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Abstract
1. The Arctic is warming at a faster rate than any other biome on Earth, resulting in 

widespread changes in vegetation composition, structure and function that have 
important feedbacks to the global climate system. The heterogeneous nature of 
arctic landscapes creates challenges for monitoring and improving understand-
ing of these ecosystems, as current efforts typically rely on ground, airborne or 
satellite- based observations that are limited in space, time or pixel resolution.

2. The use of remote sensing instruments on small unoccupied aerial systems (UASs) 
has emerged as an important tool to bridge the gap between detailed, but spatially 
limited ground- level measurements, and lower resolution, but spatially extensive 
high- altitude airborne and satellite observations. UASs allow researchers to view, 
describe and quantify vegetation dynamics at fine spatial scales (1– 10 cm) over areas 
much larger than typical field plots. UASs can be deployed with a high degree of tem-
poral flexibility, enabling observation across diurnal, seasonal and annual time- scales.

3. Here we review how established and emerging UAS remote sensing technologies can 
enhance arctic plant ecological research by quantifying fine- scale vegetation patterns 
and processes, and by enhancing the ability to link ground- based measurements with 
broader- scale information obtained from airborne and satellite platforms.

4. Synthesis. Improved ecological understanding and model representation of arc-
tic vegetation is needed to forecast the fate of the Arctic in a rapidly chang-
ing climate. Observations from UASs provide an approach to address this need, 
however, the use of this technology in the Arctic currently remains limited. Here 
we share recommendations to better enable and encourage the use of UASs to 
improve the description, scaling and model representation of arctic vegetation.

© 2022 The Authors. Journal of Ecology © 2022 British Ecological Society. This article has been contributed to by U.S. Government employees and their work is in 
the public domain in the USA.
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1  |  INTRODUC TION

The Arctic is warming faster than any other region on Earth, with 
associated changes in temperature, precipitation, surface albedo, 
sea ice and ocean circulation (IPCC, 2019). Tundra ecosystems of the 
Arctic are thus predicted to respond more rapidly to climate change 
than other terrestrial ecosystems (Chapin et al., 2005; Hinzman 
et al., 2005). Over the past 40 years, long- term ecological monitor-
ing and satellite observations have indicated widespread changes in 
tundra vegetation composition, structure and function (Elmendorf 
et al., 2012; Pearson et al., 2013). Examples include a decadal ‘green-
ing’ trend in satellite- derived vegetation indices observed across the 
Arctic concurrent with a widespread increase in shrub and tree cover 
(Elmendorf et al., 2012; Frost & Epstein, 2014; Ju & Masek, 2016; 
Myers- Smith et al., 2015; Sturm et al., 2001). These changes, coupled 
with permafrost thaw (Lawrence et al., 2008), more frequent tun-
dra fires (Mack et al., 2011), and an altered hydrological cycle (Bring 
et al., 2016), are driving impacts on the energy balance and carbon 
budget of the Arctic (DeMarco et al., 2014; McGuire et al., 2018; 
Myers- Smith et al., 2011; Vowles & Björk, 2019).

The arctic tundra biome contains a high degree of spatial hetero-
geneity in vegetation distribution, land surface structure and envi-
ronmental conditions (Myers- Smith et al., 2020; Virtanen & Ek, 2014; 
Figure 1), where vegetation interacts with the environment at very 
fine scales from several centimetres to multiple metres (Assmann 
et al., 2020; Davidson et al., 2016; Siewert & Olofsson, 2020). These 
fine- scale interactions result in strong patchiness in the direction 
and rate of vegetation changes across the Arctic that are currently 
missed by coarser- scale observations but could aggregate to mean-
ingful impacts on ecosystem response to climate change (Bjorkman 
et al., 2018; Chen et al., 2020; Prevéy et al., 2018).

Traditional methods to characterize the variability in arctic veg-
etation involve intensive field surveys or experimental manipula-
tions, which are often limited in their spatial and temporal coverage 
(Metcalfe et al., 2018; Schimel et al., 2015). Metcalfe et al. (2018) 
showed that the current pattern of ground sampling— focused on 
just a few intensively studied locations— may inaccurately portray 
large- scale tundra processes, hindering our ability to predict climate 
change impacts in the Arctic. In contrast, satellite and high- altitude 
airborne remote sensing platforms have been widely used to ob-
serve a range of key vegetation properties, dynamics and changes 
(Beamish et al., 2020). The use of these platforms has complemented 
traditional field measurements by providing wider spatial and tem-
poral coverage (Shiklomanov et al., 2019).

However, the small stature of most arctic plants (typically <1 m) 
and wide spatial variation in their composition, structure and function 
creates a strong scale mismatch between the studied organisms and 
the satellite and airborne observations, typically collected at >5 m 
spatial resolution (Assmann et al., 2020; Siewert & Olofsson, 2020). 

This scale mismatch means that single pixels typically include a mix-
ture of information from many plant species (Somers et al., 2011; 
Wu & Li, 2009) and often non- photosynthetic vegetation and other 
surface types including snow, surface water, bare soil, rock and dead 
plant materials, which makes the interpretation and ‘unmixing’ of 
the data difficult (Myers- Smith et al., 2020; Nelson et al., 2022). In 
addition, due to differences in calibration, resolution and revisit fre-
quency, vegetation patterns and phenology derived from different 
satellite platforms can show large discrepancies between each other 
and with ground observations (Myers- Smith et al., 2020), introduc-
ing significant uncertainties in the understanding of arctic vegeta-
tion dynamics. Therefore, to enhance our understanding of tundra 
vegetation dynamics, measurements with a high spatial resolution 
and relatively broad scale are needed to bridge the gap between tra-
ditional fine- scale ground sampling and broad- scale, low- resolution 
satellite images (Myers- Smith et al., 2020).

To fulfil this need, small piloted airborne platforms have been 
used, which allows the collection of spatial datasets at sub- metre res-
olutions, over large landscapes and away from road systems (Cristóbal 
et al., 2021; Greaves et al., 2019; Nolan et al., 2015; Wainwright 
et al., 2021). However, piloted data collection is often expensive, in-
volves certified flight crews and requires strategic flight planning 
(Chadwick et al., 2020). In addition, weather conditions (e.g. wind, cloud, 
and rain) can change rapidly during the course of a day in the Arctic, 
and conditions suitable for aircraft operation or remote sensing data 
collection oftentimes last only from several minutes to a couple of hours 
(Assmann et al., 2019), challenging the use of piloted airborne platforms.

The recent development and use of small unoccupied aerial 
systems (UASs; <25 kg) as a remote sensing platform has revolu-
tionized the way that ecologists quantify vegetation status and dy-
namics (Anderson & Gaston, 2013; Assmann et al., 2019; Gaffey & 
Bhardwaj, 2020; Messina & Modica, 2020; Yao et al., 2019). The use 
of remote sensing instrumentation on UASs has many advantages 
over traditional field sampling or airborne/satellite platforms. For 
example, land surface observations can be easily obtained at a very 
high resolution (1– 10 cm), allowing for characterization of fine- scale 
details in a manner that closely mirrors ground- based sampling but 
over larger spatial extents (Dainelli et al., 2021a, 2021b). Second, 
flight missions can be deployed at a flexible time frame that is op-
timized to research objectives, such as capturing the phenological 
cycle of target plants (D'Odorico et al., 2020) or repeatedly flying the 
same location over the course of a day to capture diurnal vegetation 
dynamics or solar- induced fluorescence (e.g. SIF; Wang et al., 2021). 
Third, aerosol and other atmospheric effects on remotely sensed im-
agery, that commonly occur from high- altitude airborne and satellite 
platforms, can be largely avoided by flying UASs at low altitude (Yao 
et al., 2019). Lastly, diverse types of remote sensing data are needed 
to describe the composition, structure and function of terrestrial 
vegetation; UASs can be used to collect these data using a variety 

K E Y W O R D S
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of sensors, such as optical red– green– blue (RGB) camera, multispec-
tral and hyperspectral sensors, thermal infrared (TIR) camera and 
light detection and ranging (LiDAR, also commonly known as ‘lidar’) 
sensors. Recent studies have shown that vegetation data collected 
with UASs can have a similar fidelity as direct, in- situ measurements, 
demonstrating the potential of using UASs to characterize fine- 
scale vegetation patterns and processes (Chang et al., 2020; Lucieer 
et al., 2014; Thomson et al., 2021; Yang et al., 2020).

Thus far, the majority of UAS applications have focused on 
low- latitude ecosystems (Dainelli et al., 2021a, 2021b), but inter-
est in using UASs in the Arctic has been steadily increasing. Some 
of the earlier examples include Tømmervik et al. (2014), Juszak 
et al. (2017) and Fraser et al. (2016), where optical and multispec-
tral UASs were used to produce high- resolution maps of arctic plant 
species. Recently, other remote sensing technologies have also been 
used with UASs in the Arctic, including spectroscopy (Malenovský 
et al., 2017; Yang et al., 2020), TIR (Yang et al., 2020, 2021) and 
LiDAR (Collins et al., 2020), all of which offer exciting new oppor-
tunities to advance research. Here, we review how established and 
emerging approaches to UAS- based remote sensing can enhance arc-
tic plant ecology research, increase understanding of the fine- scale 

vegetation composition and function and provide previously missing 
information at a resolution that bridges the gap between traditional, 
ground- based measurements and broad- scale, coarse- resolution 
airborne and satellite remote sensing. Specifically, we first summa-
rize the remote sensing technologies that have been integrated with 
small UAS platforms and the key vegetation and surface data that can 
be obtained through this integration. We then highlight some of the 
most impactful applications of UAS- based remote sensing in plant 
ecology in the Arctic to date and provide examples of how these data 
can be used to address ecological questions. Finally, we provide per-
spectives on the remaining challenges that need to be addressed to 
extend and advance future UAS- based remote sensing in the Arctic.

2  |  UAS REMOTE SENSING TECHNOLOGIES

2.1  |  UAS platforms

The primary features that distinguish the variety of UASs available 
for use by the research community are physical size, the sophistica-
tion of pilot control aids (e.g. auto hover, obstacle avoidance) and 

F I G U R E  1  Illustration of arctic biomes (bottom panel), Unoccupied Aerial System (UAS) remote sensing technologies (middle panel) and 
the key applications of UAS remote sensing for plant research (top panel). The arrows between the elements of the middle and top panels 
indicate the connection between ecological applications and UAS remote sensing technologies. The arrows starting from the edge of the 
entire white box in the middle panel indicate that all available UAS technologies can be used for the specified ecological applications.
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automatic flight control systems (pre- planned, auto- piloted mis-
sions), and the power capacity (battery or fuel) which limits the pay-
load, operating altitude and single flight duration (González- Jorge 
et al., 2017; Hardin et al., 2019). Typically, a large UAS (e.g. >25 kg) 
is more capable of carrying heavy instrumentation and covering 
large study areas, but their development and deployment is more 
expensive and requires complex ground operations, as well as more 
rigorous pilot certifications. Here, we focus on small UASs (either 
fixed- wing or copter) that can be easily transported and deployed 
in arctic environments and require simpler remote pilot certifica-
tions for operation (e.g. in the United States, the Federal Aviation 
Administration Part 107 certification). These small UASs usually 
have a flight duration of <2 h. Small UASs can fly safely at lower alti-
tudes (<100 m above- ground level), enabling data collection at very 
high spatial resolutions (<10 cm).

2.2  |  UAS sensors

In conjunction with the increased interest in their use for high- 
latitude research, there has been a similar increase in available 
sensors that can be deployed on small UAS platforms (Table 1). At 
present, the most common sensor type employed with UASs is the 
standard RGB camera. However, more recent research has started 
to utilize a range of other sensors, including multispectral cameras, 
imaging spectrometers, thermal cameras and LiDAR systems. Here, 
we refer interested readers to Colomina and Molina (2014) and Yao 
et al. (2019) for more details about these sensor types and their ap-
plications on UASs. The integration of these state- of- the- art sensors 
with UASs allows researchers to remotely observe terrestrial veg-
etation and land surfaces at very fine scales (<10 cm) and across the 

principal dimensions of plant biodiversity (e.g. taxonomic, spectral 
and structural; Dainelli et al., 2021a, 2021b).

A portfolio of vegetation and surface properties can be derived 
using the suite of instrumentation shown in Table 1. These prop-
erties include species identity and plant functional type (PFT), 
vegetation structure (e.g. canopy height and cover), plant traits 
and phenology, as well as many other parameters that are useful 
to depict vegetation distribution, energy balance, water cycling 
and carbon sequestration (Table 2). Note that this review focuses 
on vegetation applications; therefore, properties specific to other 
disciplines are not discussed. Table 2 also specifies how each prop-
erty can be derived from different data products created using var-
ious remote sensing technologies. For example, high- density point 
clouds (a set of data points in three- dimensional space) can be cre-
ated from two main technologies: direct laser scanning (i.e. LiDAR) 
and structure- from- motion (SfM) processing of optical RGB imagery 
(refer to Turner et al. (2012) and Westoby et al. (2012) for more de-
tails about SfM). In turn, point clouds can be used to derive a number 
of vegetation structure parameters, such as canopy height, cover 
and biomass (Table 2; Wallace et al., 2016).

3  |  VEGETATION APPLIC ATIONS OF UA S- 
BA SED REMOTE SENSING IN THE ARC TIC

The use of remote sensing instrumentation with UASs spans a wide 
range of applications in the Arctic. Here, we focus on two areas 
that can be particularly impactful for arctic ecology: (1) character-
izing fine- scale patterns in vegetation composition, structure, traits 
and functions (Sections 3.1– 3.5); and (2) scaling fine- scale vegeta-
tion patterns and processes to coarse- scale airborne or satellite 

TA B L E  1  Types of remote sensing sensors that have been implemented on UASs

Sensor Type Description References

Optical RGB camera The most basic sensor type implemented with UAS, equipped 
with a standard complementary meta oxide semiconductor 
(CMOS) sensor through which red– blue– green coloured 
images are collected

Fraser et al. (2016); Yang et al. (2020)

Multispectral camera Captures image data within specific wavelength ranges across 
the electromagnetic (EM) spectrum, commonly including 
blue, green, red, red- edge and near infrared

Assmann et al. (2019); Juszak et al. (2017)

Spectroradiometer Measures the reflectance (or backward scattering) of solar 
radiation from an object or the emission (fluorescence) of 
the EM radiation from an object. A full range spectrometer 
covers the EM spectrum of visible to shortwave infrared 
(0.4– 2.5 μm)

Chang et al. (2020); Malenovský et al. (2017); 
Lucieer et al. (2014)

Thermal camera A device that detects infrared radiation of a surface. Infrared 
cameras are sensitive to wavelengths from about 1 um to 14 
μm

Yang et al. (2020); Hoffmann et al. (2016); 
Hoffmann et al., 2016); Ellsäßer et al. (2020)

Light detection and 
ranging (LiDAR)

An active remote sensing technology that uses light in the form 
of a pulsed laser to measure ranges (variable distances) to 
the Earth, to generate three- dimensional information about 
surface characteristics

Lefsky et al. (2002); Collins et al. (2020)
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platforms to enable a broader- scale understanding of the Arctic 
(Section 3.6; Figure 1).

3.1  |  Vegetation composition and diversity

Temperature increase in the Arctic is driving species distributions to 
shift northward and to higher elevations, altering historical biodiver-
sity patterns that have strong links to ecosystem health and function 
(Wang & Gamon, 2019; Wasowicz et al., 2020). Being able to charac-
terize the spatial patterns and drivers of change in arctic vegetation 
composition and diversity is important for forecasting how arctic 
ecosystems will respond to climate change. However, the scale mis-
match between the small arctic plants and the coarse grain size of 
satellite or airborne observations (Davidson et al., 2016) results in 
significant biases in the characterization of vegetation composition 
and biodiversity (Figure 2; Gamon et al., 2019, 2020).

The primary advantage of using UAS- derived imagery for re-
search into arctic vegetation composition and diversity is its fine 
grain size, which allows individual plants or species to be identified. 
Early applications that classify UAS optical RGB or multispectral im-
agery have proven useful for mapping a number of arctic plant spe-
cies or PFTs. For example, Fraser et al. (2016) classified and mapped 

nine tundra vegetation types (i.e. willow, alder, birch, reindeer lichen, 
moss, sedge tussock, wet graminoid and mixed dwarf shrub heath) 
using RGB and height predictors. Recently, the use of imaging spec-
troscopy or the combined outputs of multi- sensor UASs showed the 
potential to identify more tundra species and improve mapping ac-
curacy. For instance, Yang et al. (2021) used a combination of struc-
tural, spectral and thermal information to differentiate eight shrub 
species that are similar in spectral signatures but vary in canopy 
height and thermal properties. That study also demonstrated that 
the use of TIR imaging helps identify species with unique thermal 
characteristics, such as ‘hot’ canopy lichen species.

Together with high- resolution species or PFT maps, a number of 
key environmental parameters, including terrain features (e.g. eleva-
tion, thaw slumps, and solifluction), surface water distribution (e.g. riv-
ers, drainages, thaw ponds), snow depth, soil moisture and active layer 
depth (e.g. using synthetic aperture radar) could be described at very 
high resolutions and across landscapes using UASs (Fraser et al., 2020; 
Gunn et al., 2021; Xu & Zhu, 2018). This diversity of data can assist 
in analysing vegetation distribution patterns across fine- scale environ-
mental gradients, reducing the need for intensive field measurements. 
For instance, combining 4 years of UAS imagery with field surveys 
and time- series climate data, DelGreco (2018) characterized vegeta-
tion composition in a low- Arctic mir and found high heterogeneity in 

TA B L E  2  Key vegetation properties that can be derived from a UAS and the corresponding remote sensing techniques can produce 
each property. Note that spectral reflectance can be derived from two types of spectrometers: (1) point spectrometers, (2) imaging 
spectrometers. In this table, spectral reflectance indicate reflectance curves derived from both types of spectrometers, while hyperspectral 
imagery only indicates products from imaging spectrometers.

Key surface or 
vegetation property

Data products that can be used to 
derive the vegetation property Sensor type References

Plant species, plant 
function type, 
composition and 
diversity

RGB imagery, Multispectral imagery, 
Hyperspectral imagery, Thermal 
infrared imagery, Canopy height 
model, Point clouds

Optical RGB camera, 
Multispectral camera, Imaging 
spectroradiometer, Thermal 
camera, LiDAR

Lucieer et al. (2014); Fraser et al. (2016); 
Juszak et al. (2017); Alonzo 
et al. (2018); Yang et al. (2020, 2021); 
Thomson et al. (2021)

Surface or vegetation 
albedo

Spectral reflectance, Multispectral 
imagery

Multispectral camera, Imaging or 
point spectroradiometer

Canisius et al. (2019); Xu et al. (2020)

Plant functional traits Spectral reflectance, Thermal 
infrared imagery

Multispectral camera, Imaging 
or point spectroradiometer, 
Thermal camera

Shiklomanov et al. (2019); Thomson 
et al. (2021)

Water content Thermal infrared imagery, Spectral 
reflectance

Thermal camera, Imaging or 
point spectroradiometer, 
Multispectral camera

Ellsäßer et al. (2020); Chan et al. (2021); 
Thomson et al. (2021)

Land- surface or canopy 
‘skin’ temperature

Thermal infrared imagery Thermal camera Jones and Leinonen (2003); Costa 
et al. (2013); Yang et al. (2020); Still 
et al. (2019 & 2021)

Solar- induced 
fluorescence (SIF)

Very- fine spectral resolution 
reflectance

Imaging or point 
spectroradiometer

Chang et al. (2020)

Canopy height, cover, 
biomass

Point clouds LiDAR, Optical RGB camera Anderson and Gaston (2013); Alonzo 
et al. (2018, 2020); Cunliffe 
et al. (2020, 2021)

Digital Elevation Model 
(DEM)

Point clouds LiDAR, Optical RGB camera Fraser et al. (2016); Yang et al. (2020); 
Alonzo et al. (2020)

Seasonality and 
phenology

RGB imagery, Multispectral imagery, 
Hyperspectral imagery, Thermal 
infrared imagery

Optical RGB camera, 
Multispectral camera, Imaging 
spectroradiometer, Thermal 
camera

Assmann et al. (2020)
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F I G U R E  2  Scale effects on vegetation 
composition and diversity analysis in the 
Arctic. The top 6 panel pairs show remote 
sensing images acquired at different 
spatial resolutions (i.e. 0.01, 0.1, 0.5, 1, 5 
and 10 m) in a shrub landscape and the 
species maps derived from these images 
using a random forest classification. 
The bottom 2 panels are vegetation 
composition and Shannon diversity index 
calculated using the species maps shown 
in the top 6 panel pairs. A fusion of UAS- 
derived RGB ortho- mosaic, canopy height 
model, and canopy temperature was used 
for the classification. Non- vegetation 
components were excluded for calculating 
the Shannon diversity. Noticeably, 
decreasing spatial resolution significantly 
confuses species classification, biases 
vegetation composition analysis and 
reduces Shannon diversity. Data used 
for this figure can be found in Serbin 
et al. (2021).
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vegetation dynamics, driven by permafrost thaw and associated in-
creases in soil wetness. With the diverse types of UAS data, specific 
species of interest (e.g. invasive species) can also be readily identified, 
which is essential to understand the emerging impacts of species dis-
tribution or changes on vegetation composition and diversity across 
arctic landscapes (Lucieer et al., 2014; Räsänen et al., 2020). Arctic 
vegetation dynamics and landscape changes are increasingly driven by 
more frequent and severe disturbances such as fire (French et al., 2015; 
McCarty et al., 2020) and rapid permafrost thaw or thermokarst (Jones 
et al., 2015; Turetsky et al., 2019). Before- and- after UAS surveys can 
be used to study the impacts of disturbances on arctic ecosystems and 
monitor post- disturbance vegetation recovery. Upscaling UAS data to 
link with time- series satellite records could then enable the mapping 
of vegetation composition and status over time (see Section 3.6). In 
a recent study by Siewert and Olofsson (2021), the utility of UASs to 
capture herbivore (vole and lemming) impacts on arctic vegetation 
composition and productivity was also investigated, which represents 
an exciting new area of UAS application in the Arctic.

In addition to maps of plant species or PFTs, vegetation compo-
sition and diversity patterns, including functional diversity, can also 
be inferred from analysis of spectral diversity using imaging spectros-
copy sensors installed on UASs (Rocchini et al., 2010, 2018; Schweiger 
et al., 2018; Wang & Gamon, 2019). This approach assumes that ge-
netic background and environment conditions result in differences in 
plant physiology, biochemistry and structure among individuals, spe-
cies, lineages or PFTs that are readily expressed in spectral signatures 
(Cavender- Bares et al., 2020; Ustin & Gamon, 2010). The utility of this 
approach has been demonstrated in a variety of biomes with spectral 
data collected from UASs (Baldeck & Asner, 2013; Carlson et al., 2007), 
and has the potential to be as effective in the Arctic.

3.2  |  Vegetation structure

There are a number of vegetation structural parameters that can be 
derived from UASs using point clouds generated by either LiDAR 
or SfM (Table 1, Bergen et al., 2009). Here, our illustration focuses 
on canopy height, vegetation cover and biomass estimates that 
are needed to investigate the shrubification of arctic ecosystems 
(Cunliffe et al., 2020; Greaves et al., 2015). Similar to high- resolution 
imaging, the main interest of using UASs to quantify arctic vegeta-
tion structure is that point clouds can be generated at ultra- high 
densities (>100 points/m2), a requirement to capture open- canopy, 
sparsely distributed shrubs or to penetrate dense, closed canopies 
as is necessary for constructing a reliable baseline digital elevation 
model (DEM) and canopy height model (CHM; Figure 3; Alonzo 
et al., 2020). For example, using UAS SfM, Fraser et al. (2016) were 
able to obtain a point cloud density of ~30,000 points/m2 at a low- 
arctic shrub tundra landscape. Collins et al. (2020) explored the ef-
ficacy of UAS LiDAR for scanning arctic vegetation and, while less 
dense than SfM, obtained point cloud densities of 300– 500 points/
m2, which is more than 10 times as dense as typical airborne LiDAR 
point clouds (10– 30 points/m2; Alonzo et al., 2020).

To apply UAS LiDAR or SfM for quantifying vegetation height, a 
series of filters must be applied to detect data points returned from 
the bare ground surface (Andersen et al., 2003). Several methods 
exist for this process, including the improved progressive triangu-
lated irregular network densification, but generally, they combine 
highly automated processes with some manual corrections (Kilian 
et al., 1996; Kraus & Pfeifer, 1998). The CHM is defined as the dif-
ference between the digital surface model (DSM) and a DEM in-
terpolated from the ‘ground return’ data points (Figure 3). Fraser 
et al. (2016) and Yang et al. (2021) validated the accuracy of UAS 
SfM for deriving tundra vegetation height against ground mea-
surements in high- Arctic (Tuktoyaktuk, Canada) and low- Arctic 
(Seward Peninsula, Alaska, USA) ecosystems, and reported a RMSE 
of <0.11 m and <0.14 m respectively. Alonzo et al. (2020) compared 
SfM- derived shrub height with LiDAR installed on Goddard's LiDAR, 
Hyperspectral & Thermal (G- LiHT) Imager and found excellent 
agreement between them (Pearson correlation coefficient = 0.89), 
indicating that both techniques are appropriate for measuring low- 
stature arctic plants. However, it should be noted that detecting 
‘ground’ points in regions with dense graminoid cover (e.g. tussock 
tundra) could be challenging, as closed graminoid canopies that 
might be tens of centimetres deep can cover the true bare ground 
(Wang et al., 2016). In those regions, underestimations of shrub 
height may occur with either UAS LiDAR or SfM (Yang et al., 2021).

Estimates of vegetation cover can be made using the fraction 
of point clouds (either LiDAR or SfM based) returned from veg-
etation canopies, compared with non- vegetation returns (Lefsky 
et al., 2002; Nelson et al., 1984). In some cases, the cover of differ-
ent vegetation layers (e.g. tree, shrub and grass layers) may be de-
rived by segmenting the point clouds or CHM into height classes 
that correspond to different vegetation types. Similar to height, 
the detection of the ground surface (i.e. DEM) is an important 
aspect of cover determination. If the ground surface elevation is 
overestimated, vegetation cover will be underestimated, and vice 
versa. Point cloud density is another factor that influences cover 
determination. A low point density could lead to either omission 
of small shrub canopies or an overestimation of cover where 
gaps within dense shrub canopies cannot be detected (Figure 3). 
Vegetation maps derived from UASs can also be used to estimate 
the cover of total green vegetation (Riihimäki et al., 2019) or veg-
etation type of interest (e.g. lichen; Macander et al., 2020; also 
see 3.1). This method is particularly useful in tundra regions where 
the land surface is covered by a single vegetation layer, or the top 
layer is of interest.

The mapping of vegetation height and cover extends to many 
ecological applications in the Arctic. For example, research into the 
impact of shrubification on tundra ecosystems involves a need for 
shrub height which importantly determines vegetation- mediated 
feedbacks to climate warming, such as snow depth, albedo, nu-
trient exchange, hydrology and energy flux (Léger et al., 2019; 
Mekonnen et al., 2021; Myers- Smith et al., 2011; Zhang et al., 2018). 
The estimate of vegetation cover, including lichens, is also use-
ful to understand the distribution and habitat of arctic herbivores, 
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such as caribou (Joly et al., 2007, 2009). In a recent study, Cunliffe 
et al. (2020) showed that above- ground biomass (AGB), another im-
portant structure parameter needed for carbon cycle modelling, can 

be linearly estimated from canopy height (R2 = 0.92), and outper-
formed normalized difference vegetation index (NDVI; R2 < 0.23), 
a commonly used vegetation index for estimating AGB (Berner 
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et al., 2018; Raynolds et al., 2012). In fact, estimating AGB with 
LiDAR or SfM has drawn extra interest for arctic research, as de-
structive ground sampling and laboratory processing of AGB are 
extremely difficult in the remote Arctic (Cunliffe et al., 2020). In 
addition to canopy height, a variety of point cloud- derived metrics 
and their combinations have also been tested to map AGB (Alonzo 
et al., 2018, 2020). The performance of LiDAR and SfM was also 
compared by Alonzo et al. (2020), and both showed a strong ability 
to predict AGB (SfM: R2 > 0.75, RMSE < 1.26 kg/m2; LiDAR: R2 > 0.65, 
RMSE < 1.48 kg/m2).

One caveat to the use of UAS SfM is that SfM can only depict 
the outer surface of vegetation layers and thus contains little or no 
information on sub- canopy vegetation or terrain in areas with dense 
canopies (Lisein et al., 2013; Puliti et al., 2015). LiDAR can better pen-
etrate dense canopies, but it often produces less dense point clouds 
than SfM, typically lacks multispectral information, and is also rela-
tively expensive to collect (Collins et al., 2020). In addition, it is noted 
that plant species vary in their biomass allometry (Berner et al., 2015), 
which may bias structure- based AGB estimates. Integrating structure 
and spectral information into models has been shown promising for 
improving estimates of AGB (Alonzo et al., 2020), and suggests that 
collection of different UAS data types at the same locations may be 
needed to enhance the value of UAS remote sensing in the Arctic.

3.3  |  Plant traits

Plant traits are key attributes of plant canopies or leaves that gen-
eralize the morphological, biochemical, phenological and physiologi-
cal characteristics of an individual, a species or a PFT (Cornelissen 
et al., 2003; Violle et al., 2007). These attributes are one of the pri-
mary controls on the distribution and function of plants and there-
fore underpin many vegetation– climate interactions (Myers- Smith 
et al., 2018; Reich, 2014). For example, traits related to the uptake 
and allocation of resources, such as leaf mass per area, leaf longev-
ity and foliar nutrient content, play a key role in the regulation of 
plant growth rate, primary productivity and decomposition rates 
(Cornwell et al., 2008; Diaz et al., 2004; Lavorel & Garnier, 2002). 
Similarly, canopy structural traits, such as leaf area and plant height, 
influence competition and light- harvesting potential, as well as sur-
face albedo, and are strong determinants of plant biomass and snow 
dynamics that in turn, determine surface energy and water balance 
(Callaghan et al., 2004; Sturm, 2005).

Remote sensing, and spectroscopy in particular (Tables 1 and 
2), has been shown to provide an effective method to remotely 

estimate a host of leaf and canopy traits across agricultural, 
grassland and forest ecosystems (Dahlin et al., 2013; Serbin & 
Townsend, 2020; Singh et al., 2015; Wang et al., 2019). This is be-
cause spectroradiometers can measure very- high- resolution spec-
tral reflectance across a large number of narrow, near- contiguous 
wavebands (Gamon et al., 2019; Ustin et al., 2004) that allow for 
detection of the subtle absorption features of biochemical and 
structural properties in leaves and canopies (Curran, 1989; Kokaly 
et al., 2009; Figure 4). Typically, these mapping efforts based on 
imaging spectroscopy rely on direct connections between field 
plot sampling and remote sensing pixels (e.g. Singh et al., 2015). 
However, in the Arctic, this direct plot- to- pixel scaling is much more 
challenging. The integration of spectroscopic sensors with UASs is 
an ideal tool for this aim (Shiklomanov et al., 2019). By acquiring 
very- high- resolution, cloud- free hyperspectral imagery (Figure 4a) 
over landscapes, spectroscopic sensors on UASs allow for a more 
direct connection between the sampled vegetation and pixel reflec-
tance, which can be used to develop trait scaling approaches and 
maps that can be used to train larger- scale trait models for airborne 
or satellite sensors (Thomson et al., 2021).

There are a number of approaches that can be used to predict 
traits from optical and hyperspectral UAS sensors. These methods 
range from relatively simple spectral vegetation indices (SVIs) which 
use the ratio of two or more spectral bands to infer plant stress, phe-
nology, species diversity or pigment composition (Gamon et al., 1997; 
Goward & Huemmrich, 1992; Mänd et al., 2010; Schweiger, 2020), to 
more complex machine learning and latent variable methods, such 
as partial least squares regression (PLSR; Geladi & Kowalski, 1986; 
Wold et al., 2001), that are used to link pixel reflectance spectra 
with the underlying traits of interest (Burnett et al., 2021; Serbin 
& Townsend, 2020; Wang et al., 2021). It is noted that spectral 
data present a high level of collinearity among wavelengths (Chen 
et al., 2011); latent variable methods like PLSR are effective at han-
dling this issue by projecting the large number of predictors (i.e. 
reflectance at different wavelengths) to a small number of latent 
variables and, at the same time, maximize the correlation between 
the response and latent variables. The inversion of radiative transfer 
models (RTMs), including PROSAIL (Jacquemoud et al., 2009), pres-
ent another method to infer plant traits using spectral data (Féret 
et al., 2011) based on semi- mechanistic links between leaf proper-
ties, canopy structure, sun- sensor geometry and the resulting reflec-
tance signature of leaves and canopies (Kuusk, 2018; Ollinger, 2011). 
Using imaging spectroscopy from UASs together with RTMs could 
allow for fine- scale retrieval of some key traits without requiring in- 
situ calibration data (Shiklomanov et al., 2019), as well as simulating 

F I G U R E  3  Example application of UAS- derived point clouds for deriving canopy height and shrub cover in two representative arctic plant 
communities (a) Alder Tall Shrubland and (b) Alder Savanna. The effects of point cloud density (i.e. 1, 10, 100 points/m2) on deriving canopy 
height and shrub cover are demonstrated in the right three columns (Point Clouds, Canopy Height and Shrub Cover). The height profiles 
(top- left panel in (a) and (b) respectively) correspond to the transects indicated by the dashed red lines shown in the RGB images. The 
histograms (bottom- left panel in (a) and (b) respectively) show the canopy height distribution of the entire landscapes indicated by the RGB 
images. The elevation of the point clouds and canopy height are both measured in metres. Data used for this figure can be found in Serbin 
et al. (2021).
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and testing retrievals across a range of sensor types (Shiklomanov 
et al., 2016).

In addition to spectroscopy, other technologies (e.g. LiDAR and 
TIR) can also be used to predict or improve the prediction of plant 
traits. For example, combining thermal data with spectroscopy can 
help better predict biochemical and physiological traits that affect 
or are affected by leaf temperature (Bishoyi & Sudhakar, 2017; 
Maimaitijiang et al., 2017). The integration of spectroscopy with 
point cloud- derived metrics (e.g. canopy height) is also useful to pre-
dict traits associated with vegetation structure (Ewald et al., 2018). 
Also, being able to simultaneously map vegetation traits, tempera-
ture and structure at a high spatial resolution can aid understanding 
of the response of plant traits to thermal changes among species and 
across tundra landscapes, as well as the vertical profile of plant traits 
within shrub or tree canopies.

However, it is noted that UAS- based remote sensing is not a 
‘silver bullet’ for trait collection, given its limited spatial coverage. 
Trait models developed at a specific site with a particular set of spe-
cies may not be readily extrapolated to other regions or different 
research objectives (Burnett et al., 2021). The development of gen-
eralized trait models, that is, those that work across a wide range 
of species and environments, is an ongoing area of research (e.g. 
Schweiger, 2020; Serbin et al., 2019; Wang, Chlus, et al., 2020; Yan 
et al., 2021), and such models could aid the application and iterative 
improvement of trait mapping in the Arctic using UASs. In addition, 
linking UAS data with hyperspectral data collected from airborne or 
satellite platforms to develop trait models and estimates at larger 
scales represents a unique opportunity to advance pan- Arctic re-
trieval of plant traits using remote sensing. This opportunity could 
substantially benefit from the ongoing and forthcoming spectros-
copy missions, such as those associated with NASA's Arctic- Boreal 
Vulnerability Experiment (ABoVE) and Surface Biology and Geology 
(SBG) mission (Cawse- Nicholson et al., 2021).

3.4  |  Vegetation stress and thermal function

Temperature is fundamentally important to a wide range of veg-
etation and ecosystem processes (Berry & Bjorkman, 1980; 

Chapin, 1983; Körner, 2006). The temperature of plant leaves (Tleaf) 
and canopies (Tcanopy) directly influences a variety of processes, in-
cluding the rate of enzyme- catalysed reactions, membrane fluidity 
and the diffusion and solubility of CO2 and O2, which together con-
trol the rate of photosynthesis and respiration and, subsequently, 
the short- term and chronic responses of plants to changes in their 
environment (Jones, 1992; Still et al., 2019, 2021). Therefore, char-
acterizing Tleaf and Tcanopy is particularly useful for investigating 
vegetation function and health, and quantifying terrestrial veg-
etation responses to climate change (Gersony et al., 2016; Krishna 
et al., 2021; Westermann et al., 2011; Yan et al., 2020). In terms of 
surface temperature variation, Tcanopy is typically quantified with re-
mote sensing platforms that retrieve land surface temperature (LST, 
Table 2) using a TIR sensor or camera (Table 1).

There is a rich history of using TIR imagery to quantify tem-
perature variation across managed or natural ecosystems and to 
assess plant– environment interactions (Costa et al., 2013; Jones & 
Leinonen, 2003). We refer interested readers to Krishna et al. (2021) 
and Still et al. (2019, 2021) for a review of the theory and general 
applications of TIR. Here we focus on the use of TIR sensors on UASs 
for studying arctic ecology, plant function and ecological scaling. The 
heterogeneity of arctic ecosystems is mirrored by a large spatial vari-
ation in LST and energy balance properties (Dietrich & Körner, 2014; 
Scherrer & Körner, 2009; Yang et al., 2021). For example, in a ground- 
based study using a thermal camera, Scherrer and Körner (2009) de-
tected a surface temperature variation of up to 20°C along a 100- m 
subarctic hillslope during clear- sky, mid- summer days. There is also a 
strong seasonality in LST and surface energy exchanges in the Arctic 
(Westermann et al., 2011) that has a strong control on regional to 
global climate feedback (Chae et al., 2015; Zhang et al., 2018).

The high degree of spatial and temporal variation in LST means 
that traditional remote sensing platforms (>60 m resolution, e.g. 
Landsat) may not adequately characterize the fine- scale variation 
in LST and its drivers across arctic landscapes, and thus leads to a 
mischaracterization of underlying surface biophysical changes in 
response to warming conditions (Soliman et al., 2012; Westermann 
et al., 2011). In particular, the mixing of different plant species and 
non- vegetation surfaces (e.g. rocks, soil, water, snow) in coarse- 
resolution satellite pixels makes it challenging to interpret the 

F I G U R E  4  Example of hyperspectral 
UAS imagery from a shrub landscape 
(a) and spectral signatures of key 
arctic tundra plants identified from 
the UAS imagery (b). The spectral 
signatures sensitive to different leaf and 
canopy traits are illustrated in (b). The 
hyperspectral UAS imagery displayed in 
(a) is acquired at a 5 cm spatial resolution. 
Data used for this figure can be found at 
Nelson and Smith, (2022).

(a) (b)
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biological and environmental controls on LST (Cable et al., 2016). 
UAS- borne TIR could fill this gap by providing data at spatial resolu-
tions that are high enough to capture LST variation across different 
surface components, but at the same time, can be repeated with a 
flexible time frame to capture LST dynamics (Simpson et al., 2021). 
In Figure 5, we show an example of UAS- collected LST at a low- 
arctic tundra site. Even in this small landscape of ~1 ha, a high de-
gree of variation in Tcanopy (~5– 20°C) is observed, strongly tied to 
fine- scale patterns within and across plant community types (Breen 
et al., 2020). The description of these fine- scale details will allow re-
searchers to link the variation in LST with surface and below- ground 
features (e.g. vegetation type, non- vegetation components, soil 
moisture, permafrost and disturbance gradients) to better under-
stand the patterns and drivers of the spatiotemporal variation in LST 
(Yang et al., 2021), and to scale up or disaggregate coarse remote 
sensing signals to improve large- scale monitoring and modelling ef-
forts in the Arctic (Lara et al., 2020).

In addition to characterizing fine- scale patterns and drivers of 
LST, linking UAS- collected LST with other observations could yield 
important new insights on the relationships between arctic ecosys-
tem functioning and vegetation patterns. For example, quantifying 
the difference between Tcanopy and Tair is useful for diagnosing spa-
tial and/or temporal patterns in plant thermal regulation (Dietrich & 
Körner, 2014; Jin & Dickinson, 2010; Novick & Katul, 2020; Scherrer 
& Körner, 2009; Zhang et al., 2020). In the Arctic, considerable 

uncertainties remain in our understanding of thermal regulation, 
the role of plant stature and aerodynamics in energy cycling, and 
how future warming could impact plant function and fitness (Aalto 
et al., 2018; Bhatt et al., 2017; Lawrence & Swenson, 2011; Scherrer 
& Körner, 2009). In a recent study using a UAS- borne TIR, Yang 
et al. (2021) found strong spatial variation in thermal decoupling 
across shrub tundra landscapes that varied by PFT, patterns that 
have important implications for biodiversity, energy balance, per-
mafrost thaw of arctic ecosystems (Myers- Smith et al., 2011; Zhang 
et al., 2018). For example, the Tcanopy of deciduous tall shrubs was 
found to be significantly lower than other PFTs (e.g. moss, lichen, 
graminoid and low- lying shrubs) and typically below Tair, which leads 
to localized cooling during the growing season and exerts negative 
feedback to permafrost thaw (Blok et al., 2010; Frost et al., 2018) and 
plant diversity (Yang et al., 2021). Furthermore, using UAS- borne TIR 
in the footprint of eddy covariance towers could improve the char-
acterization and scaling of surface energy exchanges and water cy-
cling from site to ecosystem or biome scale (Ellsäßer et al., 2020; 
Hoffmann et al., 2016).

It is also worth mentioning that warmer and drier conditions in 
the Arctic are likely to increase plant stress, either directly through 
increased water stress or indirectly by prompting insect pest distur-
bances (Bjerke et al., 2014). Early detection of such stresses with 
satellite platforms is often complicated by an initial patchy landscape 
response, which signifies a potentially important and increasing role 

F I G U R E  5  Example application of high- resolution UAS thermal imagery for depicting thermal variation across an arctic tundra landscape. 
The thermal profile and histogram of four representative plant communities are demonstrated in (a) Willow Shrub, (b) Willow Birch Shrub, 
(c) Wet Meadow Tundra, (d) Ericaceous Dwarf Shrub Tundra. The thermal profiles (line plots) in (a– d) correspond to the transects (1 m wide) 
indicated in each panel. The black line in the thermal profile plots represents the mean temperature every 1 m step along the transect, and 
the ribbon region indicates temperature standard deviation within each 1 m step. The arrows on the thermal images indicate the direction of 
the transects, from left to right, that correspond with the thermal profiles. The data used for this analysis are collected using a multi- sensor 
UAS developed by Yang et al. (2020). Data can be found in Serbin et al. (2021).

(a)

(b)

(c)

(d)
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of UAS- borne TIR for identifying plant water or physiological stress 
in the Arctic (Still et al., 2019). In many other ecosystems (e.g. agri-
culture and forest), Tcanopy, Tcanopy − Tair and thermal stress indices 
(e.g. canopy water stress index) derived from UASs have all been 
used to identify fine- scale water stress or insect pest outbreaks 
that create thermal anomalies in Tcanopy (Costa et al., 2013; Jones 
& Leinonen, 2003; Krishna et al., 2021). The combination of spec-
troscopy with TIR may further improve the fidelity of this prac-
tice (Jones & Schofield, 2008; Krishna et al., 2021; Maimaitiyiming 
et al., 2020), aiding in the management of essential natural resources 
in the Arctic. For example, the retrieval of plant traits from spec-
troscopy may allow researchers to examine the impact of invasive 
insects on different plant species, especially where insect foraging 
preference is strongly determined by plant biochemical traits (Wang, 
Zhou, et al., 2020). In addition, research on arctic ecophysiology (e.g. 
photosynthetic and stomatal response to temperature) also requires 
knowledge of the thermal and reflectance characteristic of arctic 
plants (Chapin et al., 2012; Nelson et al., 2022), which can be simul-
taneously obtained from UASs.

3.5  |  Vegetation seasonality and phenology

In a recent review, Myers- Smith et al. (2020) discussed the ex-
traordinary complexity of capturing plant seasonality and phenol-
ogy (e.g. leaf emergence, development, senescence and abscission; 
Schwartz, 2013) in the Arctic, involving spatial heterogeneity, scal-
ing processes and data availability, and highlighted persistent chal-
lenges to addressing this complexity with traditional remote sensing. 
Particularly, the low revisit frequency (>8 days) and the strong cloud 
and fog contamination (Tjernström et al., 2015) curtails the acquisi-
tion of a suitable amount of clear- sky satellite imagery needed to 
establish a robust time- series observation for the curve fitting or 
thresholding used to derive phenometrics (Gu et al., 2009). Not sur-
prisingly, seasonal phenological patterns and decadal trends derived 
from different satellite platforms often do not align with each other 
(Myers- Smith et al., 2020).

The utility of UASs for studying vegetation seasonality and phe-
nology lies in the ability that flight missions can be easily repeated 
with a flexible time frame with revisit time optimized to the pheno-
logical cycle of target species (Anderson & Gaston, 2013; Getzin 
et al., 2012). This flexibility is particularly useful in the context of 
arctic environments, as frequent revisits can be made in spring and 
autumn (key phenological stages) to counter the influence of cloud 
and fog on data availability. In a recent study, Assmann et al. (2020) 
explored the use of a multispectral sensor on a UAS for capturing 
seasonal dynamics in NDVI and revealed high spatial heterogene-
ity in tundra greenness and phenology not captured by satellites. 
In particular, a notable loss in the seasonal variation of NDVI was 
observed when grain size increased from ultra- fine UAS (5 cm) to 
medium- size satellite pixels (30 m), highlighting a need to investi-
gate spatiotemporal scaling processes in arctic plant seasonality 
and phenology.

Notably, the collection of reliable time- series UAS observations 
could face practical challenges in the Arctic. Site access can be limited 
in early spring due to snow coverage. Optimal imaging conditions also 
are rarely present with fluctuating cloud cover, rain and wind condi-
tions within a day and throughout the year, all of which require careful 
calibration among UAS flights (Assmann et al., 2020). Thus far, limited 
work has been done with UAS remote sensing of plant seasonality and 
phenology in the Arctic. Nevertheless, as arctic researchers begin to 
use UASs (e.g. the High- Latitude Drone Ecology Network, HiLDEN), 
time- series observations will be more readily available. Moreover, 
given the various types of instrumentation that can be mounted on 
a UAS, repeated observations provide an opportunity to expand 
seasonality and phenology studies beyond simple vegetation indices 
which have shown limitations in tracking arctic phenology (Assmann 
et al., 2020; Myers- Smith et al., 2020; Wang et al., 2018). For example, 
the seasonal changes in leaf pigments, functional traits, canopy struc-
ture and thermal properties can all be potentially explored with UAS 
spectroscopy, LiDAR and thermal imaging (D'Odorico et al., 2020; 
Keenan et al., 2014; Liu et al., 2015; Still et al., 2019). Furthermore, 
given the high resolution of UAS data, phenological diversity across 
key plant species and environmental gradients can be investigated. 
This is important for predicting the range dynamics of arctic vege-
tation under future climate change, as plant phenology importantly 
controls plant survival (Chuine, 2010) while being highly sensitive to 
micro- climate and varying strongly across plant species (Andresen 
et al., 2018; Collins et al., 2021; Prevéy et al., 2018).

3.6  |  Ecological scaling

Typically, airborne and satellite platforms provide excellent seasonal͐  
and long- term monitoring of ecosystems, but they are limited in the 
ability to identify underlying surface processes (Anderson, 2018; 
Lechner et al., 2012). In contrast, ground- based measurements 
provide detailed information on vegetation structure, composition 
and dynamics, but are limited in spatial extent given most obser-
vations are point or plot measurements and come from only a few 
specific regions (Metcalfe et al., 2018; Schimel et al., 2015; Siewert 
& Olofsson, 2020). This mismatch between the scales (both spatial 
resolution and extent) of in- situ and airborne/satellite observations, 
plus current sampling biases, makes it challenging to scale, map 
and describe broad- scale vegetation changes in the heterogeneous 
Arctic (Assmann et al., 2020; Myers- Smith et al., 2020; Siewert & 
Olofsson, 2020; Yang et al., 2021).

UAS remote sensing offers unique opportunities to bridge this 
scale gap (Siewert & Olofsson, 2020). In Sections 3.1– 3.5, we illus-
trated that UAS data can capture many sources of vegetation and 
surface heterogeneity that are present in arctic ecosystems, pro-
viding a tool to depict fine- scale vegetation patterns and processes, 
similar to traditional ground surveys but over larger spatial extents. 
These fine- scale details enable an easy connection with in- situ vege-
tation surveys to extrapolate ground observations over larger areas, 
which in turn facilitates landscape- scale understanding of vegetation 
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dynamics in the Arctic. For example, Siewert and Olofsson (2020) 
showed that NDVI derived from ground measurements in the north-
ern Arctic agrees better with estimates derived from UAS imagery 
with a 12 cm resolution (R2 = 0.89) than satellite imagery at 10 m, 
30 m and 250 m resolutions (R2 = 0.2, 0.16, 0.01 respectively). This 
scale dependency is propagated to strongly influence the estimation 
of AGB and GPP (gross primary productivity) using NDVI (e.g. % bias 
of estimated AGB: 17.0% 30 m, 21.0% 75 m).

The integration of ground observations with UAS data can expand 
the spatial extent of ecological studies, but UASs are not intended nor 
expected to collect observations over the large areas needed for mon-
itoring vegetation changes across the Arctic (Myers- Smith et al., 2020). 
However, UAS data can be a useful proxy of ground measurements 
to further calibrate models built with airborne or spaceborne obser-
vations to assess larger- scale ecological patterns, which represents 
an exciting future research opportunity in the Arctic (Myers- Smith 
et al., 2020). For example, Thomson et al. (2021) explored the feasibility 
of using trait maps developed with a multispectral UAS to upscale plant 
water content to the wider landscape using Sentinel- 2A imagery (10 m). 
Similarly, Riihimäki et al. (2019) used UAS maps as training data and 
built SVI- based models to estimate green vegetation cover from Planet 
Cubesat (3 m), Sentinel- 2A (10 m) and Landsat 8 OLI (30 m).

Integrating UAS data with satellite and airborne imagery can also 
help improve our mechanistic understanding of the links between 
fine- scale vegetation dynamics and broader- scale ecological pat-
terns and trends (Myers- Smith et al., 2020). For example, using data-
sets collected with a multi- sensor UAS, Yang et al. (2021) showed 
that landscape- scale variation in vegetation thermoregulation and 
canopy structure is largely driven by PFT composition, as well as 
trait variation within each PFT. By linking vegetation properties with 
UAS data at different scales, the scale at which dynamic processes 
occur and the drivers of large- scale variation can also be determined 
(Assmann et al., 2020; Siewert & Olofsson, 2020). For example, 
Assmann et al. (2020) captured plant growth dynamics across tun-
dra landscapes by investigating the seasonal change in tundra NDVI 
with a multispectral UAS. They identified that a resolution of ~50 cm 
is the optimal grain size for monitoring arctic greening in dryas- vetch 
and tussock- sedge communities and showed a loss of seasonal vari-
ation in the spatial heterogeneity of landscape greenness when ag-
gregating from UAS pixels (50 cm) to medium- grained satellite pixels 
(10– 30 m). These types of applications present new opportunities 
to identify how fine- scale vegetation and surface heterogeneity in-
fluences the spatiotemporal patterns of coarse remote sensing sig-
nals, improving our ability to interpret and describe remotely sensed 
changes across the Arctic (Myers- Smith et al., 2020).

4  |  FROM DESCRIBING VEGETATION TO 
ANSWERING ECOLOGIC AL QUESTIONS

How does UAS data can be used to improve ecological approaches 
and address fundamental ecological questions pertinent to the Arctic? 
Ecologists seek to understand how organisms (i.e. plants in this Review) 

interact with each other and their abiotic environment (Sutherland 
et al., 2013; Tansley, 1935). In the Arctic, this objective is typified by 
the need to quantify, understand and predict how vegetation is re-
sponding to a changing climate and the impact of these changes on 
the larger arctic biome. However, presently, our ability to address this 
objective has been limited by significant data and knowledge gaps that 
hinder our ecological understanding of the Arctic and increases model 
uncertainty associated with predicting the fate of the Arctic (Fisher, 
Hayes, et al., 2018; Fisher, Koven, et al., 2018; Metcalfe et al., 2018).

In Table 3, we summarize some of the most pressing ecologi-
cal questions that could be potentially addressed through the use 
of UASs. These questions span five key research areas, includ-
ing fine- scale vegetation and surface heterogeneity, shrubifica-
tion, arctic ‘greening’, disturbance and process model uncertainty 
(Fisher, Hayes, et al., 2018; Fisher, Koven, et al., 2018; Mekonnen 
et al., 2021; Myers- Smith et al., 2011; Rogers et al., 2022). For each 
ecological question, we specify the measurement need to address 
the question and how UASs can fill this need by using the technolo-
gies or data presented in Section 3.

One key aspect of arctic ecology research that UAS remote sens-
ing could revolutionize is the parameterization and benchmarking of 
process models used to simulate arctic vegetation. These are key steps 
to reducing model uncertainty and are required for robust prediction 
of change in the Arctic (Fisher et al., 2014; Fisher, Hayes, et al., 2018; 
Fisher, Koven, et al., 2018). In process models, the diversity of plant 
species and their traits are typically binned into PFTs. However, the 
current classification of tundra PFTs has focused on a few primary 
classes, for example, evergreen and deciduous shrubs, graminoids, 
forbs, moss and lichen (Wullschleger et al., 2014). The parameteriza-
tion of these PFTs also largely relies on scant ground measurements 
or assumptions from temperate species (Rogers et al., 2017, 2019), 
which leads to significantly higher model uncertainties in the Arctic 
than other biomes. Here, we expect that as its applications extend in 
the Arctic, measurements from UASs could play an important role in 
filling this gap. For example, the detailed identification and mapping 
of PFTs with UASs that consider functional and structural differences 
across plants can be directly used to inform landscape- scale models; 
these fine- scale classifications can also be scaled up to create vegeta-
tion composition maps using airborne or satellite platforms to inform 
regional or biome- scale models. Similarly, the diverse and species- 
specific structure, traits and function that can be derived from UASs 
provide a relatively easy avenue to parameterize PFTs, given suffi-
cient UAS data are collected in key locations in the Arctic or methods 
are developed to connect UAS information to broad- scale remote 
sensing data (e.g. Thomson et al., 2021).

5  |  PERSPEC TIVES,  CHALLENGES AND 
FUTURE DIREC TIONS

In an era of unprecedented change in the Arctic, understanding plant 
responses to novel environmental conditions at local, watershed 
and larger scales is essential for our capacity to forecast the fate of 
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TA B L E  3  Key arctic ecological questions or knowledge gaps that UAS can help or partially help with.

Research area
Key ecological questions or 
knowledge gaps Measurement needs Role of UAS platforms

Vegetation 
distribution 
and surface 
heterogeneity

How does the distribution 
of Arctic vegetation 
vary among species and 
locations in the Arctic?

Species- specific vegetation 
maps across Arctic 
landscapes

Provide data to improve identification and mapping 
of plant species (3.1) at fine scales and provide 
training data for larger mapping efforts

How do plant biophysical 
properties differ among 
vegetation types in the 
same locality?

Species- specific or fine- 
scale estimates of plant 
biophysical properties

Very high- resolution maps of vegetation structure, 
traits and function (3.2– 3.5)

What is the connection 
between fine- scale 
vegetation and surface 
patterns with larger 
ecosystem processes?

Detailed information on 
vegetation composition, 
structure, and function as it 
relates to fine- scale surface 
features (e.g. topography, 
moisture and disturbance 
events).

Linking UAS measurements of vegetation and 
surface properties with ecosystem- scale 
measurements from flux towers or satellites 
can help explain the drivers of variation in 
ecosystem properties (3.1– 3.6)

Shrubification What controls Arctic 
shrubification?

High- fidelity shrub cover and 
type maps linked with 
environmental gradients 
and disturbance history

Fine- scale characterization of shrub species, 
traits, biophysical properties. Connect fine- 
scale variation with landscape features (e.g. 
topography, water and disturbances) to identify 
abiotic and disturbance controls on shrub 
distribution (3.1– 3.5)

How does shrubification affect 
plant biodiversity?

Accurate vegetation 
composition and diversity 
maps together with shrub 
fractional cover information

High- resolution maps of vegetation fractional cover 
that can be used to train regional mapping 
efforts (3.1)

How does shrubification 
interact with snow 
accumulation and 
permafrost thaw?

Spatially detailed snow depth 
and thaw measurements 
in relation to shrub 
distribution, cover and 
structure

Create high- resolution maps of shrub structure, 
distribution and cover to link with other 
remotely sensed (SAR, LiDAR) or field survey 
measurements of snow and thaw depth data 
(3.1 and 3.2)

How does shrubification affect 
surface energy and water 
exchange?

Accurate characterization 
of shrub LAI, albedo and 
surface ‘skin’ temperature 
across shrub types and 
environmental gradients

A fine- scale understanding of the influence of 
shrubs on landscape vegetation dynamics and 
sensible heat exchanges, to inform broader 
scaling, mapping and modelling efforts (3.2 and 
3.4)

Arctic greening What are the landscape 
controls on the rate of 
‘Arctic greening’?

Improved understanding of the 
local- scale drivers of the 
larger regional variability 
in Arctic greening and its 
connection with changes 
in vegetation and abiotic 
environments

Collection of UAS data for select areas can help 
resolve fine- scale drivers (e.g. shrubification, 
sub- pixel disturbance, changes in species 
composition) of the larger- scale greening signal 
in coarse- resolution satellite data. Collection of 
UAS data at key phenophases can be used to 
explore how vegetation seasonality influences 
greenness. UAS observations can also be used 
to parameterize radiative transfer models to 
simulate how different landscape features 
influence the emergent reflectance patterns at 
coarse resolution (3.1– 3.3 and 3.5– 3.6)

How does scale (both spatial 
and temporal) affect our 
understanding of greening 
in the Arctic?

Disturbance How do the effects of 
disturbance type and 
extent vary across different 
vegetation and ecosystem 
types?

High- resolution disturbance 
area mapping in relation to 
pre- disturbance vegetation 
type, topography and soil 
conditions

Paired UAS flights before and after disturbance 
can be used to investigate patterns of change in 
relation to disturbance extent (3.1)

How does disturbance severity 
control recovery patterns 
of tundra vegetation?

Time- series and high- resolution 
vegetation composition 
and status mapping before 
and after disturbance (fire, 
permafrost thaw or pest 
outbreaks)

Repeat UAS flights to train larger upscaling 
methods to enable time- series monitoring 
of vegetation composition and status during 
recovery (3.1 and 3.6)After permafrost thaw, what is 

the successional trajectory 
of the vegetation? (Continues)
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these ecosystems (Fisher et al., 2014; Mekonnen et al., 2021; Rogers 
et al., 2022). In Sections 3 and 4, we highlighted some of the most 
impactful applications of UASs in the Arctic, and below we lay out 
the next key steps, as well as the persistent challenges facing wide-
spread use of UASs in the Arctic.

5.1  |  Challenges and caveats of flying UASs 
in the Arctic

The short growing season, typically characterized by weather that is 
unsuitable for UAS operations, means that flying a UAS in the Arctic 
is particularly challenging. To minimize variation in solar angle, fly-
ing around solar noon is usually suggested (Assmann et al., 2019). 
However, in some areas, windy conditions can hamper effective 
flight control, increase battery usage, delay or ground UAS flights. 
On par with these logistics challenges, technical issues, such as air-
craft material failure, compass issues and software failure, are also 
not uncommon in the Arctic— all of which significantly increase 
time and cost while challenging UAS flight planning and operation 
(Assmann et al., 2019).

To maximize UAS data coverage and impact on larger- scale re-
search, it is important to optimize flight plans and operations. In 
practice, this can be challenging as small UASs tend to have short 
flight times (usually 15– 20 min). In order to cover a large study 
site, successive flights are often needed, which rely on consistent 
weather conditions and multiple battery sets. The general lack of 
accessible power at remote locations means that most researchers 
will either need a large number of batteries, a generator for on- site 
recharge, or both. In the future, these challenges may be mitigated 
by new battery technology, more efficient electric motors and con-
trollers, as well as new platform designs or options (e.g. fixed- wing 
vs. copter) that may be able to extend flight times for specific map-
ping missions. The increased development and use of multi- sensor 
UASs would also largely reduce the complexity of obtaining multiple 
data types by facilitating simultaneous collection (Yang et al., 2020).

Another key consideration when leveraging UASs for ecological 
applications is the high spatial resolution of the data. While this is 
a primary benefit of UAS observations, it also raises challenges for 
image analysis. Raw UAS imagery may suffer from ‘salt- and- pepper’ 
noise artefacts (an impulse type of noise that commonly exists in 
high- resolution images, especially when the pixel size is smaller than 

Research area
Key ecological questions or 
knowledge gaps Measurement needs Role of UAS platforms

Model uncertainty What PFTs currently populate 
the Arctic?

Improved estimates of 
fractional cover of PFTs

High- resolution and detailed PFT mapping and 
upscaling to satellite platforms (3.1)

What is the current structure 
and stand biomass in the 
Arctic?

Better estimates of standing 
biomass and canopy 
structure and in relation to 
disturbance and land- use 
history

Characterize standing vegetation height, structure 
and biomass properties (3.2). Validation of larger 
biomass mapping efforts (3.3)

How do we improve the 
parameterization of 
terrestrial biosphere 
models in the Arctic?

Measure key parameters 
currently in models but 
poorly represented and 
characterize their variation 
along climatic gradients

UAS platforms can be used to develop fine- scale 
maps of plant traits and then link the variation in 
traits with environmental and climatic gradients 
in the Arctic (3.3)

Vegetation phenology is not 
driven by biology or abiotic 
conditions but is prescribed

Monitoring of vegetation 
seasonality at a fine- 
resolution at landscape 
scales

Repeat flights can be used to define phenological 
timing. Fine- scale maps of surface topography 
and snow distribution from UASs can be 
connected with phenological observations to 
study how abiotic features regulate vegetation 
seasonality (3.3)

Green leaves do not 
always equate with full 
photosynthetic capacity

Improved understanding of the 
controls on photosynthetic 
capacity and stress 
tolerance including abiotic 
drivers, and biotic and 
temporal variation

Imaging spectroscopy with UASs will enable high- 
resolution mapping of photosynthetic traits 
and linking with surface and environmental 
gradients (3.3). Thermal imaging and SIF 
from UAS allows for the characterization of 
photosynthetic activity at the scale of individual 
plants

When are Arctic plants 
photosynthesizing?

How consistent is 
photosynthetic 
temperature response 
across the landscape?

What is the impact of scale on 
model predictions?

Multi- scale characterization 
of vegetation and 
environmental 
measurements

Fill the scaling gap between leaf/individual scale 
measurements of traits and other airborne and 
spaceborne remote sensing platforms

TA B L E  3  (Continued)

 13652745, 2022, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.13976 by B

rookhaven N
ational L

aboratory, W
iley O

nline L
ibrary on [20/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  2827Journal of EcologyYANG et al.

the studied object; Azzeh et al., 2018). Given this, most studies ex-
ploring ecological patterns and processes should use object- based 
methods, like species mapping which requires the consideration of 
object size (Yang et al., 2020, 2021). When stitching multiple flights 
together is required to cover a large study area, it is also import-
ant to conduct calibration or standardization to ensure consistency 
across different times of day, illumination conditions or changes un-
related to changes in the surface properties being observed (Hakala 
et al., 2018). The use of ground control points may also be needed 
to connect datasets from multiple flights and confirm correct 
geolocation.

5.2  |  Challenges and next steps for UAS data 
processing and sharing

The spatial resolution of UAS imagery creates significant challenges 
related to data volume and processing. At high resolutions (<10 cm), 
even flights over small areas (e.g. 200 × 300 m) using a standard RGB 
camera can generate data in excess of tens of gigabytes (Wyngaard 
et al., 2019). UAS flights are often conducted as successive overlap-
ping missions to cover a study area (Gillan et al., 2021), and in some 
cases will include data collected from multiple instruments simulta-
neously (e.g. Yang et al., 2020). To store, process and use these data, 
large local or cloud storage, fast disc access and high- performance 
computers are usually needed.

Different UAS platforms and sensors may also require differ-
ent software and workflows to post- process data. For basic SfM 
processing, commercial software packages are commonly used, 
and while these software packages have rapidly evolved to pro-
vide reasonably efficient processing, the memory and storage 
requirements may still exceed standard end- user computers, and 
these software can be expensive. Alternatively, open- source plat-
forms for SfM processing have become more common, including 
OpenDroneMap (https://www.opend ronem ap.org/), which can 
be run using a web interface, where processing jobs can be sub-
mitted to local or remote compute clusters. The capacity to set up 
ad- hoc, on- demand UAS data processing frameworks using open- 
source tools such as OpenDroneMap represents an important di-
rection in the development of regular UAS monitoring of critical 
ecosystems.

For other instrumentation, post- processing may have other chal-
lenges. For example, the processing of LiDAR may require linking 
flight data with ground calibration targets and the interpolation of 
ground return points to get accurate vegetation height information 
(Lefsky et al., 2002). For TIR, the use of a calibration constant or 
in- image standard to generate absolute temperature retrievals is 
required, and ambient conditions and other aspects related to sun- 
sensor geometry should be considered during processing (Messina 
& Modica, 2020). Similarly, the processing of UAS- borne imaging 
spectroscopy may require the collection of calibration targets and 
atmospheric corrections to retrieve at- surface reflectance (Adão 
et al., 2017).

UAS data are usually stored onboard the platform and 
downloaded after a flight. This can raise data provenance chal-
lenges, as it is important that the integrated UAS and flight 
control systems correctly link the key metadata for each mea-
surement that is necessary to establish data quality assurance 
and control, and for spatial referencing during post- processing. 
Managing in- flight metadata (flight planning, mission logs, 
atmospheric optical conditions) is also important for down- 
stream remote sensing normalization and for atmospheric 
correction of multi-  and hyper- spectral data into surface re-
flectance data products.

Long- term data preservation is also an important and often 
overlooked aspect of UAS research. Community adoption of com-
mon data and metadata reporting formats is necessary to aid in the 
interoperability of UAS data products. Currently, there are no ded-
icated archives for UAS data storage, nor are there common stan-
dards for baseline metadata to ensure long- term data preservation. 
The increased use of UASs for arctic research will require new means 
for data archiving, sharing and access in order to facilitate wider use 
and allow larger synthesis activities (Cunliffe et al., 2021). Traditional 
data sharing approaches (e.g. static data archiving) are insufficient 
for effective storage, discovery and sharing of large datasets, like 
UAS data.

UAS data should be accessible through an external, well- 
documented application programmer interface (API) that can be 
coupled with open- source tools for data discovery, subsetting 
and extraction directly within data analysis workflows. New or 
expanded investments in open- source, cloud- based, secure and 
version- controlled data storage platforms that have hierarchical 
storage capabilities should facilitate ease of discovery and use 
of UAS data. A notable example is the CyVerse Open Science 
Workspace (https://cyver se.org/), which supports hierarchical 
data storage, includes file and archive version control, provides 
digital object identifiers (DOIs) for data and uses an API for data 
search, discovery and retrieval (Gillan et al., 2019, 2021; Swetnam 
et al., 2017). Platforms like CyVerse also provide cloud computa-
tion and analysis support, facilitating a fully cloud- based data pro-
cessing, storage and publishing workflow (e.g. Gillan et al., 2021). 
UAS data products can also be hosted over internet protocols such 
as HTTP(S), cloud storage buckets (Amazon S3 and Google Cloud 
Services) and image collections in the Google Earth Engine (GEE). 
Similarly, UAS datasets stored in the cloud benefit from a simple 
additional step to store these files as Cloud Optimized GeoTIFFs 
which are optimized for data storage, subsetting and processing 
in the cloud without any additional server software requirements 
(https://www.cogeo.org/). Using these tools and repositories can 
then facilitate rapid integration into other cloud- based tools, in-
cluding GEE, as well as popular extensions of these tools into R 
and Python, allowing for fully cloud- based analyses. For example, 
by storing UAS data in a Google Cloud bucket, it is possible to 
share images and image collections through GEE, thus making it 
easier for the broader use of datasets in scripted workflows that 
leverage other spatial datasets.
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5.3  |  Future directions of UAS remote sensing 
in the Arctic

The expanded use of UASs is an important next step to improve our 
understanding of the fine- scale patterns and drivers of plant composi-
tion, structure, function and change in the Arctic. By combining these 
platforms with traditional field surveys and plant ecology research, as 
well as integrating with other airborne and satellite data, we will be 
able to develop the new techniques and methods necessary to bet-
ter monitor and model this globally important and climatically sen-
sitive region (Cunliffe et al., 2020; Siewert & Olofsson, 2020; Yang 
et al., 2021). Therefore, we strongly advocate for the increased use 
of optical RGB and multispectral UASs, but also encourage efforts to 
use other sensors, such as thermal cameras, imaging spectrometers, 
LiDAR and SIF sensors. In particular, SIF sensors on UASs have already 
been shown to be especially useful for capturing photosynthesis- 
related vegetation properties and functions, like GPP, in low- latitude 
ecosystems (Chang et al., 2020; Wang et al., 2021). The widespread 
use of a greater range of sensors will accelerate our ability to under-
stand fine- scale variation in the form and function of arctic plants and 
bridge the gap between ground and satellite observations.

Using UASs to investigate fine- scale vegetation patterns and 
foster ecological scaling represents their major applications in the 
Arctic, but the collection of UAS data also extends to many other 
ecological applications or different disciplines that are not included 
in this review (Gaffey & Bhardwaj, 2020). For example, the con-
struction of a reliable DEM is important to hydrological studies 
that capture or model surface or soil water across arctic landscapes 
(Vélez- Nicolás et al., 2021). In addition, by flying UASs both prior 
to and after snowmelt, snow depth can also be mapped, which is 
important to understand shrub– snow interactions in the Arctic 
(Lawrence & Swenson, 2011). Further exploring the use of UASs in 
different areas, and synthesizing them with vegetation applications, 
will be valuable to understanding the patterns, drivers of change and 
impacts of vegetation dynamics in the Arctic.

In light of the practical challenges of working in the Arctic, new 
strategies can be used to increase the spatial and temporal cover-
age of UAS data. In the past decade, citizen science has grown im-
mensely and is regarded as an important tool for studies in ecology 
(Dickinson et al., 2010; McKinley et al., 2017). With the advent of 
low- price UASs and sensors, citizen science holds a great potential 
to increase site accessibility and foster long- term ecosystem moni-
toring of arctic ecosystems with UASs.

To sum up, with the fastest warming on Earth, widespread veg-
etation and land surface change is occurring in the Arctic. In order 
to accurately assess these changes and project their impacts on 
arctic ecosystems, we must address the challenge pertinent to this 
region— a high degree of spatial heterogeneity in vegetation distri-
bution, land surface structure and environmental conditions. The 
deployment and use of new technologies, like UASs, is an import-
ant part of the solution to address this challenge. Through this re-
view, we hope to shed light on the research opportunities provided 
by UASs and facilitate a broader use of this technology to improve 

our description, understanding, modelling and prediction of arctic 
ecosystems.
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