability at the finer scale
both within and across sites, because the trait–Vc,max25 relation-
ships often vary with plant species, seasons, and plant growth envi-
ronments (Domingues et al., 2010; Serbin et al., 2012; Prentice
et al., 2014; Dechant et al., 2017; Norby et al., 2017; Rogers et al.,
2017b). In addition, whether the trait–Vc,max25 relationships are
robust across diverse PFTs remains unclear, and the combined
measurements of both traits and Vc,max25 over large geographical
areas for this evaluation remain lacking. An exploration of the
potential breakdown of trait–Vc,max25 relationships across various
scales from tree individuals to contrasting forest types as well as an
accurate and scalable alternative for consistent estimation of
Vc,max25 across scales remains critically needed.

Importantly, leaf reflectance spectroscopy or the measurement
of reflected radiance from leaves in many narrow, continuous spec-
tral channels across a portion of the electromagnetic spectrum
(Serbin &Townsend, 2020), may fill an important role in enhanc-
ing our understanding of trait variation within and across Earth’s
terrestrial ecosystems. Leaf reflectance spectra are a collection of
optical properties that are linked to a large number of leaf morpho-
logical and biochemical characteristics by electronic and vibra-
tional absorption (Curran, 1989; Elvidge, 1990; Kokaly et al.,
2009). Given the strong connection between traits and reflectance
spectra, a range of studies have demonstrated that leaf reflectance
spectra can accurately estimate a broad suite of plant traits (e.g. leaf
water content (LWC), LMA, Na, leaf Chl and P contents, and leaf
age) with high precision and accuracy, even despite strong varia-
tion in traits due to biotic and abiotic factors (Serbin et al., 2014,
2019; Singh et al., 2015; Asner et al., 2016; 2017, 2019). Recent
studies have also demonstrated that spectroscopy can accurately
predict Vc,max25 variability at some specific ecosystems/PFTs, but
present research has been limited to relatively narrow sampling of
woody plants or crop species that are often found in a single ecosys-
tem (Serbin et al., 2012; Dechant et al., 2017; Meacham-Hensold
et al., 2019; Wu et al., 2019). This leaves a fundamental but unan-
swered question: Is the spectroscopic approach an accurate and
scalable means for Vc,max25 estimation across various forest types
spanning large environmental gradients?

The goal of this study was to evaluate the different approaches
for predicting finer-scaleVc,max25 variability both within and across
diverse forest types, as well as to explore the possibility of a cross-
site approach for inferring Vc,max25 using leaf reflectance spec-
troscopy. Specifically, we addressed the following two questions:
(1) Can empirical trait–Vc,max25 relationships hold up for predict-
ing Vc,max25 across forest types? and (2) Can leaf spectroscopy offer
an efficient alternative to predict Vc,max25 and represent trait–
Vc,max25 relationships by accurately inferring both Vc,max25 and
other traits from leaf reflectance spectra? To address these ques-
tions, we collected a set of leaf traits and reflectance spectra of
canopy trees from the three forest types, namely a temperate
broad-leaved coniferous forest, a subtropical evergreen broad-
leaved forest, and a tropical evergreen broad-leaved forest. We
focused on four key leaf traits (i.e. LMA, LWC, Na and leaf Chl
content) that are of interest to the broad plant ecology community
and have been shown to drive a large fraction of model simulation
uncertainty in current ecosystemmodels (Wright et al., 2004; D�ıaz
et al., 2016; Bonan & Doney, 2018; Ricciuto et al., 2018).
Through answering these questions, we hope this can advise a prac-
tical approach to capture the Vc,max25 variability across various
scales and improve the understanding of the relationships among
leafVc,max25, traits and spectra both within and across forest types.

Materials and Methods

Study sites and plant materials

This study was conducted at three forest sites that represent con-
trasting vegetation types in China, including Mountain Changbai
(CB; 42°240N, 128°060E), Mountain Dinghu (DH; 23°100N,
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112°320E), and Xishuangbanna (XSBN; 21°470N, 101°030E)
(Fig. 1a). At each site, the Chinese Academy of Sciences (CAS)
maintains a canopy crane facility enabling access to a 1-hectare
area of each forest, with the crane tower height of 40 m in CB,
60 m in DH and 81 m in XSBN. We selected these sites for two
reasons. First, they represent dominant forest types (i.e. temper-
ate, subtropical and tropical) in China. These sites cover large
gradients in mean annual temperature and precipitation (i.e.
2.8°C and 691 mm yr�1 in CB, 20.9°C and 1927 mm yr�1 in
DH, and 21.8°C and 1493 mm yr�1 in XSBN) (Ye et al., 2008;
Shen et al., 2018; N. P. He et al., 2019) and soil types (i.e. from
dark brown forest soil in CB to laterite soil in both DH and
XSBN; see Supporting Information Table S1 for details on the
variation in soil properties) (Cao et al., 2006; Wu et al., 2006;
Gui et al., 2019). These ensure our collected leaf traits and
reflectance spectra span sufficient ranges caused by plant species
and growth environments. Second, these sites have canopy crane
facilities that allow easy access to the abundant canopy tree
species that are representative of each forest type. Specifically, the
abundant canopy tree species include Pinus koraiensis, Tilia
amurensis, Juglans mandshurica, Ulmus davidiana, Fraxinus
mandschurica, and other interspersed deciduous species in CB
(Wu et al., 2006; Liang & Liu, 2019); Schima superba, Pinus mas-
soniana, Castanopsis chinensis, Machilus breviflora, and other
interspersed evergreen broad-leaved species in DH (Ye et al.,
2008; Gui et al., 2019); and Parashorea chinensis, Canarium

album, Pometia tomentosa, Sloanea tomentosa and Semecarpus
reticulate and other interspersed evergreen broad-leaves species in
XSBN (Cao et al., 2006; Shen et al., 2018).

Within the forest canopy crane footprint, 19 trees from seven
dominant canopy tree species in CB, 31 trees from 12 dominant
canopy tree species in DH, and 57 trees from 28 dominant
canopy tree species in XSBN were selected (Table S2). Only
upper canopy, sunlit leaves of these tree species were sampled and
measured. Field measurements were conducted in the peak grow-
ing season (July–August) of 2019, including the measurements of
leaf gas exchange, leaf reflectance spectra and four morphological
and biochemical traits (i.e. LMA, LWC, Na and leaf Chl con-
tent). Details of measurement protocols are shown below and the
results of these measurements are summarised in Table S2. It is
noteworthy that even if field measurements were conducted in
the peak growing season, the leaf samples were still mixed with
different leaf ages, especially in the subtropical and tropical
forests. We therefore adopted the same approach as Wu et al.
(2019) and classified the leaves into the two age categories (i.e.
immature and mature leaves) according to the colour, size and
rigidity of the leaves.

Field measurements

Leaf gas exchange and Vc,max25 Three portable gas exchange
systems (LI-6400XT; Li-Cor Inc., Lincoln, NE, USA) were

(a)
(b) (c)

(d) (e)

(f)

Fig. 1 Sites and histogram distributions of leaf traits across the three forest types in China. (a) Location of the three canopy crane sites that span a large
latitudinal gradient, including a temperate forest in Mountain Changbai (CB), a subtropical forest in Mountain Dinghu (DH), and a tropical rainforest in
Xishuangbanna (XSBN). The background shows a map of mean enhanced vegetation index (EVI) in the 2019 peak growing season (July–August) derived
from the MOD13A1 products. (b–f) Site-specific histogram distributions of maximum carboxylation rate of RuBisCo standardised to 25°C (Vc,max25) and
the other four leaf traits (i.e. leaf nitrogen (N) content, SPAD-based leaf chlorophyll content (ChlSPAD), leaf mass per area (LMA), leaf water content
(LWC)), with CB in red, DH in green and XSBN in blue. The PDF shown in the figure legend refers to the probability distribution function (PDF) that was
used to fit the site-specific histogram distribution. Numbers in the panel (b–f) are the mean� standard deviation of the trait values for each forest site.
Vc,max25 and leaf traits were sampled in the 2019 peak growing season, and trait values of individual tree means from all leaf ages are presented here.
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used for leaf gas exchange measurements. The response of net
CO2 assimilation rate (A) to intracellular CO2 concentration
(Ci) (commonly known as the A–Ci curve; e.g. Fig. S1) was
measured on leaves from cut branches, which were sampled
before dawn with water cut to avoid inducing xylem embolism
when collecting branches (Wu et al., 2019). The A–Ci curves
were measured closely following the protocol of Rogers et al.
(2017b). Also see Methods S1 for details. For each tree, two
branches were sampled and normally 1–3 leaves of all age
classes (if present) per branch were measured. These field-
derived A–Ci curves were then fit to a biochemical photosyn-
thesis model (Farquhar et al., 1980), in which the modelled A
best matched with the field-measured A, and therefore the leaf
maximum carboxylation capacity (Vc,max) was derived for each
A–Ci curve. More details regarding the fitting procedure have been
shown previously (Bernacchi et al., 2013; Rogers et al., 2017b; Wu
et al., 2019). We used the same code developed in MATLAB (Math-
works, Natick, MA, USA) by Wu et al. (2019) for the A–Ci curve
fitting, with example demonstrations shown in Fig. S1. Finally, the
same kinetic constants and temperature response functions as Ber-
nacchi et al. (2013) were used to standardise Vc,max to a reference
temperature of 25°C (Vc,max25). Admittedly, there is also an alter-
native approach for deriving Vc,max25 that accounts for the environ-
mental acclimation of photosynthetic machinery (Kumarathunge
et al., 2019). We therefore cross-compared the two approaches,
and found that Vc,max25 derived using the two approaches was
almost identical (Fig. S2). As Bernacchi et al. (2013) has been
widely used in previous trait–Vc,max25 and spectral–Vc,max25

analysis (e.g. Walker et al., 2014; Rogers et al., 2017b; Scafaro
et al., 2017; Wu et al., 2019), we present our results based
on that approach.

Leaf reflectance spectra Upon finishing gas exchange measure-
ments, leaves were immediately measured for leaf reflectance
spectra. A portable spectroradiometer Spectra Vista Corporation
(SVC) HR-1024i (SVC, Poughkeepsie, NY, USA; spectral full-
range: 350–2500 nm; spectral resolution: ≤ 3.3 nm at 700 nm, ≤
9.5 nm at 1500 nm, and ≤ 6.5 nm at 2100 nm; sampling inter-
nal: linearly interpolated to 1 nm; Ely et al., 2019) together with
the SVC LC-RP-Pro foreoptic were used to measure leaf
reflectance. During the spectral collection, the leaf reflectance
probe used the internal calibrated light source to illuminate the
samples with a black background, following the protocol of Wu
et al. (2019). A 99% reflective Spectralon white panel by Lab-
sphere Inc. (North Dutton, NH, USA) was used as the reference
standard. The SVC was set to 1 s collection time (i.e. the integral
scanning time for each spectrum collected was 1 s) with the spec-
trometer’s automatic integration optimisation, to avoid the
impacts of excessive heat loads on the data quality of leaf spectra
collected (Serbin et al., 2019). For each leaf, we measured the
spectra on 3–6 different parts of the leaf adaxial surface (with
only one spectrum of each part) depending on the leaf size, and
used the averaged spectra to indicate the optical properties across
all wavelengths. Additionally, we corrected the discontinuities in
the spectra in the detector overlap areas using the vendor-
provided SVC instrument software (Ely et al., 2019). The

examples of collected leaf reflectance spectra are shown in Fig. S3
for demonstration.

Leaf biochemical and morphological traits After leaf spectral
measurements, fresh leaf chlorophyll (Chl) content was estimated
with a portable optical chlorophyll meter (SPAD-502 Plus;
Konika-Minolta Inc., Tokyo, Japan). The SPAD value is an
index based on the absorbance of the leaf at 650 and 940 nm
(Uddling et al., 2007), which has been shown as a good proxy for
leaf Chl content in both crops and woody plants (Uddling et al.,
2007; Coste et al., 2010; Silva-Perez et al., 2018). We also com-
pared the SPAD-based leaf Chl content with that inversed from a
leaf-level radiative transfer model PROSPECT-5 with field-based
spectral measurement as the model input, following the same
approach as shown in Jacquemoud et al. (2009). These two prox-
ies of leaf Chl content showed tight relationships (R2 = 0.75; P <
0.001; Fig. S4), providing additional confidence on the use of
the SPAD value to approximate fresh leaf Chl content in our leaf
samples. We therefore used ChlSPAD (unitless) that is short for
SPAD-based leaf Chl content in this study.

Additionally, other three leaf traits were also derived, including
LWC (g g�1), LMA (g m�2) and area-based leaf N content (Na; g
m�2). Leaf area was measured using the cork borers, and leaf fresh
mass was weighted using a precision balance (precision at 0.001 g;
Meilen; Meifu Electronics Co. Ltd, Shenzhen, China) in a fixed
location to reduce the impact of air movements. After that, the
samples were oven dried to constant mass at 65°C for over 72 h,
and then the dry mass was determined with the precision balance.
LWC was calculated using the difference between leaf fresh and
dry mass divided by leaf fresh mass. LMA was calculated using the
leaf dry mass divided by leaf area. Dried leaves were then ground
using a ball mill (NM200, Retsch, Haan, Germany) before mea-
suring leaf N content. Mass-based leaf N content was analysed by
the Dumas combustion method using an elemental analyser (Euro
EA3028; EuroVector, Milan, Italy) coupled to a stable isotope
ratio mass spectrometer (Perspective; Nu Instruments, Wrexham,
UK) in continuous flow mode (EAIRMS). Area-based leaf N con-
tent was then calculated with the mass-based leaf N content multi-
plied by LMA. In terrestrial biosphere modelling researches, leaf
N and Vc,max are generally expressed on an area basis given that
the main function of leaves is to intercept light (Osnas et al., 2013;
Walker et al., 2014). Therefore, we restricted our following analy-
ses to area-based leaf trait measurements.

Data analysis

In this study, we focused on exploring the relationships of
Vc,max25 with the four leaf traits and leaf spectra. Therefore, we
chose leaf samples including all these measurements across the
three forest sites. As a result, the dataset used for the analyses had
72 measurements in CB, 91 measurements in DH and 173 mea-
surements in XSBN, respectively. The species-specific mean and
range of Vc,max25 for all leaves across the three forest sites are pre-
sented in Table S2. We noted that our leaf samples from the
tropical (XSBN) and subtropical (DH) forest types were mixed
with different leaf age classes, with mature leaves (n = 281)
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dominating over young leaves (n = 55). To examine whether leaf
age would affect the trait–Vc,max25 relationships, we performed a
sensitivity analysis on the full dataset that respectively included
(i.e. mature leaves only) or excluded (i.e. all leaves) the leaf age
control. Our sensitivity analysis demonstrated that the results
remained consistent regardless of with or without leaf age control
(Figs S5, S6; Table S3). For clarity, we primarily focused on pre-
senting the data analyses for the entire dataset without leaf age
control thereafter.

Exploring trait–Vc,max25 relationships within and across forest
types To explore the relationships between the four leaf traits
and Vc,max25 within and across forest types, we performed the
three analyses. First, to explore the separate contribution of each
trait on Vc,max25 prediction, we analysed the relationships
between Vc,max25 and each of the four traits (i.e. LMA, LWC,
ChlSPAD and Na) using ordinary least-squares regression within
and across forest types. Second, to explore the joint contribution
of all the four traits on Vc,max25 prediction, we performed a mul-
tiple linear regression analysis both within and across forest types.
Third, to rank the independent, relative importance of each trait
on Vc,max25 prediction, we performed a principal component
analysis (PCA) on all traits and Vc,max25 with data from all forest
types using the R package PRCOMP. All trait data were standard-
ised using the zero-mean approach before the PCA analysis. The
first two PCA axes were then plotted to visualise the trait space.

Developing spectral models of Vc,max25 and the four leaf
traits The partial least-squares regression (PLSR) approach
(Serbin et al., 2014) was used here to model the Vc,max25 and the
four traits (LWC, LMA, Na and ChlSPAD) from leaf spectra
within and across forest types. This PLSR method is commonly
used in spectroscopic and chemometric analyses and has been
shown to be superior to those classical regression approaches, give
that it has the ability to handle high predictor collinearity and
allow the number of predictor variables to be much higher com-
pared with the number of observations (Ollinger & Smith, 2005;
Serbin et al., 2014, 2019; Asner et al., 2016).

We adopted the same PLSR modelling approach as has been
developed previously (Dechant et al., 2017), in which the stan-
dard PLSR regression analysis was integrated with a repeated
double cross-validation (rdCV) method (Filzmoser et al., 2009).
rdCV first splits the full dataset into calibration and independent
validation subsets repeatedly using a cross-validation (outer CV
loop), and then performed additional splits of each calibration
subset into training and testing components using a cross-
validation procedure (inner CV loop) to ensure that the optimal
number of latent variables could be determined independently
from the actual performance evaluation. Prediction performance
is evaluated on the independent validation subsets (outer loop)
over many possible random splits (n = 200 in our case). This
method therefore has the advantage to avoid the occurrence of
good or bad results purely by chance.

Given that the model detail and settings have been shown in
Dechant et al. (2017), we briefly summarised the five major steps
of this approach below. First, we performed a square-root-

transformation on Vc,max25 and the four traits to reduce the right-
skewed frequency distribution of the original data for the PLSR
analysis (Serbin et al., 2019; Wu et al., 2019). Second, we per-
formed 200 repetitions for the rdCV and 10-fold cross-validation
for both the outer and inner CV loops (Filzmoser et al., 2009;
Dechant et al., 2017). Third, to avoid over-fitting, we deter-
mined the optimal latent variable number by maximising the
averaged coefficient of determination (R2) and minimising the
averaged root mean squares of error (RMSE) of the inner CV
loop (Fig. S7). With the optimal PLSR latent variable number,
we further derived the regression coefficients and variable impor-
tance in projection (VIP) metric (Wold et al., 2001) for each per-
mutation in the inner loop, and then averaged them to obtain the
mean regression coefficients and VIP spectrum for each repeti-
tion. Fourth, we presented the mean and 95% confidence interval
of PLSR regression coefficients and VIP metric generated by the
200 repetitions in the outer loop. This ensemble of PLSR model
coefficients were ultimately used as the final model to predict
Vc,max25 or each trait plus the 95% confidence interval over the
200 repetitions. Fifth, the performance of the final PLSR model
was evaluated using the independent validation subset for each of
the 200 repetitions in the outer loop, measured by both R2 and
RMSE (Fig. S8). For both Vc,max25 and the four traits, all results
were presented in the original units rather than the square-root-
transformed units as the initial output of the PLSR model.

Exploring spectral–Vc,max25 relationships under three spectral
modelling scenarios We performed the PLSR modelling of the
three scenarios, with an aim to explore whether the spectral–
Vc,max25 relationship can be extended to the cross-site scale. These
three scenarios are summarised in Table 1 and illustrated as fol-
lows. First, a ‘site-specific’ spectral model of Vc,max25 was devel-
oped and evaluated using all the data from each forest site.
Second, a ‘XSBN’ spectral model of Vc,max25 was developed and
evaluated using all the data from the tropical forest site of XSBN
only, and then the developed model was applied to the indepen-
dent data from CB and DH. Third, a ‘cross-site’ spectral model
of Vc,max25 was developed and evaluated using the data from all
three forest sites. By performing these modelling scenarios, it
would not only improve our understanding of cross-site general-
izability of spectral–Vc,max25 relationships, but also help to iden-
tify the potential scenarios in which spectra–Vc,max25

relationships might break down.

Results

Weak and decoupled relationships between Vc,max25 and
leaf traits across forest types

To investigate our first question, trait-based approaches for
Vc,max25 predictions, we analysed the distribution of each leaf trait
and Vc,max25 (Fig. 1b–f) and then explored the trait–Vc,max25 rela-
tionships within and across forest types (Fig. 2). We found that
the leaf morphological and biochemical traits and Vc,max25 dis-
played a high degree of variation within and across forest types,
with the tropical forest (XSBN) showing the largest spread in
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values, followed by the subtropical (DH) and temperate (CB)
forests (Fig. 1b–f). We also found that the trait ranges of XSBN
covered the full ranges of DH and CB in all traits except Vc,max25

(Fig. 1b–f), and therefore XSBN had a significantly lower
Vc,max25 compared with CB (t = 19.85, P < 0.001; two-tailed Stu-
dent’s t-test) and DH (t = 4.84, P < 0.001; two-tailed Student’s
t-test).

Exploring the trait–Vc,max25 relationships further, we found
that these relationships were weak overall with a high degree of
variation in forest type-specific slope and intercept of the rela-
tionships (Fig. 2a–d; Table S3). Among these relationships, Na

showed the highest Vc,max25 prediction across forest types (R2 =
0.13, P < 0.001), followed by ChlSPAD (R2 = 0.05, P < 0.001),
LWC (R2 = 0.01, P = 0.030), and LMA (R2 = 0.01, P = 0.179).
PCA confirmed these patterns and illustrated that leaf N content
had the strongest relationship with Vc,max25, followed by ChlSPAD
(Fig. 3). LMA and LWC were near-orthogonal to Vc,max25 (Fig.
3), suggesting no clear relationships between these two traits and
Vc,max25. In addition, for the univariate exploration, we also used
a multiple linear regression model for explaining variation in
Vc,max25 (Fig. 2e). The results showed that these traits together
explained slightly higher degrees of variation in Vc,max25 across all
the three contrasting forest types (R2 = 0.15; Fig. 2e) than models
that relied on the univariate exploration (Fig. 2a–d). The results
also showed higher predictive power of the multivariate model
within each forest type, with R2 of 0.34, 0.30 and 0.19 for CB,
DH and XSBN, respectively (Fig. 2e). In addition, our results

showed that the trait-based model when including the site effect
(i.e. site-specific trait-based model) had the predictive power of
R2 = 0.61, which was much higher than its correspondence using
the cross-site trait-based model (R2 = 0.15) (Fig. 2e).

Spectroscopy outperforms leaf trait relationships for
predicting Vc,max25 across forest types

To investigate our second question, on the spectral-based
approach for reconciling the lower performance of the trait-based
approach in explaining cross-site Vc,max25 variability, we analysed
the relationships between leaf traits/Vc,max25 and spectra. We
found that the cross-site spectral models accurately capture the
variations in all traits, including Vc,max25 (R2 = 0.77, RMSE =
9.7 lmol CO2 m

�2 s�1), Na (R2 = 0.79, RMSE = 0.19 g m�2),
ChlSPAD (R2 = 0.92, RMSE = 3.2), LMA (R2 = 0.93, RMSE =
6.6 g m�2), and LWC (R2 = 0.93, RMSE = 0.021) (Figs 4, S9).
These results demonstrated that leaf spectroscopy accurately pre-
dicted not only the four leaf biochemical and morphological
traits but also the physiological trait of Vc,max25 across the three
contrasting forest types.

To explore the spectral–Vc,max25 relationships further, we
conducted two additional tests, in which the spectral model of
Vc,max25 was calibrated for: (1) each forest site, and (2) tropical
forest site only (XSBN). The site-specific spectral model of
Vc,max25 had the comparable predictive power with the cross-site
model (R2 = 0.76 in Fig. 5a vs R2 = 0.77 in Fig. 4). The XSBN
model had the worst performance (R2 = 0.66 in Fig. 5b), with a
significant model bias when applied to the other two forest sites
that were not involved in the model built (Fig. 5b; Table 1). Fur-
thermore, we found that the cross-site model yielded the lowest
prediction uncertainty as indicated by the horizontal error bars
(Fig. 4 vs Fig. 5). These results collectively demonstrated that an
accurate and cross-site scalable spectra–Vc,max25 relationship
could be derived when sufficient leaf samples were involved in
the model development.

Discussion

This study has two main findings. First, we demonstrated that
there were weak, forest type-specific trait–Vc,max25 relationships
(Figs 1, 2). Second, we revealed that leaf spectroscopy collapsed
this variability into a single spectral model that accurately pre-
dicted Vc,max25 both within and across forest types (Fig. 4). Col-
lectively, our study suggests that leaf spectroscopy outperforms
trait–Vc,max25 relationships for predicting leaf photosynthetic
capacity across three contrasting forest types in China.

Our observations of weak and forest type-specific
trait–Vc,max25 relationships are consistent with many previous
field-based studies, which also report moderate-to-weak trait–
Vc,max25 relationships at the interspecies, intersite and inter-PFT
level (Domingues et al., 2010; Serbin et al., 2012; Prentice et al.,
2014; Walker et al., 2014; Rogers et al., 2017b). In addition, our
observed forest type-specific Na–Vc,max25 relationship also agrees
with a previous global-scale synthesis study, which shows that the
slopes and intercepts of Na–Vc,max25 relationships vary with PFTs

Table 1 Evaluation of the spectral–Vc,max25 model under the three
scenarios: the ‘site-specific model’ (trained and evaluated using the data
from each forest site through the repeated double cross-validation (rdCV)
method), ‘XSBN model’ (trained and evaluated using the data from the
tropical forest site of Xishuangbanna (XSBN) through the rdCV method,
and then applied the model to the independent sites at Mountain
Changbai (CB) and Mountain Dinghu (DH)), and ‘cross-site model’
(trained and evaluated using the data from all the three forest sites
through the rdCV method).

Scenarios Site

Vc, max25 (lmol CO2m
�2 s�1)

n R2 RMSE

Site-specific model CB 72 0.28 9.9
DH 91 0.55 9.5
XSBN 173 0.59 10.3
All 336 0.76 10.0

XSBN model CB 72 0.20 10.4
DH 91 0.48 10.2
XSBN 173 0.59 10.3
All 336 0.66 11.9

Cross-site model CB 72 0.35 9.4
DH 91 0.56 9.4
XSBN 173 0.63 9.8
All 336 0.77 9.7

n, sample size; R2, the coefficient of determination; RMSE, the root mean
square of error; Vc,max25, leaf maximum carboxylation rate of RuBisCo
standardised to 25°C.
Leaf-level measurements across all leaf ages were analysed here. The three
forest sites include the temperate forest in Mountain Changbai (CB), the
subtropical forest in Mountain Dinghu (DH), and the tropical forest in
Xishuangbanna (XSBN).
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(i.e. tropical trees, temperate broad-leaved trees and coniferous
trees) at the global scale (Kattge et al., 2009). There are several
possible explanations for this including variation in the fraction
of Na allocated to RuBisCo and variation in mesophyll conduc-
tance, which both affect the ratio between Na and Vc,max25

(Ghimire et al., 2017; Evans, 2021). As a result, the Na–Vc,max25

relationship has been observed to vary with species, growth envi-
ronments and PFTs, with Na alone explaining a relatively low
degree of Vc,max25 variance at the global scale (Walker et al.,
2014; Ali et al., 2015; Smith et al., 2019). Despite the weak Na–
Vc,max25 relationship observed here and previously, this relation-
ship remains widely used in TBMs to first infer Vc,max25 and then

to simulate plant photosynthesis (Kattge et al., 2009; Rogers
et al., 2017a). Our results, together with these previous studies,
therefore raised concerns over implementing Na–Vc,max relation-
ships in TBMs for modelling large-scale terrestrial photosynthesis
and associated vegetative responses to the current and changing
climate.

In addition to the weak Na–Vc,max25 relationships, we observed
the similarly weak and forest type-specific Chl–Vc,max25 relation-
ships (using either ChlSPAD or PROSPECT-5 inverted Chl; Figs
2b, S4b). Our result is consistent with Luo et al. (2019) who also
found the PFT-dependent Chl–Vc,max25 relationships based on
previous studies with direct field measurements of Chl and

(a) (b)

(c) (d)

(e)

Fig. 2 Exploring trait–Vc,max25 relationships both within and across forest types. (a–d) Pairwise relationship between leaf maximum carboxylation rate of
RuBisCo standardised to 25°C (Vc,max25) and the other four leaf traits (i.e. leaf nitrogen (N) content, SPAD-based leaf chlorophyll content (ChlSPAD), leaf
mass per area (LMA), leaf water content (LWC)) within and across the three forest types. (e) Performance (observed vs predicted Vc,max25) of the multiple
linear regression model using all four leaf traits as predictor variables. Three different coloured circles represent each of the three forest sites, with Mountain
Changbai (CB) in red, Mountain Dinghu (DH) in green, and Xishuangbanna (XSBN) in blue. Lines were fitted by ordinary least-squares regressions, with
coloured lines for site-specific regression fitting and the grey line for all-sites’ regression fitting. In (e), the dashed line represents the 1 : 1 line, and the black
line represents the regression fitting when combining the site-specific multiple linear regression model results. R2 represents the coefficient of
determination; ‘ns’ denotes the insignificant relationship with P > 0.05. Leaf-level trait measurements across all leaf ages were involved in this analysis.
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Vc,max25 across PFTs and use these PFT-specific relationships,
together with satellite-derived leaf chlorophyll content, to esti-
mate Vc,max25 at the global-scale. Taken together, these results
suggests that it is important to account for PFT-specific Chl–
Vc,max25 relationships when leveraging field-derived and/or
satellite-derived Chl measurements for large-scale Vc,max25 predic-
tion. Admittedly, both ChlSPAD and PROSPECT-5 inverted Chl
used in this study are indirect Chl measurements and, therefore,
our ChlSPAD–Vc,max25 relationship might not be directly applica-
ble to those Chl–Vc,max25 studies relying on direct Chl measure-
ments (e.g. Croft et al., 2017; Chou et al., 2020). However, our
results suggest that global-scale studies in which satellite-derived
leaf Chl content (comparable with our PROSPECT-5 inverted
Chl) is used in combination with ground-derived Chl–Vc,max25

relationships may mask marked variation in Vc,max25 within and
among forest types (Alton, 2017; Luo et al., 2019; Croft et al.,
2020). We recommend that direct Chl measurements, satellite-
derived Chl measurements, combined with Vc,max25 and spectra
data, across different PFTs are still needed to confirm our obser-
vations that relied on the two indirect Chl metrics.

If empirical trait–Vc,max25 relationships do not hold up for
accurate and scalable predictions of Vc,max25 across forest types,
what is an alternative? Our answer is leaf spectroscopy, as a single
spectral model accurately predicted Vc,max25 across all three forest
types (R2 = 0.77; Fig. 4). To the best of our knowledge, this rep-
resents the first study demonstrating the cross-site scalability of
Vc,max25 prediction using leaf spectroscopy. Also because Wu
et al. (2019) demonstrated leaf spectroscopy as an accurate means
for characterising the seasonal variability in Vc,max25 across multi-
ple tropical forests, leaf spectroscopy are, therefore, likely to be
an accurate and scalable means for predicting Vc,max25 across both
large spatial and temporal extents. Additionally, our results of the
cross-site tight covariations between leaf spectra and the four
traits (Fig. S9) also confirmed the two very recent studies in
which leaf spectroscopy accurately inferred key leaf biochemical
and morphological traits (e.g. Na, LMA, leaf carbon content and
leaf total phenol content) across diverse forest types (Nakaji et al.,
2019; Serbin et al., 2019). These together further suggest that leaf
spectroscopy offers a promising and scalable means for monitor-
ing leaf traits across various forest types, and that the measure-
ment of leaf spectra alone together with a suitable PLSR model
can accurately infer multiple leaf morphological, biochemical
and physiological traits.

Our results further demonstrated that the cross-site scalable
spectral–Vc,max25 relationship can be derived only when leaf

Fig. 3 Exploring the cross-site trait–Vc,max25 relationships using principal
component analysis. The trait loading on the plane below is defined by
principal component 1 (PC1) and principal component 2 (PC2), with the
green arrow for leaf maximum carboxylation rate of RuBisCo standardised
to 25°C (Vc,max25) and brown arrows for the other four leaf traits (i.e. leaf
nitrogen (N) content, SPAD-based leaf chlorophyll content (ChlSPAD), leaf
mass per area (LMA), leaf water content (LWC)). PC1 and PC2,
respectively, explained 49% and 22% of total variation in all four traits
and Vc,max25. The angle between Vc,max25 and each of the four traits
indicated the extent of correlation between them, with the smaller angle
representing the higher correlation, and the 90° indicating the orthogonal
relationship. Based on this analysis, Vc,max25 shows higher relationship with
leaf N content, followed by ChlSPAD, but has nearly orthogonal
relationships with LWC and LMA. In addition, all leaf traits are located
within the grey semicircle region of Vc,max25, suggesting that all these
trait–Vc,max25 relationships are positive. Leaf-level trait measurements
across all ages and forest types were used in this analysis.

Fig. 4 Accuracy assessment for the cross-site spectral–Vc,max25

relationship. The ‘cross-site’ spectral model of leaf maximum carboxylation
rate of RuBisCo standardised to 25°C (Vc,max25) was trained and evaluated
using the data from all the three forest sites through the repeated double
cross-validation method. Error bars indicate the 95% confidence intervals
for each predicted value derived from the ensemble partial least-squares
regression (PLSR) models (i.e. each PLSR model is represented by a set of
PLSR fitted spectral coefficients averaged over the 200 repetitions). The
grey line represents the ordinary least-squares regression fit, and the black
line indicates the 1 : 1 line. Three different coloured circles represent each
of the three forest sites, with Mountain Changbai (CB) in red, Mountain
Dinghu (DH) in green, and Xishuangbanna (XSBN) in blue. Leaf-level trait
measurements across all leaf ages were involved in this analysis. n, sample
size; R2, the coefficient of determination; RMSE, the root mean square of
error.
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samples covering sufficiently wide variability in both Vc,max25 and
spectra are involved in the model development (Figs 4, 5; Sch-
weiger, 2020). Therefore, the prerequisite for developing a gen-
eral and broadly applicable spectral model of Vc,max25 is to
encompass the full trait space associated with both physiological
and spectral variation in the training dataset. Many observational
studies have suggested that both leaf spectra and Vc,max25 vary
considerably among ecosystems (e.g. grasslands, shrublands and
forests), climate zones (e.g. boreal, temperate, subtropical and
tropical zones), life forms (e.g. evergreen and deciduous trees,
coniferous and broad-leaved trees), leaf ages (e.g. young, mature
and old leaves) and continents (e.g. China, Europe and North
America) (Kattge et al., 2009; Ali et al., 2015; Dechant et al.,
2017; Albert et al., 2018; Smith & Dukes, 2018; Wang et al.,
2018; Serbin et al., 2019; Wu et al., 2019). However, most of
these variabilities are currently either undersampled or not sam-
pled in our study. Therefore, further global sampling and analysis
is still needed to explore and build a globally applicable spectral
model of Vc,max25 as that has been developed for LMA (Serbin
et al., 2019).

To elucidate the potential mechanism of spectral–Vc,max25 rela-
tionships, we explored the spectral regions that dominate the
links between spectra and Vc,max25 by analysing the patterns in
the PLSR regression coefficients (Fig. 6a) and VIP (Fig. 6b). Our
results showed that the reflectance contribution to the estimation
of Vc,max25 varied considerably across the full spectrum (Fig. 6a,
b). Specifically, we found that the spectral domains of importance
(i.e. VIP value > 0.8; Wold et al., 2001) cover the visible range
(450–700 nm), a strong response in the red-edge range (700–
800 nm), and multiple near-infrared (NIR) (1030–1120 nm)
and shortwave infrared (SWIR) bands (1350–1480 nm, 1640–
1760 nm and 1820–2180 nm). These identified Vc,max25-
sensitive spectral domains not only agree closely with several pre-
vious similar efforts that analyse the spectral–Vc,max25

relationships (Serbin et al., 2012; Meacham-Hensold et al., 2019;
Wang et al., 2020), but are also consistent with many other stud-
ies that broadly examined the relationship between reflectance
spectra and leaf biochemistry and physiology (Curran, 1989;
Elvidge, 1990; Kokaly et al., 2009; Ustin et al., 2009). For exam-
ple, the visible range has been related to the concentration of leaf
pigments (e.g. chlorophyll, carotenoids and anthocyanins; Wang
et al., 2020; also see Fig. 6e,f), the red-edge range has been associ-
ated with leaf Chl content (Fig. 6e,f), chlorophyll fluorescence
emission, and photosystem II function (Zarco-Tejada et al.,
2000; Serbin et al., 2012; Wang et al., 2020), and the detected
NIR and SWIR bands have been found tightly connected with
leaf N and protein contents (Curran, 1989; Kokaly et al., 2009;
also see Fig. 6c,d) as well as leaf water and dry matter contents
(Elvidge, 1990; Jacquemoud et al., 2009; also see Fig. 6g–j).
These observed Vc,max25-senstive spectral regions, together with
the previous understanding of trait-specific sensitive spectral
regions, therefore support the trait-based hypothesis suggested by
Wu et al. (2019) that Vc,max25 is tightly connected with multiple
leaf traits retrievable from leaf spectra as a candidate mechanism
for the observed tight spectral–Vc,max25 relationship (Fig. 4).

The four leaf traits measured here explain a much smaller frac-
tion of the variation in Vc,max25 compared with the spectral
model (15% vs 77%; Fig. 2e vs Fig. 4). Therefore, our results
suggested that there are likely to be other unmeasured traits that
aid in the determination of the cross-site variability in Vc,max25,
and that information about those traits is present in the leaf spec-
tra. These unmeasured traits or states might include leaf P con-
tent, leaf magnesium content, leaf temperature and leaf age
(Walker et al., 2014; Asner et al., 2016; Wu et al., 2019; Khan
et al., 2020; Wang et al., 2020), but the direct quantitative evi-
dence is currently missing. In addition, we observed that account-
ing for site-specific trait–Vc,max25 relationships largely improved
Vc,max25 prediction (R2 = 0.15 vs 0.61; Fig. 2e) while there was

(a) (b)

Fig. 5 Accuracy assessments for the spectral models of leaf maximum carboxylation rate of RuBisCo standardised to 25°C (Vc,max25) under the site-specific
and Xishuangbanna (XSBN) scenarios. (a) ‘Site-specific model’ (trained and evaluated using the data from each forest site through the repeated double
cross-validation (rdCV) method). (b) ‘XSBN model’ (trained and evaluated using the data from the tropical forest site of XSBN through the rdCV method,
and then applied the model to the independent sites at Mountain Changbai (CB) and Mountain Dinghu (DH)). Error bars indicate the 95% confidence
intervals for each predicted value derived from the ensemble partial least-squares regression (PLSR) models. The grey line represents the ordinary least-
squares regression fit, and the black line indicates the 1 : 1 line. Three different coloured circles represent each of the three forest sites, with CB in red, DH
in green and XSBN in blue. Leaf-level trait measurements across all leaf ages were used here. n, sample size; R2, the coefficient of determination; RMSE,
the root mean square of error.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 6 Assessing the reflectance contributions to the spectral models of leaf maximum carboxylation rate of RuBisCo standardised to 25°C (Vc,max25) and
the four leaf traits (i.e. leaf nitrogen (N) content, SPAD-based leaf chlorophyll content (ChlSPAD), leaf mass per area (LMA), leaf water content (LWC))
under the cross-site scenario using the partial least-squares regression (PLSR) approach, including the left panel (a, c, e, g, i) for PLSR regression
coefficients, and the right panel (b, d, f, h, j) for the variable importance in projection (VIP). The cross-site spectral models were trained and evaluated using
the data from all the three forest sites through the repeated double cross-validation method. The central coloured lines indicate the mean values and the
shaded regions indicate the 95% confidence interval of PLSR regression coefficients and VIP spectrum, respectively. On the right panel, VIP ≥ 0.8 refers to
the important spectral regions responsible for the spectral modelling of Vc,max25 and the four leaf traits (Wold et al., 2001). The shaded grey regions across
all subpanels identify the corresponding spectral bands for the Vc,max25 predictions. VIR, visible range (450–700 nm); RE, red-edge range (700–800 nm);
NIR, near-infrared range (800–1300 nm); SWIR, shortwave infrared range (1300–2500 nm).
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virtually no change in the spectral–Vc,max25 relationships between
the cross-site model and site-specific model (R2 = 0.77 vs 0.76;
Figs 4, 5a). These results further suggest that leaf spectra are able
to capture the site-specific trait–Vc,max25 relationships and, there-
fore, a single spectral model consistently and accurately predicts
Vc,max25 across the three studied forest types. Site-specific trait–
Vc,max25 relationships have often been attributed to environmen-
tal acclimation of Vc,max25 to growth temperature and other abi-
otic conditions (e.g. light, water, and soil properties and
nutrients) (Kattge et al., 2009; Prentice et al., 2014;
Kumarathunge et al., 2019; Smith et al., 2019), yet leaf spectra
have also been shown to capture or rapidly respond to changes in
growth environment (Serbin et al., 2012; Khan et al., 2020). This
suggests that spectra can adapt to the underlying trait modifica-
tions in response to their environmental acclimation over both
short-term and long-term environmental changes. Therefore, it
provides additional evidence that reflectance spectra can capture
the site-specific variation in trait–Vc,max25 relationships associated
with environmental acclimation. Regardless, an in-depth explo-
ration of the spectral–Vc,max25 relationships, using experimental
manipulations and measurements of more leaf traits, Vc,max25,
and leaf spectra at both spatial and temporal (e.g. leaf age or sea-
sonal) scales, is still needed to fully elucidate the underlying
mechanism that enables successful prediction of Vc,max25 from
leaf spectra.

With these findings, our work also generated at least two
implications as follows. First, our findings can complement cur-
rent trait-based plant ecology studies. Empirical leaf trait rela-
tionships, regardless of their predictive strength, have been
extensively used for reducing trait dimension and understanding
plant adaptive strategies in functional ecology studies (Wright
et al., 2004; D�ıaz et al., 2016). Our findings of the inconsistent
leaf trait relationships across forest types suggest that the canoni-
cal leaf trait coordination theory (e.g. leaf economics spectrum
that emphasises the convergent leaf trait relationships) (Wright
et al., 2004; D�ıaz et al., 2016) works at the global scale, but
breaks down at finer scales (Niinemets et al., 2015; Anderegg
et al., 2018; Shiklomanov et al., 2020). As leaf spectroscopy is
able to accurately derive multiple leaf traits (Figs 4, S9) and leaf
trait relationships (Fig. S10), it therefore offers a new way to
characterise multitrait variability and improve representations of
leaf trait relationships (including those weak relationships) in
TBMs and functional ecology studies.

Second, our findings also have important implications for
future work that aims to characterise the Vc,max25 variability over
large scales by leveraging leaf spectroscopy techniques. Our work
suggests that leaf spectroscopic approaches can provide accurate,
rapid, relatively low-cost and nondestructive estimates of Vc,max25

across diverse plant species and forest types, which can facilitate
the broader characterisation of Vc,max25 variability that is useful
for ecological research and process modelling. Moving up in scale
from leaves to landscapes, as well as whole-ecosystems, using
remote sensing data depends on the effective extension of results
such as those presented here to vegetation canopies. Past research
in agricultural landscapes suggests that this scaling up is possible
using similar approaches (Serbin et al., 2015), however additional

work is needed to develop generalised, robust methods. Impor-
tantly, canopy spectral variability is fundamentally tied to both
leaf spectra and canopy structural attributes (e.g. leaf area index
and leaf angle distribution) (Asner, 1998; Roberts et al., 2004;
Ollinger, 2011). At the same time, other challenges to spaceborne
retrieval of Vc,max25 are associated with a multitude of issues,
including sensor design, uncertainties in the retrieval of surface
reflectance, the sun-sensor geometry effect, and the mixture effect
associated with the spatial resolution issue (Roberts et al., 2004;
Thompson et al., 2019; Serbin & Townsend, 2020). Therefore,
additional research is needed to understand the impacts of these
issues on satellite retrievals of Vc,max25, yet new opportunities in
spaceborne image spectroscopy could yield new insights (Guanter
et al., 2015; Stavros et al., 2017; Schimel & Poulter, 2021). In
addition, other novel platforms, including unoccupied aerial sys-
tems, may also provide new opportunities for developing large-
scale maps of Vc,max25 (Singh et al., 2015; Asner et al., 2016).
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