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I. INTRODUCTION 

For many applications it is not enough that a superconductor have a high critical . 
temperature Tc and high upper critical'magnetic field Hc2; often a high critical cur- 
rent density Jc(B,T) in high magnetic fields and at reasonable temperatures is also es- 
sential. 
is not an intrinsic property of superconductors. 
in the presence of a transverse field is a nonequilibrium property that is closely anal- 
ogous to the permanent magnetism of a hard ferromagnet, hence the designation hard su- . 
perconductor. Just as the coercive force of a permanent ferromagnet depends on the 
strength of pinning of ferromagnetic domain walls, the critical current densities, or 
corresponding field gradients, in hard superconductors depend on pinning of the flux 
distribution in the fluxoid lattice against Lorentz-like electromagnetic forces. 

l 
High critical current density in' the presence of a transverse magnetic field 

Instead the critical current density 

1 The Lorentz force density is I 
where the effect of the equilibrium magnetization is included by introduction of the 
factor y = [aB(H)/aHIeq. In sufficiently high fields y 1. The approximate scalar 
form on the right of Eq. (1) holds for J and B mutually perpendicular. The critical 
force density Fc orxorresponding critical force density Jc cFc/B is loosely defined 
as the value of F(B) or J(B) at which dissipation becomes significant so that persist- 
ent currents decay at a significant rate, or a voltage appears alozg a wire carrying a 
transport current. Since Maxwell's equations give J = (c/&sr) V X B y  or in simplified 
scalar form, J = (cI41-r) dB/dx, magnetic cycling of a hard superconductor should produce 
a distribution of induced currents of magnitude up to Jc with corresponding nonuniform 
magnetic field distribution. The condition in which the current density is everywhere 
equal to the critical current density is designated as the "critical state" although 
it is not a uniform equilibrium state in the thermodynamic sense. 

The magnitudes of -the critical current density can be determined either by anal- 
ysis of hysteretic magnetization curves produced by magnetic cycling or by the measure- 
ment of the transport current densities at which losses become appreciable in ribbons 
exposed to magnetic fields. 

This explanation of critical currents was advanced by Bean2 and by LondonY3 and 
developed by Kim, Hempstead, and Strnad,' and has been amply substantiated by many 

1. 

2 .  

3 .  H. London, Phys. Letters 6, 162 (1963). 
4 .  

J. Friedel, P.G. deGennes, and J. Matricon, Appl. Phys. Letters 2, 119 (1963). 
C.P. Bean, Phys. Rev. Letters 8, 250 (1962). 

Y.B. Kim, C.F. Hempstead, and A.R. Strnad, Phys. Rev. Letters 2, 306 (1962). 
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subsequent experiments. Of interest amongst the earlier experiments are direct obser- 
vations of the predicted field gradient by C~ffey,~ and a direct comparison of the 
critical transport current density with the current density deduced from magnetization 
measurements by Fietz, Beasley, Silcox and Webb,' in addition to various experiments 
by Kim and co-~orkers.~ At least for large values of the Ginzburg-Landau parameter, 
N, and internal fields well above the lower critical field but with B < Kc2, critical 
state concepts appear to describe adequately hard superconductors. However, in low N 
materials and very thin filaments, hysteretic surface currents make significant con- 
tributions if the bulk Jc is small. 

At temperatures above absolute zero Anderson' predicted that thermal activation 
assisted by the Lorentz force would lead to creep of flux in the neighborhood of the 
critical state. The general ideas of a thermally activated process sugges.t a flux 
creep rate 

-U/kT R = Ro exp Y 

where Ro is a very large pre-exponential and U is an activation energy which in this 
case is approximately 

U = U  - JByVX/C , (3) P 
where U is composed of an interaction energy between the pinning inhomogeneities and 
the fluxoid lattice, U , reduced by the Lorentz force per unit volume JBy/c times an 
activation volume V ang a pinning length X. It turns out that U >> Up and Up w JByVX/c, 
and the rate R is appreciable only if J > Jc, so the critical state is reasonably well 
defined by putting J = Jc such that 

U - kT In Ro/Rc 
vx Y ( 4 )  Fc = JcBy/c = 

where Rc <<Ro is a creep detection limit characteristic of experiments used t o  deter- 
mine the critical current ., 
so that the temperature dependence of Fc is dominated by the temperature dependence of 
various material parameters rather than by the explicit linear term in T. 

Beasley, Labusch and Webbg have found that Up >> kT In ,Ro/Rc 

11. CURRENT STATUS 

In the present state of knowledge about critical currents in hard superconductors, 

The inhomogeneities 
the critical state concepts are well established and a great deal of practical data on 
critical currents in many hard superco.nductors have been obtained. 
that give rise to pinning of the fluxoid lattice have been explored in some detail and 

5. H.T. Coffey, Cryogenics I ,  3 (1967). 
6. W.A. Fietz, M.R. Beasley, J. Silcox, and W.W. Webb, Phys. Rev. 3, A335 (1964). 
7 .  See, for example, Y.B. Kim, C.F. Hempstead, and A.R. Strnad, Phys. Rev. 129, 

8. . P.W. Anderson, Phys. Rev. Letters 2, 309 (1963). 
9, M.R. Beasley, Ph.D. Thesis, Cornel1 University, 1968 (available as Materials 

528 (1963). 

Science Center Report 921 or AEC Report NYO-3029-29). 
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at least qualitative information is available about them. D s .  Livingston has thorough- 
ly reviewed this information in the preceding lecturelo and earlier in a review article 
with Schadler .ll 

A development has also appeared at this Summer Study that refocuses attention on 
the critical current problem. In recent, practical, high field superconducting devices, 
performance has been limited by instabilities that cause flux jumps that often cause 
catastrophic heating and loss of superconductivity. However, as reported here by 
Brechna, Hart, ’ Wipf, and Smith in various contributions, there has been substantial 
recent progress in controlling this problem through appropriate geometric design. 
there is now again good reason to try to develop higher pinning force materials to ob- 
tain higher critical current densities. 

Thus, 

However, a serious pro.blem remains in applying the well established critical state 
concepts to hard superconductors. 
calculate the critical current density to be obtained from even a simple array of local- 
ized pinning points. 
fective pinning points and our knowledge of their properties. 
simply add the pinning forces of all of the ‘pinning points in a material to obtain Fc 
is clear. Instead we must take into account.cooperative action amongst adjacent pin- 
ning points and fluxoids. 
of flux creep by incorporating a sort, of activation vol’ume which he called the flux 
bundle. However, little subsequent progress with’this problem has appeared in the 
1 iter a ture . 

This problem is the lack of a satisfactory basis to 

Livingston has described in some deta,il the various types of ef- 
The fact that we cannot 

Anderson8 recognized this problem in 1963 in his formulation 

111. SOME RECENT RESEARCH 

At Cornell, M.R. Beasley, W.A. Fietz, B. Labusch, and E have been trying to 
understand the problem of determining the quantitative connection between Jc, or F,, 
and the properties of the array of pinning points. 
the fact that the pinning process involves the cooperative interaction between a quasi- 
random array of pinning points and a nominally regular array of fluxoids. We.have car- 
ried out systematic measurements of flux creep and critical current densities in alloys 
over a wide range of T, By and H using crystal dislocations as the pinning entities. 
It: has been possible to calculate the pinning properties of dislocations better than 
other pinning entities so these otherwise complex objects were chosen as the best pin- 
ning entities to study.12-15 
about the pinning process that has guided us in developing a simple model that seems 
to make the appropriate connection between the critical current density and the pinning 
points. This research is nearly complete, but manuscripts describing it are still in 
preparation. I will present here a preliminary sunrmary of the essential ideas of the 
pinning model and the results of some of our pinning experiments. 

This connection is complicated by 

From this work we have been able to extract information 

10. J.D. Livingston, these Proceedings, p. 377. 
11. J .D.  Livingston and H.W. Schadler, Prog. Mat. Sci. 12, 183 (1964). 
12. W.W. Webb, Phys. Rev. Letters ll, 191 (1963). 
13. 
14. R. Labusch, Phys. Rev. 170, 470 (1968). 
15. J.S. Willis, J.F. Schenck, and R.W. Shaw, Appl. Phys. Letters 10, 101 (1967). 

E.J. Cramer and C.L. Bauer, Phil. Mag. 2, 1189 (1967). 

. .  
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IV. PINNING MODEL 

I f  we were t o  assume tha t  the  pinning force densi ty  is 'given simply by a l inear  
superposition of t h e  contr ibut ion of a l l  the e f f e c t i v e  pinning points  w e  would have a 
pinning force dens i ty  

= f N  
FP P P  , (5) 

where N 
for  ea& in te rac t ion .  
density, the pinning force  dens i ty  Fp is e s s e n t i a l l y  equal t o  the  c r i t i c a l  force den- 
s i t y  so we may take Fp = Fc. 

i s  an e f f e c t i v e  densi ty  of pinning'points and f p  i s  the maximum pinning force 
Since f lux  creep introduces negl igible  changes i n  the current 

Assuming t h a t  t h e  pinning points  cons is t  of individual f luxoid-dislocation i n t e r -  
actions,  that  t h e  f luxoids  a r e  r e l a t i v e l y  s t i f f ,  and that  t h e i r  range of interact ion 
with the d is loca t ions  is a dis tance d less than t h e  fluxoid spacing, the e f fec t ive  
density of in te rac t ions  N 
pinning points N 1 ,  which 1 s  j u s t  the  product of t h e  length of fluxoid per unit volume 
B/rp,, the e f f e c t i v e  area per un i t  length d,  and the  density p of dis locat ions threading 
the area,  tha t  is: 

becomes j u s t  the density of in te rac t ions  with individual I? 

N 1  w (B/Vo)Pd ( 6 )  

Typical magnitudes f o r  our cases give N 1  u 10l1 X 1011 X 
depicts the geometrical model leading t o  Eq.. (6). 

SY 10l6 cmm3. Figure 1 

If the fluxoid l a t t i c e  were p e r f e c t l y  r i g i d ,  no net pinning could accrue from 
interact ion with a random array of pinning points because i n  t h i s  .case the t o t a l  energy 
of the system would be independent of t h e  posit ion of the fluxoid la t t ice  with respect 
t o  the pinning points .  
s l i g h t l y  deformable and a net pinning force i s  found, b u t  the s t rength of the resul t -  
ing pinning depends s t rongly on t h e  magnitude of the  deformation of the l a t t i c e  in t ro-  
duced by t h e  pinning in te rac t ion .  
oid can be displaced by the pinning poten t ia l  t o  t h e  width of the  pinning potent ia l  d 
can be interpreted as  the  f r a c t i o n  of the points of interact ion between fluxoids and 
obstacles t h a t  can become e f f e c t i v e  i n  pinning against  an applied (Lorentz) force. 
This r e s u l t  is  equivalent t o  replacing '  d by 6 i n  Eq. (6).  

This as tonishing r e s u l t  disappears i f  the l a t t i c e  i s  even 

I n  f a c t  the r a t i o  6/d of the dis tance '6  that  a f lux- 

The maximum deformation, 6 ,  due t o  a single pinning point ,  depends on the strength 
of the in te rac t ion  force  per pinning point ,  f l ,  and the e f f e c t i v e  s t i f f n e s s  of the 
fluxoid l a t t i c e  represented by an elastic constant C t i m e s  the  nominal fluxoid spacing 

. (V,,/B)%. Thus w e  can obtain,  following the  e l a s t i c i t y  calculat ion of Labusch16 

.6 -2 where a i s  a constant of order uni ty .  Using12s17 f l  = dyn, and C/a SY 10 dyn*cm , 
we find the  extremely small displacement 6 u cm. A similar  calculat ion i n  the low 
f i e l d  l i m i t  using the  l i n e  energy o r  tension of a s ingle  fluxoid as  the restor ing force 
y ie lds  e s s e n t i a l l y  t h e  same kind of r e s u l t .  Thus t h e  fluxoid l a t t i c e  i s  very r ig id  and 

16.  R. Labusch, p r i v a t e  communication. 

17. R. Labusch, Phys. S ta t .  Sol. 19, 715 (1967); additional r e s u l t s  f o r  H -  Hc2 
t o  be published. 
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the pinning process must involve a s t a t i s t i c a l  average over a l l  of the  in te rac t ion  
forces sampled by th i s  r e l a t i v e l y  r i g i d  net .  

Using Eq. (7) for  6,  an eff ic iency f a c t o r  W = 6/d can be defined as follows: I 

where f p  = f l  i s  t h e  maximum pinning force of an individual dis locat ion-f luxoid in te r -  
ac t  ion. 

Thus, the pinning force density given by Eq. (5) i s  simply reduced by the e f f i -  
ciency factor  W giving 

F = f'NW . 
P P P  (9) 

Assuming f p  = f l ,  N = N1 as given by Eq. (6), and W a s  given by Eq. (8), the effectivk 
pinning force densify is  

. .  
(10) 

Fp = f l  2 p ( B / ( ~ ~ ) ~ / ~ ( a l C )  

Thus we f ind the  remarkable r e s u l t  tha t  t h e  pinning force dens i ty  i s  proportional t o  
the square of the strength of individual pinning poin ts  because of the  appearance of 
f l  i n  the eff ic iency f a c t o r  of Eq. (9). 

However, Labusch has carr ied out a d e t a i l e d  s t a t i s t i c a l  ana lys i s  of t h i s  many-body 
problem16 indicating tha t  t o  lowest order i n  t h e  pinning point dens i ty  there  i s  no pin- 
ning, i.e., Fp = 0, unless the quant i ty  t h a t  w e  cal l  an e f f ic iency  f a c t o r  W i s  greater 
than 1. In other words, the elementary c a l c u l a t i o n  ind ica tes  t h a t  i t  is  necessary t h a t  
d i s tor t ions  of the fluxoid la t t ice  be l a r g e r  than t h e  width of the pinning potent ia l  
f o r  pinning t o  occur, o r  6 > d. 
and we have 6 - 10-8, so W - Nevertheless, consideration of t h e  effect of f luc-  
tuations i n  the pinning point d i s t r i b u t i o n  leads  t o  pinning by even a random array as a '  
f i r s t  order e f fec t .  Assuming tha t  only groups of pinning points  s t rong  enough tha t  
W 2 1 are effect ive,  we seek f luctuat ions t h a t  provide a net  l o c a l  excess of n favor- 
able pinning points providing a net s t rength  fp  -, fn 2 n f l ,  where t h e  number n i s  de- 
termined by the requirement tha t  W Z 1. 
probabi l i ty  l / n 2  so tha t  the  e f fec t ive  dens i ty  of these pinning c o e f f i c i e n t s  is 
Np - Nn 1 (B/cpo)pd/n2. The c r i t e r i o n  t h a t  W 2 1 y i e l d s  

However, i n  usual. mater ia l s  f l  - dyn, and d - 

This configurat ion should occur with random 

The new values of N and f can be inser ted i n  Eqs. (8) and ( 9 )  t o  ob ta in  the pinning 
force density Fp. Rowever': inser t ing Np = Nn and f p  = fn  y i e l d s  p r e c i s e l y  the 
same pinning strength given by Eq. (11) s ince  n cancels  out exact ly  i n  the  expression 
f o r  Fp. 

t h e  cluster ing since the  number of favorable f l u c t u a t i o n s  then varies more l i k e  l l n  
instead of l /n2.  . In  our measurements on severely cold-worked a l l o y s  w e  found 
10'8 < f l  < 10-7 dyn, while the calculated value i s  f l  - 
dislocat ion ordering occurs as  is  expected. 

ta in ing  between n and n2 pinning in te rac t ions  s e e m s  t o  be simply an e x p l i c i t  description 

I f  the pinning points a re  not randomly arrayed, the pinning force  is  enhanced by 

suggesting that some . 

The co l lec t ive  pinning represented by the pinning force f = n f l  i n  a volume con- 

. 
\ 
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of a property of the "flux bundle" hypothesized by Anderson in his original theory of 
flux creep.8 The size of this bundle can be estimated from our measurements on nio- 
bium-titanium alloys18 ysing Eq. (6), which give n - lo2 .  Thus, n2 = 104, and the 
"bundle volume" Vp w NP n2 EJ n2/[(B/cpo)pd] w cm3. From measurements of flux 
creep in PbTl alloys subjected to severe plastic deformation at low temperatures to 
produce pinning structures similar to ours, Beasley, Labusch and Webblg observed vol- 
umes - lo4 times the voluq per pinning point and pinning energies - 10 
energy per pinning point under comparable conditions. This comparison suggests that 
the cooperative pinning in our analysis of the critical pinning force really corres- 
ponds to the activation volume or "flux bundle" invoked by Anderson to understand flux 
creep. 

2 times the 

'V. RESULTS OF CRITICAL PINNING FORCE MEASUREMENTS 

We have 'deduced critical pinning force densities from hysteretic magnetization 
curves on niobium alloys over a wide range of the Ginzburg-Landau parameter, N, mag- 
netic field, H, and temperature, T. A sample of this data is shown as a logarithmic 
critical cyrrent density plot in Fig. 2, and as a critical pinning force density plot 
in Fig. 3 .  The fields have been normalized by dividing by the temperature dependent 
'upper critical field H,.. . 
a logarithmic scale, the pinning force invariably peaks at B/Hc2 = 0.6 in these mate- 
rials. This and all other features of the results support a well-defined set of 
scaling laws in which the pinning force density is given, the separable product of 
factors depending on temperature, normalized field and H. 
is accurately represented in terms of the temperature dependence of €49. 
found 

Although the critical currents show the usual plateau on 

The temperature dependence 
Thus we 

where the function g(B/Hc2) has the shape shown in Fig. 3 and k(x) is something like 
N-Y with 1 < y < 3 .  
g(B/Hc2) is determined to better than f 15% for 0 .2  < B/Hc2 < 0.9, but k(x) = N'Y is 
only a qualitative form. 
ence €it given by the factor [Hc2(T)]5/2 . 
in Fig. 4 where straight lines with slope 512 are drawn through the data. 

The factor [Hc2(T)]5/2 is established with high precision, 

The most remarkable result is the precise temperature depend- 
This is illustrated by the logarithmic plots 

To compare these data with the pinning model previously described, it is neces- 
sary to work out the temperature and field dependence of the fluxoid lattice stiffness 
represented by the factor a/C 
calculation of a/c and Webb'si2 second order elastic calculation of €1. Combining the 
field, temperature, and H dependence of all of the factors we find that the pinning 
model gives the proportionality 

and of the pinning force, fly that appear in Labusch's17 

: B small 

in satisfactory agreement with the experiments. 

18. W.A. Fietz and W.W. Webb, submitted for publication. 
19. M.R. Beasley, R. Labusch, and W.W. Webb, private communication. 
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VI. DISCUSSION ANT.) SUMMARY 

Clearly the empirical model for critical pinning force that has been suggested by 
Fietz and Webb,18.0n the basis of Labusch's theoretical investigations,l6 fits the 
wide range of data they collected. 
wire alloy'' and seems to be consistent with a great deal of earlier data on materials 
with other types of pinning points except that the detailed shape of the field depend- 
ence of Fp given by the factor g(B/Hc2) depends on materials preparation. 

It also fits data obtained by Coffey on a' magnet 

For example, T.  Hall (unpublished) annealed some of Fietz's niobium alloys at 
various temperatures and found that a new maximum of Fp developed at B/Hc2 20.4 as 
the peak at B/Hc2 2 0.6 decreased, until even the new peak became ver weak as anneal- 
ing was made more complete. During this change the factor [Qq(T)]5/q represented the 
temperature dependence of the first peak rather well, although the exponent for the 
second peak may be as low as about two. 

Although the temperature dependence of a/C should remain the same for most super- 
conducting alloys, various pinning entities should give different temperature depend- 
ences for fl. This is yet to-be tested systematically. 

In the case of the superconducting intermetallic compounds, such as V3Si and 
NbjSn, based on the beta-tungsten structure, the situation seems to be different. It 
has been suggested that grain boundaries or nonsuperconducting inclusions provide the 
observable pinning and that the critical current is limited by Silsbee's hypothesis 
in part of the measured range.21 Brand and Webb found that in V3Si pinning is also 
enhanced b 
structure .32 Some uncertainties about pinning in these compounds remain. 

the occurrence of the martensitic phase transformation to a tetragonal 

10 Special pinning properties may lead to "peak effects" in the pinning strength 
with unique temperature dependence, and it may be useful to exploit them or to look to 
the sort of models described here for ways of decreasing the temperature dependence of 
Fp in order to reduce thermal instabilities, and for ways of increasing the critical 
current density. Composite superconductors may provide some of these properties . 
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Fig. 1. Schematic diagram of the interaction of fluxoids with localized 
pinning points. The interaction range of pinning potential is 
represented by the effective width d of the fluxoids which are 
spaced a distance (qO/B)k. The pinning points are supposed to 
be repulsive potential lines perpendicular to the paper. Thus 
the direction of the interaction force on the fluxoids is indi- 
cated by the arrows. 
enough to interact in this section. 
lattice model the net force on the fluxoid lattice is zero. 

Only the blackened pinning points are close 
On the average in this rigid 

. .  

B'"C2 

Fig. 2.  Logarithmic plot of the critical current density as a function 
of normalized field B/H,2 in severely plastically deformed alloy 
of niobium with 9% titanium at various normalized temperatures 
t = TIT,. 
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Fig. 3. 
' 

Pinning force density as a function of normalized field B/&2 
in a severely plastically deformed alloy of niobium with 9% 
titanium at various normalized temperatures t = TIT,. 
normalizing value of Hc2 is taken as H,p(t). 

The 

0 Nb-12Tl 
I I I I , , 1 1 1  I I 1 1 ,  

1.0 5.0 10.0 20.0 
HC2(T) (kOe) 

F-b. 4 .  Logarithmic plot of maximum value of the volume pinn,.ig force 
Fp(max) as a function of Hc2(t). Lines have slope 512. 




