

Superconducting Magnet Division

HTS Coils for High Field Hybrid FCC Dipoles

Ramesh Gupta Brookhaven National Laboratory

FCC Week 2015
23-27 March 2015
Marriott Georgetown Hotel

Overview

- HTS Coils in a Hybrid Design for a ~20 T Dipole
- Technique to Reduce Magnetization Effects in Superconducting Magnets Built with Tapes
 - > This could be a game changer for ReBCO
- HTS Coil R&D at BNL and Future Possibilities
- Summary

RY

Superconducting Magnet Division_

HTS/LTS High Field (~20 T) Hybrid Dipole (Racetrack Coil Designs)

Hybrid design to minimize cost:

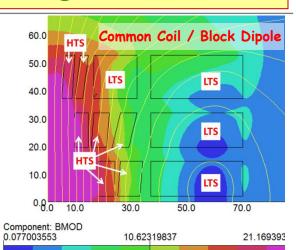
- HTS in high field region for ~4 T
- LTS in low field region for ~16 T

HTS options

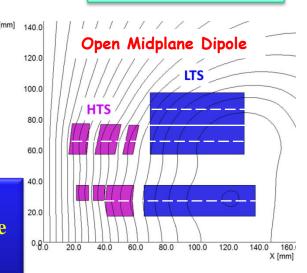
- Bi2212
 - Advantages: Round wire, high current Rutherford cable
 - Challenges: Limited production & long term economic viability
 Degradation in performance under large stresses

- ReBCO

- Advantages: Larger production from multiple vendors


 Can tolerate large stresses as in high field magnets
- Challenges: Tape form could cause large magnetization

 Lower current without new or complex cable


Focus of this presentation:

Possibility of making ReBCO based hybrid magnets more attractive

Both in performance, and in cost ...

Cross-section (1/4 of one aperture)

Magnetization in ReBCO Magnets

• Issue:

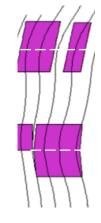
Magnet Division

- ReBCO is primarily available in tape form
- Magnetization is large in cosine theta or common coil designs
 - > related to tape width: 12 mm for high current conductors
- Solution #1 : conductor design
 - Round wire
 - Striated tape
- Solution #2 : coil design
 - See what we can do to use and <u>enhance</u> the strengths of the conductor

Next few slides on the technique

Design Technique to Reduce Magnetization

Superconducting Magnet Division


• Conductor magnetization and hence the persistent-current induced harmonics are related to the width of the conductor (or rather filament) subtended

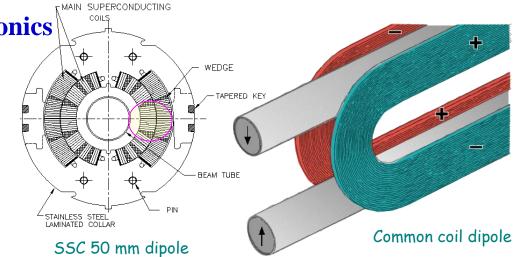
"perpendicular to the field"

- In most Nb-Ti magnets, the filament size is $\sim 6 \mu m$
 - higher in Nb₃Sn, but usually <100 μm
- In ReBCO it is considered to be ~12 mm for high current tapes

Design Technique to Reduce Magnetization Effects:

- Align the tape conductor (thickness few μm) such that primarily the
 "narrow side sees the perpendicular field"

Effective filament size 12 mm \longrightarrow a few μ m in an ideal design \succ small in a real design, depending on the optimization



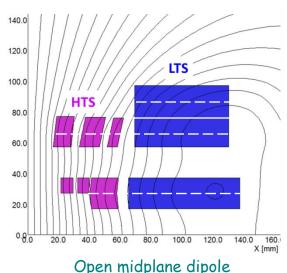
Comparing Designs for Magnetization

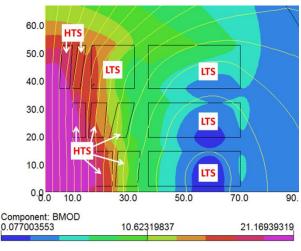
Superconducting Magnet Division

If persistent current induced harmonics is only the figure of merit

➤ Bad designs for HTS tape large area covered by the perpendicular component of the field

> Good designs for tape (small area curved by the perpendicular component of the field)


Technique to Reduce Magnetization Effects in Superconducting Magnets Built with Tapes


R. Gupta¹, A. Ghosh¹, R. Scanlan² and R. Weggel²

BNL Magnet Division Note: MDN-676-41 ¹Brookhaven National Laboratory, Upton, NY 11973 USA

²Particle Beam Lasers, Inc., 18925 Dearborn Street, Northridge, CA 91324 USA

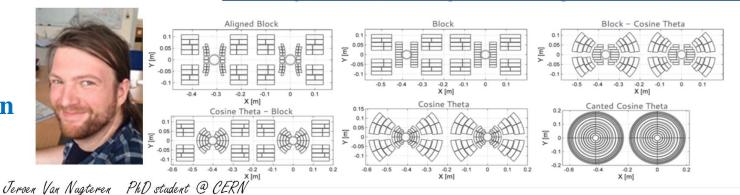
Persistent current induced harmonics should come down dramatically

FCC dipole

Ramesh Gupta

Goal: Magnetization

- Reduce magnetization to a reasonable amount.
- Try to determine variation in persistent current induced harmonics between coil to coil to determine the "systematic" and "RMS" variations.
- We don't have to be perfect in making it zero. As long as it is manageable with correctors, etc., it may be good enough.


Superconducting Magnet Division

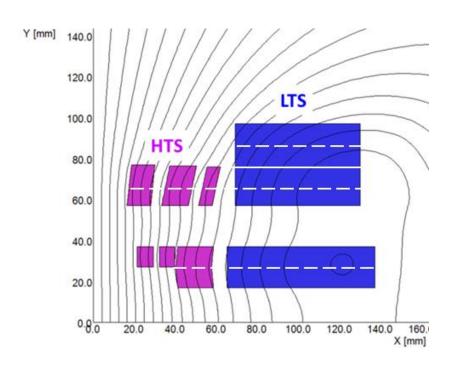
Other Benefits of Aligned Tape Design (conductor efficiency)

Survey of 20 T Magnet design possibilities

Courtesy:

J. Van Nugteren **CERN**

One of many such plots and 1000's of magnet x section designs in total 0.55 Cos-Theta - Block Aligned Blo Cos-Theta 0.35 0.35 0.4 0.45 0.55 0.65 sc costs [AU/m]



Other Benefits of Such Designs (2)

Lorentz forces are primarily on the wide face of the conductor

$$I \times B$$

- ➤ ReBCO can tolerate large stresses on the wide side
- Blocks are easy to segment
 - Between HTS and LTS
 - > For stress management

Superconducting Magnet Division_

PBL/BNL/E2P DoE Phase II STTR (just funded)

Project Summary/Abstract

STTR:

Small Business

Technology Transfer

A unique opportunity to investigate the idea and to develop the basic technology

Company Name & Address: Particle Beam Lasers, Inc.

18925 Dearborn Street

Northridge, CA 91324-2807

Principal Investigator: Ramesh C. Gupta

Project Title: A Hybrid HTS/LTS Superconductor Design for

High-Field Accelerator Magnets

Topic No: 33 Superconductor Technologies for Particle Accelerators

Subtopic: (b) Superconducting Magnet Technology

Abstract:

Proposed designs for a Future Circular Collider (FCC) to collide protons with a center-of-mass energy of 100 TeV call for dipoles with fields up to 20 Tesla (T). This is significantly beyond the present technology and requires using High Temperature Superconductors (HTS). The recent Particle Physics Project Prioritization Panel (P5), organized by the U.S. Department of Energy (DOE), strongly supports the U.S. maintaining its leadership in superconducting magnet technology. This STTR proposes to design, build and test a proof-of-principle hybrid dipole that uses HTS in its highest-field regions and less-expensive low-temperature superconductors, Nb₃Sn and NbTi, where they suffice. During Phase I, a coil block with ReBCO tape with Kapton insulation was fabricated and tested, confirming that winding had no measurable degradation. A major concern in the magnets built with ReBCO is the large field errors associated with the conductor magnetization in the tape geometry. The major discovery during Phase I was finding a solution to reduce those errors considerably. Based on this and work performed under previous SBIR/STTRs and other programs, HTS coils will be designed and built in Phase II and then integrated with the existing Nb₃Sn common coil dipole. This provides a unique opportunity to test the concept in a proof-of-principle hybrid magnet with field approaching 15 T. A 20 T hybrid dipole design will also be developed with the goal of satisfying the requirements of accelerator magnets and reducing cost.

BROOKHAVEN NATIONAL LABORATORY Superconducting

Magnet Division

Objectives of PBL/BNL/E2P STTR

Technique to Reduce Field Errors Due to Magnetization in HTS Tape
Proof-of-Principle Demonstration Magnet
Optimization of the High Field Accelerator Magnet Design
Coil Ends (practice windings)
Cost Reduction
Commercialization and Technology Transfer to E2P

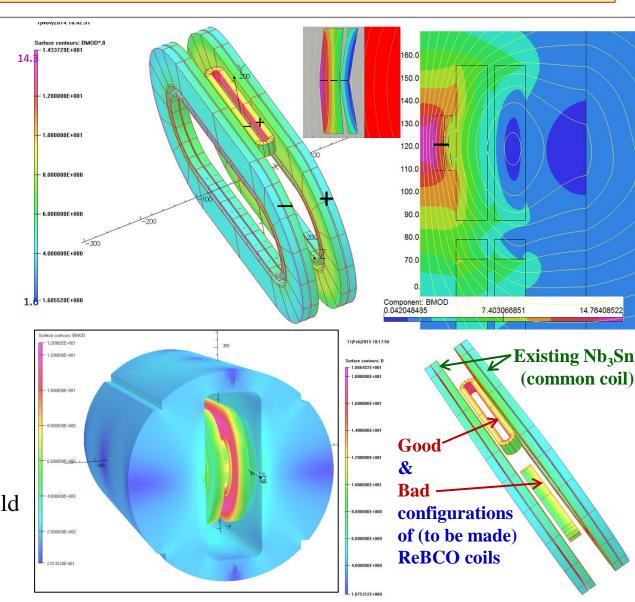
Previous noteworthy PBL/BNL SBIR/STTR:

Development of high field HTS solenoid and HTS cosine theta coils

> Resulted in significant development in HTS magnet technology (Thank you SBIR/STTR office)

Test of Principle in A Real Magnet

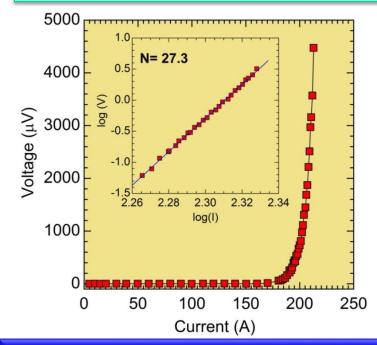
Superconducting Magnet Division_ (measure and compare magnetization in two configurations)


Common Coil Dipole with a large open space

 Coils can be inserted without opening the magnet

A Hybrid HTS/LTS ... High-Field Accelerator Magnets

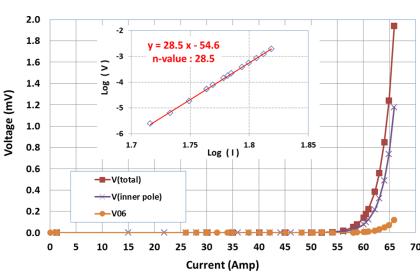
> STTR Phase II PBL/BNL/E2P (funded)


Superconducting Magnet Division_

Cos (θ) Coil - PBL/BNL STTR (Willen) (12 mm, one block, 77 K)

The coil block made here is similar to what would be needed for testing reduction in magnetization

No measurable degradation@77 K


BROOKHAVEN

NATIONAL LABORATORY

Superconducting

Cos (θ) Coil - PBL/BNL STTR (Scanlan)

Also investigated "bonded" or "clad" 12 mm tape from SuperPower

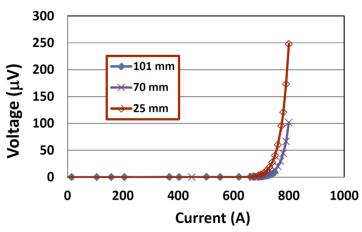
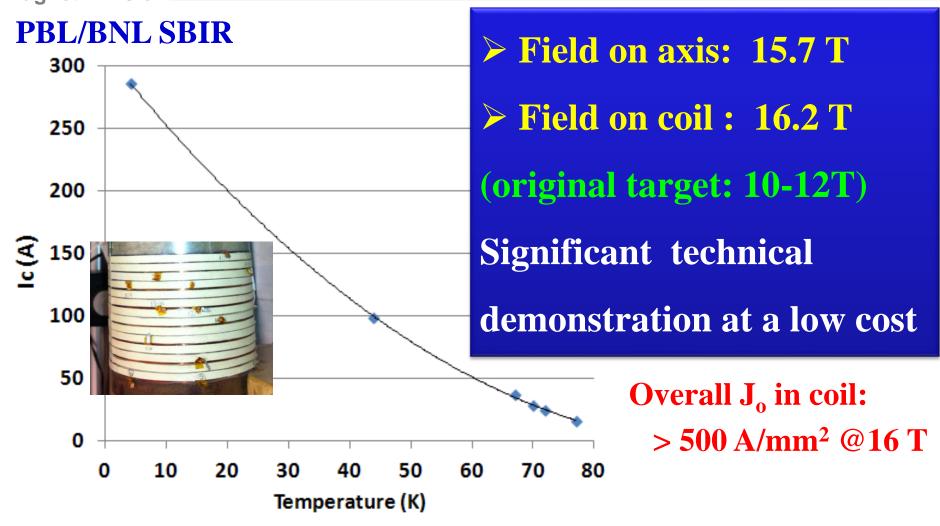


Fig. 17. Bend test results for bonded tape with the YBCO layer oriented toward the central Cu strip. Degradation in I_c begins between a bending diameter of 75 mm and 25 mm.

No measurable degradation@77 K



Other HTS Magnet Program at BNL

- HTS magnet R&D over a wide range:
 - High field, Medium field and low field (high temperature)
 - Many geometries racetrack, cosine theta, solenoid
- Number of HTS coils/magnets designed built & tested:
 - Well over 100 HTS coils and well over 10 HTS magnets
- Type of HTS used:
 - Bi2223, Bi2212, ReBCO, MgB₂ wire, cable, tape
- Amount of HTS acquired:
 - ~50 km (4 mm tape equivalent)
- Our recent activities have been largely on magnets with ReBCO

High Field (16T) Demo of HTS Magnet

HTS Solenoid: 14 pancakes, 25 mm aperture

High Field HTS Magnet Test Results 100 mm bore, 12 mm ReBCO SMES Coil

Superconducting Magnet Division

46 pancakes 350 A, 27K, 12.5 T

Goal:

~25 T at 4 K

Large Stresses:

>400 MPa

Record Field:

12.5 T at >10 K in the 1st test itself

Significant use of HTS: over >18 km (4 mm equivalent)

Significant ReBCO Programs in 2015

Superconducting Magnet Division_

High Field Solenoid for Axion Search

Funded by Korean research institute

SuNAM has partly delivered and partly on the way to delivery about 5 km (~4 mm equivalent) as a part of this research and/or its contribution to HTS R&D at BNL

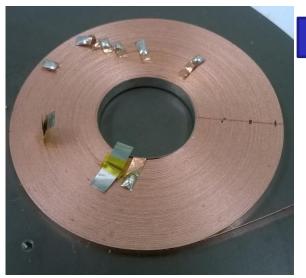
HTS Coils for High Field Hybrid Dipole

PBL/BNL/E2P STTR

Base Program

Very important for performing R&D – not yet funded

Requested 1st shipment: 2 X 140 m


Delivered: 282 m (without splice)

Superconducting Magnet Division

No Insulation and Other R&D

No-insulation Nb₃Sn Tape Coils Bill Sampson (before my time)

Coil #1

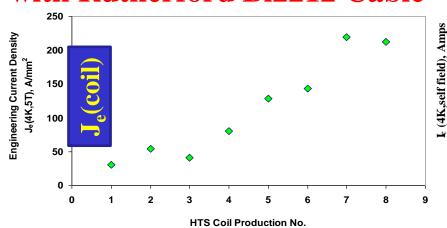
Conductor:
Courtesy: SuNAM

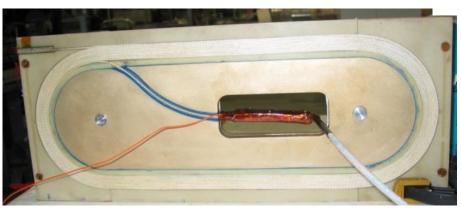
Coil #2

Superconducting Magnet Division_

High Current Conductor/Cable

- Present value of field parallel I_c is over 3 kA for single tape
 - Likely to increase as ReBCO thickness becomes several μm
- Develop simple multi-tape (bonded, multi-ply, ...) conductor
 - This increases kA value of conductor
 - This should make conductor more robust as current may bypass from one tape to another (as in "no-insulation") in case of local defect or variation
- Explore wide multi-tape robust cable configurations
 - Perform experiments in magnet coils


A dream conductor may be an optimized multi-tape configuration 10-20 kA @ design


Superconducting
Magnet Division____

HTS Common Coil Dipole with Bi2212 Rutherford Cable (2001-03)

8 Coils and 5 Magnets built

with Rutherford Bi2212 Cable

Racetrack HTS coil with Bi2212

SUMMARY

Superconducting Magnet Division

- It may be possible to develop high field hybrid magnet designs in such a way that the conductor magnetization (persistent current induced harmonics) become manageable, overcoming a major technical issue associated with the tape.
- Such designs can handle large stresses, as present in high field magnets, as they are against the wider side of the tape.
- Requirements of expensive conductor are significantly reduced because of the field orientation (previous design work at CERN).
- Degree of above benefits need to be determined by model calculations and demonstration in actual tests. A demonstration is planned under an STTR with a unique background field common coil magnet available for such testing at BNL.

Superconducting Magnet Division_

Bi2212 Coil Experience at BNL

NATIONAL LABORATORY

Bi2212 HTS Coils and Magnets @ BNL

Superconducting Magnet Division

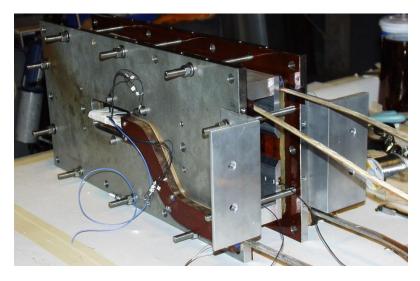
TABLE II

COILS AND MAGNETS BUILT AT BNL WITH BSCCO 2212 CABLE. Ic IS THE MEASURED CRITICAL CURRENT AT 4.2 K IN THE SELF-FIELD OF THE COIL. THE MAXIMUM VALUE OF THE SELF-FIELD IS LISTED IN THE LAST COLUMN. ENGINEERING CURRENT DENSITY AT SELF-FIELD AND AT 5 T IS ALSO GIVEN.

Coil / Magnet	Cable Description	Magnet Description	I _c (A)	$J_e(sf)[J_e(5T)]$ (A/mm^2)	Self- field, T
CC006	0.81 mm wire,	2 HTS coils,	560	60	0.27
DCC004	18 strands	2 mm spacing		[31]	
CC007	0.81 mm wire,	Common coil	900	97	0.43
DCC004	18 strands	configuration		[54]	
CC010	0.81 mm wire,	2 HTS coils (mixed	94	91	0.023
DCC006	2 HTS, 16 Ag	strand)		[41]	
CC011	0.81 mm wire,	74 mm spacing	182	177	0.045
DCC006	2 HTS, 16 Ag	Common coil		[80]	
CC012	0.81 mm wire,	Hybrid Design	1970	212	0.66
DCC008	18 strands	1 HTS, 2 Nb ₃ Sn		[129]	
CC023	1 mm wire,	Hybrid Design	3370	215	0.95
DCC012	20 strands	1 HTS, 4 Nb₃Sn		[143]	
CC026	0.81 mm wire,	Hybrid Common	4300	278	1.89
DCC014	30 strands	Coil Design		[219]	
CC027	0.81 mm wire,	2 HTS, 4 Nb₃Sn	4200	272	1 0/1
DCC014	30 strands	coils (total 6 coils)	4200	[212]	1.84

BNL pursued "React & Wind" technology for **Bi2212**

Eight coils and five magnets were built at BNL with Rutherford Bi2212 Cable (Showa/LBNL)


Magnet Structures for Bi-2212

Superconducting Magnet Division_

Common Coil Design

