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INTRODUCTION 

The purpose of this paper is to discuss the critical fields of type 11 supercon- 
ductors. In order to develop a physical basis for the concept of the critical field, 
we start with a discussion of the magnetic behavior of type I superconductors, and 
particularly the intermediate state.. The approach to type I1 behavior will be through 
the vortex model of deGennes which follows naturally from a consideration of surface 
energies in a type I superconductor. Finally, we will cover recene results from the 
Gor'kov microscopic Ginsburg-Landau equation which accurately predicts the effects of 
temperature, purity, normal electron spin paramagnetisms and variable coupling on the 
critical field behavior of a large class of type I1 superconductors. 
to this theory and possible sources of their unique behavior will be discussed. Final- 
ly, we will consider recent experimental observations of critical field behavior in 
materials of practical interest. 

The exceptions 

MAGNETOSTATICS AND THERMODYNAMICS OF TYPE I SUPERCONDUCTORS 

Superconductors exhibit, zero resis'tance below the transition temperature, Tc; but 

This last fact, although of little practical utility, is the basis for the 
when relatively defect free, exhibit a diamagnetism that is field dependent and revers- 
ible.1 
theoretical treatment of the superconducting state. For a uniformly magnetized ellips- 
oid three fields are introduced in addition to the microscopic local field h(r) and 
the applied field Ho. 
field h(r), My the dipole moment per unit volume or magnetization, and H, the internal 
field. From magnetic theory: 

These three fields are B, the flux density or average local - 

In Eq. (I), D is the demagnetization coefficient of the ellipsoid. For a long cylinder, 
a sphere and a disk, D = 0, 113 and 1, respectively, where the applied field, Ho, is 
along the symmetry axis of the ellipsoid. 

From codsiderations of the magnetic work, we are led to conside'r the specific 
Gibbs free energy g, which is a function of Ho and T, and is a minimum under equilib- 
rium at constant field and temperature. From the thermodynamic treatment , 

dg = - sdT - Md Ho . 
In Eq. ( 2 ) ,  s is the specific entropy. The Gibbs free energies o f  two phases in equi- 
librium can be shown to be equal, and this criterion fox phase equilibrium is critical 
€or understanding the gross features of field effects in superconductors. 

For type I superconductors, when D 5 0, it is observed experimentally that 
Ms = - H0/4n up to a critical field Hc(T) .2 
Above this field the magnetization of the superconductor, MJT), is the same as that 
of the normal state, M,,(T) = ynH (the paramagnetic susceptibility, xn, is of the order 
of 20 X lom6 for transition metals, but is considerably less for nontransition metals). 

Thus B = 0 in the superconducting state. 
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The discontinuous change of magnetization at Hc(T) defines a type I superconductor, 
as well as the thermodynamic critical field Hc(T). 

. 

If we consider Eq. (2) we can arrive at another view of Hc(T) which explains its 
nomenclature. From simple integration and use of the equilibrium criteria we see that 

2 

(3) 
HC 

gn(Hc,T) gn(O,T) = gs(O,T) + = gS(HcsT) 

- 2  and thus Hc/8n represents the free energy difference between the normal and supercon- 
ducting state. Figure 1 shows the free energy and the magnetization [M= - (ag/aH0),] 
of a type I superconductor and illustrates the content of Eq. ( 3 ) .  The effect of the 
field onmthe free energy of the superconductor is to destroy the energy gained by the 
initial condensation to the ordered superconducting state (H$/8n). From Eqs. (3) and 
(2) one can obtain the entropy s [s = - (ag/aT)~~] and it can easily be seen that the 
superconducting state is the more ordered state Furthermore, 
in zero field ss(TC) = Sn(Tc), which implies a second order transition. In a finite 
field the entropy remains at its Zero field value, up to Hc(T), but jumps discontin- 
uously at TIHo = Hc(T)] to the normal entropy (a first order transition). 

(ss < Sn for T e Tc). 

The absence of a field dependence to the entropy is.accounted for by the observa- 
tion that since B = 0 up to 
of the superconductor. Of course, this ignores the fact that there cannot be a dis- 
continuity in the field at the surface of the superconductor. The field extends a 
distance into the superconductor, given by the penetration depth h(T). A penetration 
depth, AL, was first introduced by London, who derived on the basis of a dissipation- 
less fluid the following equation for the field penetration, which when combined with 
Maxwell's equations are in semiquantitative agreement with experiment: 

= Hc(T), the field plays no role in changing the order 

H Y  
2 
.L a vX(VXH) = - 

where 
-3c2 ) 

2 
2 2  4n N vF e 

In Eq. (5) m and n are the mass per particle and the density f th 

( 4 )  

fluid, respectively; 
in the second form of h ~ ,  N and VF are the total density of states and Fermi velocity, 
respectively. 
interesting to note that Eq. (5) is invariant under the transformation to pairs appro- 
priate to the BCS theory of superconductivity (m -. 2m, e -, 2e, n + 1112). 

This.,second form is of greater generality than the fluid model. It is 

From Eqs; ( 4 )  and (5) we can associate Hc(T) with the kinetic energy of the 
shielding currents that maintain the condition B = 0 in the bulk. 
show that the kinetic energy density K is given by 

It is simple to 

" 

where Vd is the drift velocity and we have used the solution for Eq. (4) at a plane 
boundary: At H = Hc(T), the kinetic energy density of the shielding 
electrons equals the quantity gn-gs(O,T) and the material goes normal. 

J = cH/4n AL. 

It clearly costs the superconductor to expel a magnetic field. Consider Fig. 2 
where again we show the free energy of a type I superconductor. If there were a way 



- . 
to achieve a lower magnetization [M = - (ag/aHo),] as' shown by the dashed curve, the 
material could achieve a lower free energy and would presumably remain superconducting 
to considerably higher fields. Experimentally such a situation has been known since 
the thirties for systems where one dimension approached a size of the order of 
A (w 300-600 8) .  
and M is appreciably smaller than for bulk materials. Indeed, critical fields consid- . 
erably higher than Hc(T) were observed and were correlated with the London expressions 
with qualitative and semiquantitative agreement . 3  
question emerges: namely, why a bulk specimen did not subdivide into domains of the 
order of A,, and hence remain superconducting to fields much higher than Hc(T). 

L 

Under these conditions, field exclusion is not complete, B = 'i; # 0; 

From these experiments, an important 

INTEIZMEDIATE STATE OF TYPE I SUPERCONDUCTORS 

A model €or such a domained structure was developed in the thirties to explain. 
magnetization data on ellipsoidal specimens where D # 0. 
nor the model led to critical fields higher than H,(T), it led through the work of 
Pippard435 to what might be described as the physical basis of type I1 superconductiv- 
ity. Curve (1) in Fig. 3 shows the magnetization and free energy of a bulk specimen 
with D # 0. The magnetization in the state for which B = 0 (the Meissner state) is of 
the form M = - HO/4n (1-D), and hence the free energy rises considerably faster than 
the curve (2) for D = 0 ;  If this high moment state persists, the specimen would enter 
the normal state at a field considerably less than Hc(T). In fact the material fol- 
lows the curve (3) , branching off from (1) at Ho = Hc (1 - D) and finally enters the 
normal state close to Hc(T). 
M = (- 1/4nD) (Hc - Ho) and 

While neither the experiments 

In this new state, the intermediate state, 

2 2 
(7) g(H,T) = gs(O,T) + Hc/8n - (Hc - H) /8nD . 

In the new state Peierls6 suggested that the system is subdivided into normal domains 
where h = Hc, and superconducting domains where h = 0. 
of normal domains 

Thus if x is the concentration 

and .x goes from 0 at Ho = Hc(l - D) to 1 at Ho = Hc. 
of the intermediate state is a continuous function of field and it, as well as M, goes 
continuously to normal state values at H = Q .  
mains this is not a surprising effect. 

It is easily shown that the entropy 

In view of the presence of normal do- 

Given the possibility of domains, it is not apparent why they cannot reduce in 
size to such a degree that M -  0, as for thin films which would permit the intermediate 
state to persist to fields above Hc. However, far from this being the case, a care- 
ful examination of the magnetic transition of the intermediate state shows that the 
critical field, HI,. is slightly less than Hc(T). 

In order to understand this phenomenon, an additional property has to be intro- 
duced, the surface energy. 
interfaces, it is clear that there may be surface tension or surface energy effects 
resisting the increase of the interface. If the surface energy is cy, an additional 
free energy af(x) will be lost to the superconductor and the critical field will tie 
less than Hc(T) , as shown in Fig. 4 .  

In the intermediate sta,te with many normal-superconducting 

4 '  Pippard gave a physical picture of the source of this surface energy. Consider 
the superconducting state to be associated with an order parameter, ns. 
parameter may be identified with the density of superconducting electrons, or with the 

The order 

. I  
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energy gap, 
to zero at Tc. 
but we cannot permit ns to change discontinuously at the interface. 
field penetration, we are led to consider a fundamental length F*, over which the order 
parameter can vary. 

In either case it is a quantity that varies from its full value at T= OOK, 
We consider a normal-superconducting boundary to be defined by ns = 0, 

As in the case of 

In Fig. 5, we consider a normal-superconducting boundary where H = H,(T) in the 
bulk of the normal metal (ng = 0) and H = 0 in the bulk of the superconductor 

per 
unit area due to flux penetration. Conversely, there is a loss of condensation energy 
of the order t*Hg/8rr per unit area,. where s* is the distance over which the order para- 
meter varies. 
positive surface energy (5" > A )  .we cannot gain energy by infinite subdivision. 
minimum size of a domain,is of the order of f*, and the limit of x -. 1 for the inter- 
mediate state corresponds to the vanishing of the last domain, not its shrinking in 
size. For thick disks (D- 1) in a perpendicular field, one can show that the crit- 
ical field €I1,' is given by 

[ns = ns(T)]. It is easy to see that there is a gain of energy of order AHc/8rr 2 

Thus the surface energy is given by cy = (<* - A)H$/8rr = AH$/8n. For a 
The 

(9) 

and this relation, as well as the slope of (aM/aH)H = HI, can be used to determine A .  

8 Pippard further suggested a relationship for pure metals between f* and the 
transition temperature and Fermi velocity. As later given by BCSg this is 

where 28 is the energy gap (2A = 3.56 k Tc). 
metals, So w 2000 - 10 000 8, whereas A m 200 - 600 8. 

Calculations show that for most pure 
Hence A > 0. 

From these considerations we have been led to consider two fundamental lengths 
for a superconductor, <* and A. 
for J 2 x  > 1, A < 0, and one might expect a general depression of the free energy below 
even the Meissner curve for D = 0. 
state suggests that such a negative surface energy state might be a proper thermo- 
dynamic phase - homogeneous and reversible. 

If we define their ratio as J2x = A/!*, we see that 

Furthermore, the experience with the intermediate 

THE MIXED STATE OF TYPE I1 SUPERCONDUCTORS 

It is one of the triumphs o.f solid state physics that the negative surface energy 
state was predicted mathematically before there was any recognition of experimental 
justification. However, it remains a paradox, that the experimental evidence for such 
a state was largely ignored both prior to the theory and to its eventual experimental 
"verification." The theory 
1950, "discovered" in 1961, i1 and which has received numerous verifications since that 
time, but some of whose predictions were observable in the experiments of Shubnikov 
et a1.I2 in 1937. The G-L theory, the theory of the microstructure of the negative 
surface energy state due to Abrikosov, l3 and the microscopic theory of Gor'kovl4 (the 
(;LAG theory) have all been the subject of numerous reviews, and only the results will 
be considered in detail in the present paper. 

of course , is the Ginzburg-Landau theory10 published in 

In its original form the theory was based on an expansion of the free energy 
close to Tc in terms of an order parameter, 'and was explicitly designed to take into 
account spatial variations of the order parameter as occur in the intermediate state 
and in thin films. 
microscopic theory when the energy gap w a s  permitted spatial variations. 

It was shown by Gor'kov to be a natural consequence of the BCS 
As developed 
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- 
by Abrikosov l3 Gor'k~v,'~ deGennes,15 Maki,l62l7 Helfand and Werthamer,18-21 
EilenbergerZ2 and others,, it is a sophisticated nonlinear highly mathematical theory 
which is in very good agreement with experiment. 

Despite the mathematical complexity of the theory, there is a physical approach t o  
the magnetic behavior of type I1 superconductors that follows naturally from our previ- 
out discussions of surface energy. As developed by deGenne~,~~ this approach considers 
a specific domained structure - a vortex of circulating superconducting electrons around 
a normal state core. In the following sections we will follow this approach, and will 
later make contact with the exact mathematical results of Maki,17 Helfand and Werth- 
amer18-19 and Eilenberger .22 

The laminellar domainsZ4 of the intermediate state are clearly not the.only con- 
figuration appropriate to a domained structure. 
ic energy while doing minimum damage to the condensat5on energy. 
normal core of radius E*, with a field dropping off from its maximum value at the center 
as in Fig. 6. To proceed further we require a generalization of the London equations 
to take into account the normal core, and the circulation electrons about that core. 

Again the task is to lower the magnet- 
Let us consider a 

The usual form of London's equation [Eq. (4)], when combined with the Maxwell 
Equation V x H = 4nJ/c, can be written as 

V X V = - ~ H  , mc 

. where v, q, and m are the velocity, charge and mass of the superconducting fluid 
(J = nqv). 
we can write Eq. (11) as 

If we write P = mv + (q/c)A, where P is the quantum mechanical momentum, . 

V x P = O  . (12) 

However, from the presence of the normal core and the electron circulafion, we know 
that Eq. (12) cannot hold everywhere. A suitable generalization of Eq. (12) is 

V x P = @ '6(r) , (13) 

where 6(r) is a two-dimensional 6 function and B) is the flux in the core. 
tion of the circulation.$ Pads about the core suggests.@ to be quantized in units of 
hc/2e (q = 2e), where yo = (hc/2e) (= 2 x 10-7 G.cm2) is the unit of flux quantization. 
From Maxwell's Equations and Eq. (2) we obtain as a generalization25 of Eq. (4) 

Considera- 

(14) 
2 hL V x (V X H) .+ H = yo 6(r) . 

Using cylindrical symmetry, a solution of Eq. (14) for 5" 2 r AL is 

We next ,calculate the magnetic and kinetic energy, F, of the vortex, per 'unit 
length of vortex [the core energy (Hg/8n)  %*' can be shown to be less than 12% of the 
magnetic and kinetic energy] 

(16) 
2 H2 + h2 (V XH)' ) 

F = da ( & +  $ nmv2 ) = da ( 8n 
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Using the vector identity, 

and Eq. (14) we obtain 

F = -  ds H X (V 'X H) = ( 'PO >' log - IL . 
r T *  . c* 81.1 

Noting that the flux density B is given by nw0, and neglecting the interaction.between 
vortices, we have for the total free energy 

at equilibrium 

aF YO AL 
E* 

Ho = 4nn - = - log - . . 2 aB 4rr AL 

Thus vortices will penetrate at Ho = Hcl where 

We will find that the condition for Hcl < Hc will be related to the previous negative 
surface energy requirement I* < AL. 
where M = 0, (H&) as that field (E w H) where the vortices overlap. 

We can further estimate the transition field 
Thus 

Y 

V O  Hc2 B w- . 
4n Ck2 

The next step is to relate the fields &.-and Hc2 to H,. In the G-L equations a 
parameter H is introduced such that, as suggested previously, I" = A/J2w.  Furthermore' 

If we ignore the restriction to temperatures close to T, (and consider local supercon- 
ductors where A = h ~ )  we can rewrite Eqs. (19) and (20) as 

H- H~~ - - & (in H + 0.3) 

and 

Hc2 = J ~ H  H, . (23) 

Thus if w > 1/J2,Hc1 < H, and Hc2 > Hc, and we expect the superconductor to make a. 
gradual magnetic transition from the state where B = 0 (Meissner state) at Hcl to the' 
normal state at Hc. where a second order transition occurs. 
H > 1/J2 are called type I1 superconductors and the region between Hcl and H,.2 where 

Materials for which 
' *  
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vortices penetrate is called the mixed state. 
free energy and phase diagram of this state. 

Figures 7 and 8 show the magnetization, 

The resemblances to the gross features of the intermediate state are obvious, 
however it must be emphasized that there are fundamental differences. The intermediate 
state is only macroscopically second order; the last superconducting domain vanishes 
discontinuously at HI. 
Hc2. In the, intermediate state one expects supercooling, i.e. , a lowering of the field 
until the volume-free energy can overcome the positive surface energy. In the mixed 
state there can be no supercooling due to the negative surface energy. Indeed, in the 
original work of Ginsburg-Landau, Hc. ( f2u < 1) is defined as the minimum field to 
which one can supercool a type I superconductor. As we shall see, this is only true 
for certain field orientations. 

However, the mixed state is microscopically second order at 

It is interesting to note that; the vortex approach described here led Tinkham to 
consider the question of what happens to thin disks of type I superconductors in a 
perpendicular field. 
HL to approach zero as d ME". 
a vortex state at HI = J2n & might be energetically favorable and r place the inter- 
mediate state. The transition field HL has been observed for lead," tin,28 and 
indium.28 
in HI for low thicknesses is related to a thickness dependence of U. However, the 
bulk value of u (< 1IJ2) can be obtained by extrapolation. 
instead of supercooling for the determination of at in type I material. 

For example, for low n ,  A M 5" and, given Eq. is) ,  one expects 
TinkhamSZ6 from energy consideration, suggested that 

Figure 9 shows experimental data for lead films. In this figure the rise 

This technique can be, used 

EXACT THEORIES OF THE MIXED STATE 

The picture of the type I1 superconductor is physically that. of the reduction .of 
magnetization due to the penetration of vortices with normal cores. 
ulations of the Gor'kov equation leads to the followin 

The exact calc- 
expressions for Hcl(T), Hc2(T) 

and the slope of the magnetization curve close to Hc2: K7 

1 1 
(1.16) ( k  - 1) ' 

where nl(T), n2(T), and, 9(T) approach N as T -, T, and 29,30 

In Eq. (27) R is'the mean free path, and in Eq. (28) Po is the residual resistivity 
(0.m) and y (erg/cm3 OK2) is the coefficient of the linear term in the electronic 
specific heat. It should be emphasized that Eqs. (24)-(28)'take band structure ef- 
fects into account only in terms of a one-band effective mass model. In this sense 
they are restricted in the same sense as BCS. However, the two terms for N. permit 
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one to define an intrinsic type I1 superconductor ( A  >> Eo). and an extrinsic type I1 
superconductor ( A  << 5,). 
"clean" and "dirty" superconductors , and hence one expects poorer agreement with theory 
for clean materials where anisotropy and multiple band effects have not been washed. out 
by scattering e 

This classification .coincides with the distinction'between 

Equations (27) and (28) permit one to give a more precise definition of 5". Using 
the BCS results that, for T - Tc 

we obtain 

in the clean and irty limit, respectively. From Eq. (31b) one notes that for impure 
metals 5" M ( 5 , A ) t  M (vFA)~ and is related to a diffusion length..15 

The original theory of G-L and Abrikosov was confined to temperatures close to 
Tc, wherg the order parameter was small and the free energy expansion might be expect- 
ed to be valid. However, the order parameter is also small close to I&2, and one might 
expect the theory to have a wider ran e of validity. Calculations of G~r'kov,'~ 
Maki,16s17 Helfand and Werthamer, 18-2K and Eilenberger ,22 have shown that the temper- 
ature dependence of either x1(T) , 9(T) or x3(T) is quite weak: and is of the order 0.f 
20% from 0 to Tc for extrinsic type I1 superconductors. However, this result is cor- 
rect only for low n material. 

ic nature of the normal state has to be included before it can be discussed. 

The general temperature and impurity dependence of 
. H1(T) and x2(T) is quite complicated, and an additional physical mechanism, the magnet- 

PARAMAGNFTIC AND IMPURITY EFFECTS ON Hc2 

Up to the present we have neglected the magnetic properties of the normal state. 
For transition metals such as Nb, or intermetallic compounds such as Nb3Sn, V3Si or 
V3Ga the paramagnetic susceptibility, 
equal orbital and spin  contribution^.^^' For a BCS superconductor the ground state 
consists of pairs of electrons with opposite spins, and hence the spin susceptibility 
is zero in the superconducting state. The unequal assignment of spin magnetic energy 
between the normal and superconducting states is the additional factor that has to be 
included to account in detail for the high fieid behavior of type I1 superconductors. 

is of the order of 20 x with about 

In the original suggest ion of Clog~ton~~ and Chandra~ekhar~' the paramagnetic 
limiting field Hp was obtained by equating the magnetic energy of the normal state to 
the condensation energy, i.e., 

2 

(32) - x  1 &- HC 
2 N P  8 n *  
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2 2 Using XN = Nb , and the BCS relations HC/8n = NA2/4, 2A = 3.5 kTc, we obtain 

(33) 
3 Hp = 18.4 X 10 .Tc . 

In these papers the prediction was made that Hc2 could not exceed Hp. A slightly more 
realistic calculation (although still incorrect) utilizes Fig. 10 to calculate the ef- 
fect of normal state spin paramagnetism. 

If we ignore spin contributions in the superconducting state we have for the mag- 2 netization M 5 xs(H- H;g), where x s ' =  1/8m and therefore: 

* 
In Eq. (34)' gE(Hc2) is the normal state free energy without the spin paramagnetism, 
xNH. 
limitation. 

The quantity H:2 is the upper critical field, in the absence of the paramagnetic 
If we include the spin paramagnetism in the normal state we have 

0 * xNH2 grim = gn(Hc2) - 2 ' (35) 

Equating Eqs. (35 and (34) at the transition field Hc2, we obtain 

* where we have utilized Eq. (32). 
we estimate (Hc2/Hc2) 
the above treatment anti one notes the first order transition to the paramagnetic 
normal state at Hc2. 

For a superconductor where Hc2 > 100 kG, Tc PJ 1O0K, * 0.6. Figure 11 shows the magnetization curve resulting from 

There are two objections to the above treatment. First, it is not clear how the 
normal cores will modify the free energy of the superconducting state. In terfns of 
the simple vortex model, the essentially normal material of the core will have a tend- 
ency to lower the superconducting free energy, and lead to a magnetization that ap- 
proaches that of the normal state at Hc2. Figure 12 shows the expected free energy 
curve and magnetization. One notes that the transition is second order, and that M 
crosses the H axis at a field.where g,(H,T) has a maximum. 
order of the transition, the magnitude of Hc2 is not very different from the simple 
relation.Eq. (36). A second more significant effect arises from the fact that in 
highly disordered alloys there may be appreciable spin scattering in the superconduc- 
ting state leading to a depairing of the spins in the superconducting state. This 
last effect, which is the dominant one, leads to a reduction of the paramagnetic ef- 
fect on Hz2 due to an equalization of the spin paramagnetism in the normal and super- 
conducting states. 

Despite the change in the 

The parameter to measure the effect of spin-orbit s'cattering can be estikated by 
comparing the energy uncertainty introduced by such scattering with the energy gap. 
If Tso is the spin-orbit scattering time, from the uncertainty principle one ex ects 
depairing effects to be large when [h/Ts,(3.5 kT,)] 2 1. The exact theorie~l~,~~ to 
be discussed introduce two parameters to describe scattering effects: 

A f (hI3n kTcTso) 
SO 

(37) 
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where T~~ is the spin-orbit scattering time, and T is the spin independent scattering 
time. 
tified with the transport scattering time. As suggested by Eq. (36), the basic para- 
meter of the paramagnetic effect is 

In the work of Maki17 and of Helfand, Werthamer, and H ~ h e n b e r g , ~ ~ , ~ ~  T is iden- 

and Maki17 introduces a mixed parameter 8, to characterize the paramagnetic effect, 
and its reduction by spin orbit scattering, 

L p =  2 cy 
o 1.78 Aso 

To summarize the discussion t o  the present, we note that the results of the GLAG 
theory, Eqs. (24)-(28), are only exactly valid near Tc. 
atures and when spin paramagnetism can be neglected, Eqs. (24)-(28) retain. approximate 
validity, and departures from the exact theory will be measured by the parameter h 
[Eq. (38)]. For high H dirty materials the parameters cy [Eq. (39)1, hso [Eq. (37)], 
and Bo .[Eq. (40)], determine the upper critical field and its temperature dependence. 

Close to Hc2, at lower temper- 

Before we discuss the formal theories and their comparison with experiment it, 
will be helpful to make three general observations about experimental results. 
it is important t o  note that in all of the theories, paramagnetic,effects vanish at 
Tc. 
the superconductor,.and hence the mixed state is depaired. 

First, 

Physically, this arises because close to Tc quasi-particle excitations dominate 
Thus if we use the notation: 

we obtain 

L I I 
C C. C 

where N is given by E q s .  (27) and (28). Second, in the dirty limit, the parameter CY 
does not have to be fit to the data, but can be obtained independently. 
tion follows from the theoretical temperature dependence of H&, which will be dis- 
cussed presently, and Eqs.  (41) and (28) plus some results from BCS. In the dirty 
limit one obtains 

This observa- 

where p is in n-cm and y has been defined below Eq. (28). Further algebra shows that 

dHc2 (- dT >; * 
CY = 5.33 

I 
C 

Hake34 has presented an admirable review of the effect of spin paramagnetism on the 
mixed state, and this review has an appendix which lists a variety of formulae showing 
relationships between experimental and theoretical quantities. . 

The third observation is the most important and must be taken into account before 
any discussion of experiment. In general there are two ways of presenting experimental 
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data. 
ature. 

One can use the usual relation Hc2 = &nlH, and show “1 as a function of temper- 
For greater generality it is convenient to introduce a normalized quantity 

This mode of presentation presents two difficulties: first, i’t combines ‘two quantities 
R,-2 and H,, and hence couples the mixed state with the zero field state; second, it 
requires the-experimentalist to have data on Hc(T) for the specimen under consideration, 
and these data often are not available. 
use of the normalized field 

Werthamer, Helfand and Hohenberglg suggest ‘the 

for comparisons between theory and experiment 
fect‘s as well as spin paramagnetic effects in terms of h* (to be distinguished from 
$2) 

and they present data on impurity ef- 

* Figure 13 shows the results of the calculation of Helfand and Werthamer” for h 
as a function of T/Tc for CY = 0, and for two values of h .  
results expressed in terms of %*(t). 
K*. However, it must be‘emphasized that the calculations shown in Fig. 14 are based 
on BCS values for Hc(T), and the small variation in x*(t) with temperature holds only 
for  BCS-like superconductors. 

Figure 14 shows the same 
One notes the weak impurity dependence of h* and 

This observation can be seen more clearly if we note that 

K*(t) = - h* [Tc(dHc/dT)T /Hc(T)I 
C 

x*(t) = - h* (P(T) . 
For all superconductors, from the normalization of h*, n* - 1.0 as T -, Tc. 
u*(O) will depend strongly on the value of ~(0). 
Pb, V, Nb3Sn and Nb. 
pure ‘(A = 0) and dirty (A = 0)  materials. 

However, 
Table I shows values of V ( 0 )  for Sn, 

. It also shows the value of cp(0) predicted by BCS, and x * ( O )  for 

TABLE I 
n*(O) for BCS and Nan-BCS Superconductors 

w [ x * ( o ) ]  pure rn*(o) 7 dirty 

Sn 
Pb 

V 
Nb3Sn 
Nb 

BCS 

1.855 .1.35 
2.132 1.56 
1.773 1.29 
2.000 1.46 
2 .ooo 1.46 
1.737 1.27 

1.28 
1.47 
1.22 
1.38 
1.38 
1.20 



* FromTable I we see that the variation in x*(O) between different materials is much 
larger than the variation induced b changing from completely pure to impure materials. 
Clearly the simple statement that H (0) > 1.27 does not in itself constitute a depart- 
ure from theory. For completeness we note that 

3: 

and again any comparison between theory and experiment has to include a knowledge of 
(dHc /dT) Tc. 

The results shown in Figs. 13 and 14 are in excellent agreement with low N. mate- 
rials where paramagnetic limitations are inoperative, and where impurity effect.s dom- 
inate. There is not good agreement for clean type I1 superconductors such as V and 
Nb.35236 and similar departures 
are seen for V. For type I material such as Sn and In,27,28. where measurements have 
been made of the transition fields of thin films in a perpendicular field, similar . . 
departures are noted. It is interesting to note that in all cases the departure from 
theory is expressed by the experimentalist as a preference for the two-fluid temper- 
ature dependence of N (Eq. 21), i.e., H = nO[l + (T/Tc)2]-1. For V, Nb and Sn use of 
the theory leads to h*(O) = 0.85, 0.83 and 0.85, respectively, whereas the maximum 
value of Fig. 13, is about 0.72. The discrepancy (w 2073, although small, is well out- 
side experimental and theoretical uncertainty. It cannot be accounted for on the 
basis of strong coupling effects, and according to Hohenberg and Werthamer21 may arise 
from Fermi surface anisotropy effects. Before we leave the area of nonparamagnetically . 
limited type I1 superconductors, it is of interest to point out the extensive numerical 
calculations of Eilenberger22 for HI and x2 as a function of purity including both S-S 
and S-P scattering. 

' 

Figure 15 shows the departures from theory for Nb 

. Although the small departures from theory for clean type 11 superconductors are 
sufficiently large to bother theoreticians and experimentalists, the paramagnetically 
limited alloys (i.e. the dirty limit) appear to be well understood. Figure 16 shows 
the comparison between h* for Ti(0.56)Nb(0.44) and the predictions of the theory of 
Werthamer, Helfand, and Hohenbert.19 In fitting the data, cy is fixed by Eqs. (42) and 
As, is chosen as a free parameter. The fit is excellent. 

Maki17 has expressed his results in terms of x1/x and x2/u as a function of t and 
Bo as shown in Figs. 17 and 18, and one notes the depression of n2(T) as well as x1(T)' 
below x where the paramagnetic effect is operative. In this connection it is important 
to note that q(T) is defined by - 4n(MS - fh) = (Hcq - H) /[2xz(T) - 1) (1.16)]. Figure 19 
shows a comparison between the Maki theory for'q(T) and the experimental results of 
Hake.34 The agreement appears satisfactory. 
the effect of spin paramagnetism from the work of Hake,34 where the free energy as yell 
as the magnetization is plotted as a function of field for a ~il6%~0 alloy with an 
€& of about 100 kG, paramagnetically reduced to about 40 kG. 

2 

Figure 20 is an impressive example of 

Figure 21 from the paper of Hake shows a comparison of the Werthamer, Helfand, and 
Hohenberglg (WIM) computer solutions for h* (t = 0) as a function of cy and Aso, com- 
pared to the analytic approximate form derived by Maki. The Maki17 expression, cor- 
rected from the original paper, as quoted by Hake, is 

(46) 
2 f -1 

h*(t) = 1.39 hc2 [l + (1 + Bo hc2) 1 , , 
* where 8, is given by Eq. (4) and hc2 = Hc.(t)/H22(0). A condition to be met for both 

theories is that the spin,flip scattering time T~~ be large compared to the transport 
scattering time T ;  a condition which is physically realizable in high N rransition, 
metal alloys. As shown in the paper of Hake, one can get about equally good fits to 
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either the Maki or WHH theory within the experimental uncertainties. 

linally, it is imporiant to note that for A,, 4 m, there is no paramagnetic limit- 
ation of J+2, and Hc2 -. Hc2. 
one might expect high Z alloys to have less paramagnetic limitations and hence achieve 
the upper critical field predicted from Eq. (28). 

Since As, cu(Z4), where Z is the average atomic number, . 
* 

CRITICAL FIELDS OF INTWALLIC COMPOUNDS 

From the previous discussion it is apparent that dirty type I1 superconductors 
(extrinsic) are in excellent agreement with theory for both the paramagnetically limit- 
ed and nonparamagnetically limited regime. 
exhibit characteristic departures from theory at low temperatures. 
materials (if they exist) have yet to be critically examined in the paramagnetic regime, 
although the theory exists. 
cribed to band structure and anisotropy effects, but no quantitative-calculations have 
been made. 

Clean (intrinsic) type I1 superconductors 
Intrinsic high H 

The departure from theory for low n materials has been as- 

It is an interesting question whether similar departures from theory might be 
expected for the intermetallic compounds Nb3Sn, V3Si and VgGa. 
significant departures from "normal-metal" behavior31 above Tc, and there has been lit- 
tle success in correlating their superconducting behavior with existing free electron 
theories. One is inclined to believe that these materials exhibit band anisotropy and 
strong coupling, but they present experimental difficulties for both sample character- 
ization and experiment. They are difficult to prepare in single crystal form, and the 
high critical fields and transition temperatures make it difficult to extract such 
parameters as the residual resistivity and electronic specific heat. 

V3Ga, as well as a calculation of H A  (HA = 0.7 ?LL/J$. Unfortunately, except in the 
case of Nb3Sn, the Hc2 data do not necessarily refer to the same specimen for which 
the p is given. Moreover, resistivity data on sintered specimens are often overesti- 
mated due to the problems of porosity. 
are intrinsic (H > 2nj). 
preparation for NbgSn, V3Si and V3Ga suggests that all are intrinsic and more so than 

These materials show 

. 

Table I1 gives data for (~H,Z/~T)~~, (dHc/dT)T , y, p and n.for Nb3Sn, V3Si and 

From the Table one notes that Nb3Sn and V3Si 
However, the apparent insensitivity of (d&a/dT)~~ to sample 

TABLE I1 
Parameters of Type I1 Intermetallic Compounds 

b) a) 
TC P Y (dHc2 /dT) TC (dHc/dT) TC "a 
(OK) (10'~ n*cm) (10 4 erg/cm3 OK) (kG/'K) (G/OK) 

Nb3Sn 18 1 .o -590 37 2237 8.2 

V3Si 17 0 . 4  2.4 -19 .o 

37 

41 

41 

-18.0 37 1.18 31 

39 

38 
-72o4O 19 5.0 

V3Ga 16 4.0 2.7 -45 .o -870 42 37 ~49.0 

a) Eq. (28). 
b) Eq. (25) at Tc. 
c )  Best values .derived by L. Vieland from Ref. 40 and Ref. 42. 
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is suggested by the calculation of t t ~  from Eq. (28). For example doubling the resist-. 
ivity of Nb3Sn has no measurable effect on the slope (dH,z/dT)~~.&~ Anothe example. 
is the invariance of dHc2/dT under large changes in stoichiometry for V3Ga.'l Further- 
more, both VjSi and Nb3Sn (and perhaps V3Ga) exhibit specific heat anomalies at low 
temperatures that cast some doubt on the quoted y 's .  Since this Table includes two 
materials of practical interest, and three of great theoretical interest, it is of 
some importance to obtain critical field data on well characterized specimens. 

Before leaving the intermetallic compounds; it may be of value to consider two- * 

Roger Cohen of our laboratory has made some preliminary calculations of band effects. 
the dependence of n on the material properties of a two-band system with two ener 
gaps (e.g., an s ap and a d gap). Similar calculations have been made by Tilley 
and Moskalenkov.85 Cohen expresses his results as a function of Ni, the density of 
states in the ith band (i = 1,2); V F ~ ,  the Fermi velocity; Tc; and the energy gap, A. 
A basic parameter is the quantity r, where near Tc 

E% 

Al'ABcs = [l + (N2/Nl)r21/[1 + (N2/Nl)r41 ( 4 7 )  

. .  . (48) 
2 2 2  

A1 A2 = r 

and ABCS = ABCS(T), and ABcs(0) = 3.5 kTc. The result for n in the clean limit is 

where 

Figure 22 shows an approximately self-consistent variation of n with r for NbjSn as a 
function of various d-band Fermi velocities.. The curves are based upon paramagnetic 

. susceptibility, Hall data, specific heat data for Nb3Sn. Unfortunately, it is not . 
possible to fit all the existing data, in particular h and n, with this model. It is 
clear that more data are required to satisfactorily understand 8-W intermetallic com- 
pounds. 

SURFACE SUPERCONDUCTIVITY 

Up to now, we have not touched.upon the third critical field, Hc3. This field 
arises from a peculiar boundary condition of the G-L equations for a field parallel to 
the surface. Under these conditions a superconducting sheath of thickness ,SY 5" can 
exist up to a field Hc3 1.1.695 Hc2 (Fig. 23). 
Hc3 is the supercooling field. There is good experimental agreement with the ratio 
Hc3/Hc2 when there is proper control af the surface. 
AmbegaokarLF6 in the strong-coupling limit for pure superconductors close to Tc show 
that the ratio is maintained. 
tors suggest that &3/Hc. at low temperatures can be as large as 2.2 due to the effect 
of electron reflection. FischerLC8 has interpreted microwave data for lead along these 
lines, and derived an Hc2(T) for Pb which is in good agreement with the calculations 
of Werthamer and Helfand. 
is not directly measurable and there is some question of interpretation. 

Furthermore, for type I superconductors 

Calculations by Eilenberger and 

Recent calculations of LGdersLC7 for clean superconduc- 

' 

However, in these measurements (n < 1/72, 1.695 J2rt > 1) Hc2 
Moreover, 
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\ 

given the disagreement of Nb and V with the calculations of Helfand and Werthamer,18 
there is a question as to whether one should.expect good agreement for Pb. Finnemore 
et al.36 measured Hc3/Hc2 for Nb, for samples with a residual ratio of 280 and 2000, 
and found Hc3/Hc2 of 1.69 and 1.50 respectively. However, the transitions were broad 
and extended to Hc3/Hc2 of 1.8 and 2.0 respectively. 49 

Saint-James5O has derived the modification of Hc. when there are paramagnetic ef- 
fects with the following expression at T = OOK: 

Hc3(0'oc) 1.695 (1 + CY 2) f - - 
Hc2(0yru) [l + (1.695 ' e 

As before, paramagnetic effects vanish close to Tc. 
tering one obtains 

When one includes spin orbit scat- 

Hc3 (T , cr,h so) = 1.69 Hc2 (T , 1.69a,h so) - 

and, as Saint-James points out, simultaneous measurement of Hc2 and Hc3 should permit 
direct determination of K and 1,;. 
experimental verification. Equation (51) for CY sz 1 suggests Hc3(0,cr) FJ 1.2 Hc2(0,a) , 
which. is in fair agreement with measurements of Kim et 

Equation (52) does not appear to have received any 

Finally, I resent some recently measured data on practical materials made by 
Saur and Wizgall 82 
predictions of Hak>Ii!k possible values for Hc2 if their properties could be maintain- 
ed under massive alloying to raise p .  As noted, since I believe the intermetallic 
compounds are inherently intrinsic, this part of the Table should be considered with 
some discretion. 
'related to their Tc, and poorly understood band structure and electronic interactions. 
It is quite possible that large enhancements in Hc2 beyond that realized today will 
only follow the understanding that leads to increases in Tc above 20°K. 

. 24). Table I11 summarizes the results as.wel1 as giving some 

In my own opinion the critical field of these materials is intimately 

TABLE I11 . 

Upper Critical Fields of Intermetallic Compounds 

kG) (after Hake53) 
1. 2 max ( 

Material H 2(0)(kG) 

Nb3Sn 
V3Si 

NbN 

V3Ga . .  

245 
235 
210 
153 

880 
850 
810 
2 50 
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Fig. 9 .  Thickness dependence of perpendicular 
c r i t i c a l  f i e l d s  i n  thin Pb films and 
f o i l s .  

Fig.  10. Free energy, including spin energy, of 
normal s ta te  - f i r s t  order transition. 
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Fig. 12. Free energy and magnetization, including 
spin energy, of normal and superconducting 
states - second order transition. 
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a f t e r  R e f .  18. 
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Fig. 14. Reduced parameter x* as a function of 
TIT,, after Ref. 18. 
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Fig. 15. Measured Hc2 for Nb compared with theory of 
Hohenberg and Werthamer, after Ref. 36. 
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F i g .  18. Reduced parameter u1/n as a function of 
TITc, after R e f .  17. 
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Fig .  21. The reduced f i e l d  h"(0) as a funct ion of CY 
and kso from theories  of Maki and WHH after 
R e f .  34 .  
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Fig.  22. Dependence of N, i n  two-band model for NbgSn, 
on Fermi velocity and parameter r2. 
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F i g .  23.  S p a t i a l  v a r i a t i o n  o f  order parameter f o r  sur face  
superconduct iv i ty  (H,g < H < q 3 ) .  
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F i g .  24 .  Critical f i e l d  
NbN after Ref. 
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curves of Nb3Sn, V3Si, V3Ga and 
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