## DYNAMIC RESISTIVITY OF HARD SUPERCONDUCTORS

#### IN A PERPENDICULAR TIME VARYING FIELD

# R. Altorfer, F. Caimi, and J.M. Rayroux Oerlikon Engineering Company Zurich, Switzerland

#### I. INTRODUCTION

Losses occur in type II superconductors when they are exposed to time varying fields or currents. In this paper we present the results of measurements made on a superconducting wire carrying a constant current while being exposed to a perpendicular field varying linearly with time.

#### II. EXPERIMENTAL SET-UP

The experimental arrangement is essentially the same as the one used by Taquet<sup>1</sup> and Rayroux.<sup>2</sup> The sample is wound bifilarly and placed inside a superconducting solenoid so that the magnetic field is perpendicular to the wire to be tested. The potential across the wire is monitored by a microvoltmeter (Keithley type 150) and recorded on a X-Y recorder (Moseley DR-2M). The transport current is first set in the bifilar wire, the field is increased up to some value below  $H_{c2}$  (about 20 kOe for NbZr and NbTi), kept constant for a while, and then set back to zero at about the same rate of change.

#### III. RESULTS

The shape of the voltage is identical for any type of hard superconductor. The general characteristics of the signal are the following:

- The magnitude of the voltage is proportional to the transport current and to the sweep rate of the magnetic field, dH/dt.
- There is a threshold field below which the voltage is essentially zero.
- The voltage vanishes abruptly for dH/dt = 0.
- The voltage polarity is independent of the sign of dH/dt. The sign of the voltage is the same as in the normal state.

The curves of Fig. 1 show the results obtained with a copper-plated Nb25%Zr wire (diameter of core 0.254 mm) when the field is increased from zero to some 15 kOe.

Instead of plotting the voltage one can express the results in terms of a dynamic resistivity in  $\Omega$  cm. The curves of Fig. 2 show that:

- The threshold field is a characteristic of the material itself as well as of its metallurgical treatment.

1. B. Taquet, J. Appl. Phys. <u>36</u>, 3250 (1965).

2. J.M. Rayroux, D.I. Itschner, and P. Müller, Phys. Letters 24A, 351 (1967).

- A possible size effect exists as seen from the 10 mil and 5 mil NbZr data.
- The magnitude of  $\rho/(dH/dt)$  at 10 kOe is of the order of 10<sup>-15</sup>  $(\Omega \cdot cm)/(0e \cdot sec^{-1})$  (compare with the Cu resistivity at 4°K  $\approx 10^{-8} \Omega \cdot cm$ ).

The characteristics of the threshold voltages indicate clearly a possible relation between the dynamic resistivity and the magnetization. A more careful observation of the signal demonstrates the effect of the magnetic history of the sample. As shown in Fig. 3 the dynamic resistivity of a clean wire starts at zero field while the magnetic hysteresis is the apparent reason for the threshold field. A still more obvious hysteresis effect appears when the field is cycled from zero to H and back to zero (see Fig. 4).

### IV. EXPLANATION

The first idea that came to our mind looking for an explanation of the hysteretic behavior of the dynamic resistivity<sup>2</sup> was of phenomenological order. We advanced the idea that the dynamic resistivity could be proportional to the product of the induction B by its time derivative dB/dt:

$$\rho(H) \sim B \frac{dB}{dt} \sim B \frac{dB}{dH} \frac{dH}{dt} \qquad (\Omega \cdot m) \qquad (1)$$

Qualitatively at least the graphical product of  $B \cdot dB/dH$  results in a curve similar to Fig. 4. Druyvesteyn<sup>3</sup> used the Bean model and its resulting flux-transport concept across the wire to analyze our first experimental data. He found an equation for the observed electrical field which is in good agreement with the experiments:

$$E = \mu_{o} \cdot \frac{dH}{dt} \cdot \frac{J_{t}}{J_{c}} \cdot d \qquad (V/m) , \qquad (2)$$

where  $\mu_0 = 4\pi 10^{-7} \text{ VsA}^{-1} \text{ m}^{-1}$ , d = wire thickness,  $J_t$  = density of the transport current, and  $J_c$  = critical current density. Using basically the same approach but introducing the Kim equation for the density of the critical current  $J_c = \alpha/(B_0 + B)$ , we found the following expression for the electrical field of a clean wire below the threshold field:

$$E \simeq \frac{\left(B_{o} + B\right)^{2}}{2\alpha} \cdot \frac{dH}{dt} \qquad (V/m) , \qquad (3)$$

where B is the induction at the surface of the wire. Above the threshold field the, same treatment gives:

$$E = \frac{\mu_o}{2\alpha} (B_o + B) \cdot J_t \cdot d \cdot \frac{dH}{dt} \qquad (V/m) \qquad , \qquad (4)$$

which, in accordance with Eq. (2) and with the experiments, also stresses the importance of high critical current density and small conductor size d for low losses.

It is a pleasure to acknowledge very fruitful discussions with Prof.Dr. J.L. Olsen and Dr. W. Druyvesteyn throughout this work.

3. W.F. Druyvesteyn, Phys. Letters <u>25A</u>, 31 (1967).



Fig. 1. General behavior of the voltage with transport current and sweep rate of the field as parameters. Sample: Nb25%Zr, diameter = 0.254 mm + 0.025 mm Cu, wire length = 12.8 m.



Fig. 2. Threshold field for various hard superconducting wires.

- 569 -



Fig. 3. Effect of magnetic history below the threshold field. Sample: Nb42%Ti cold-worked only, diameter = 0.250 mm + 0.025 mm Cu, length = 20 m; transport current = 10 A. A: magnetically clean wire. B: wire with magnetic hysteresis.



Fig. 4. Voltage on a Nb25%Zr wire (diameter = 0.127 mm, no Cu plating, length = 20 m).