Design, Construction and Test of

HTS/LTS Hybrid Dipole

R. Gupta, M. Anerella, J. Cozzolino, P. Joshi, W. Sampson, P. Wanderer (BNL)

J. Kolonko, D. Larson, R. Scanlan, R. Weggel and E. Willen (PBL)

August 31, 2017

70 YEARS OF DISCOVERY

A CENTURY OF SERVICE

MT25

25th International Conference on Magnet Technology

Background

- To achieve very high operating dipole fields (20T or above), development of HTS/LTS technology is a must
 - > Use expensive HTS in regions where field is very high and relatively less expensive LTS (Nb₃Sn and/or NbTi) where field is moderate
- Whereas HTS/LTS hybrid solenoids have been built and tested, no significant field hybrid dipoles have been
- This presentation shares the initial test experience

Overview

HTS/LTS Hybrid Dipole Design and Construction

- Quench Tests
 - > Several HTS coil quenches in hybrid dipole
 - > NO degradation in performance observed
- Magnetization studies of HTS coils
 - > By themselves and in hybrid dipole structure

Unique BNL Common Coil Dipole

- Structure specifically designed to provide a large open space (31 mm wide, 338 mm high)
- New racetrack coils can be inserted in the magnet without requiring any disassembly or reassembly
- New insert coils become an integral part of the magnet. Coil tests become magnet tests
- Rapid-turn-around, lower cost approach allowed hybrid dipole in DOE/SBIR program (2 years, 1M\$)

HTS/LTS Hybrid Dipole Structure

Design

New HTS coils slide inside the existing Nb₃Sn coils and become an integral part of the structure

> HTS coils get pushed inside the LTS coils

Assembly of a pair of insert coils

YEARS OF A CENTURY OF SERVICE

HTS Coil Winding (two coils wound)

Conductor:

12 mm ASC tape

Insulation:

Nomex

Two coils used ~300 meters of 4 mm equivalent

HTS/LTS Hybrid Dipole Quench Test Results

Challenges with the HTS/LTS Hybrid Dipole

- Large coupling between HTS/LTS coils
 - Maximum current in HTS: ~800 A
 - ➤ Maximum current in Nb₃Sn: ~10 kA
- Protection of the HTS coils at 4 K
- Quench protection of HTS coils in HTS/LTS hybrid configuration

Piyush Joshi: This conference

Questions:

- Can HTS coil survive quenches without significant degradation?
- Can HTS coils be operated like LTS

BROOKHAVEN NATIONAL LABORATORY 70 YEARS OF DISCOVERY

Operation of HTS/LTS Hybrid Dipole

- Performance limited by the leads (not by coils)
- > ~14 T possible with new HTS tapes, in favorable direction

HTS coils operated like LTS coils

Significant voltage in HTS coils: >0.2 Volts

Retest of Nb₃Sn Common Coil Dipole After a Decade

- Short Sample: 10.8 kA (reached during 2006 test)
- Retest: No quench to 10 kA (>92% of short sample)

Was a display piece of Nb₃Sn "React & Wind" technology for dipole

Worked well when cold tested after a decade

Magnetization studies in magnets made with the HTS tapes

(Hall probe measurements)

Coil and Magnet Cross-section for Measurements

77 K Measurements of the HTS Coils in Various Configurations

Test Sequence of HTS Coils at 77 K

Gap ~12 mm

Trapped Field in HTS Coil after Previous Excitation

(measured field at zero current in HTS coil, 77 K)

Two Successive Runs to 200 Amp (77 K)

4 K Measurements

Test Run at 4 K (in 2 T background field from Nb₃Sn coils)

Additional field from the HTS coils in up and down ramp (offset to start from zero to start up-ramp)

Decay of Trapped Field

(after the final run to ~8.7 T hybrid field @ 4 K)

Summary

- Encouraging Test Results of HTS/LTS Hybrid Dipole
- * Many LTS type quenches in HTS coils with no degradation
- A robust rapid-turn-around, low-cost test facility
 - > Insert coils become an integral part of the magnet

- A variety of magnetization studies in HTS tape dipole
 - a) at 77 K
 - b) at 4 K, including in HTS/LTS hybrid dipole structure

Extra Slides

HTS/LTS Hybrid Operation and Quench Protection

- HTS & LTS powered separately
- Common quench platform; fast energy extraction from both coils
- Quench detection response time:
 < 5 msec
- Coil current interruption: < 10 micro-second after detection
- HTS coil shut-off: a few msec
- High power IGBT switches
- Electronic threshold for quench detection: ~100 micro-volts
- HTS Quench threshold: 5 mV
- Actual test conditions (more brutal): ~200 mV (like LTS)

Piyush Joshi: This conference

70 YEARS OF DISCOVERY

HTS and LTS Currents (just before and after the quench)

HTS Current (A)

LTS Common Coil Current (A)

Separate power supplies and separate energy extraction for HTS and LTS coils HTS and LTS coils have different inductances and different characteristics

Two Successive Runs to 200 Amp (77 K)

