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I. INTRODUCTION

In this informal review I intend to discuss our understanding of the magnetic:
instabilities which occur in high field superconductors and the implications of our
understanding for the design of high field, high current density solenoids. The
approach will be mainly tutorial; the bibliography will allow reference to useful
review articles and to some of the original sources.

After first mentioning very briefly the stability problems encountered in prac-
tical high field superconducting solenoids, we shall review the model which will form
the basis of our discussion of magnetic instabilities: the critical state model.
After illustrating the use of this model for isothermal situations, we shall con-
sider the much more complicated situation in which the temperature is not constant.
We shall find that under some conditions a small disturbance, say a small temperature
rise, will grow catastrophically, driving the material into the normal state; the
system will be unstable. We shall determine the conditions necessary for stability
in certain limits, limits for which we can make simple calculations, limits yielding
results useful for solenoid design.

The history and present state of development of solenoids has recently been
reviewed very thoroughly by Chester.! This material will not be repeated here.

The central problem is the loss of performance of a conductor when it is wound
into a solenoid, the degradation effect. As an example, a conductor formed of a
high field superconductor may carry 40 A without a measurable voltage drop in a mag-
netic field of 40 kOe when tested - in the form of a short length. The same conductor
systematically will carry less than 20 A in a solenoid generating 40 kOe., This kind
of performance degradation has been observed in each of the materials used in the
construction of high field solenoids; it is a general phenomenon. It has been found
experimentally that the superconducting-to-normal transitions leading to this limited
performance occur in the lower field regions of the solenoid, not in the high field
regions in which the critical current density of the superconductor is generally at
its lowest.

The degradation effect can be alleviated to some extent by plating or coating
the conductor with a pure normal metal such as copper or silver, or by winding into
the solenoid layers of pure normal metal. Further, in some cases, a considerable
increase in performance is obtained by rumning a solenoid in superfluid helium.
Fine wire conductors apparently suffer less degradation than larger conductors.

The reader is referred to Chester's review1 for details and references for the

above observations. We shall now turn to a description of the critical state model
the model on which we plan to base our discussion of magnetic instabilities.
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IT. THE ISOTHERMAL CRITICAL STATE MODEL

Soon after the demomstration of the high field capabilities of Nb3Sn and of alloys
such as NbZr, it was found that a rather simple phenomenological model,2 here called
the critical state model, allows one to predict the magnetic behavior of a high field
superconductor in terms of a simple empirical parameter. The basic assumption of the
critical state model is that a changing flux density in a high field superconductor
induces persistent currents up to a limiting or critical current density, J.. These
persistent currents are induced to flow according to Lenz's law in such a way as to
minimize the change in the flux linking the sample. That portion of a superconductor
carrying this limiting current density is said to be in the critical state. The para-
meter J, depends on both temperature and magnetic field, though in some cases it is
reasonable to assume that J. is independent of field. Often J. is assumed independent
of field merely in order to simplify calculations.

Subsequently this phenomenological critical state model received a more physical
basis. TFor an ideal, defect free, sample of a type II superconductor (H,j < H < H¢2),
the flux filaments threading the sample” are free to move about in the sample subject
only to their mutual repulsive interactions3s4 and to a viscous drag5 which can be
characterized by a flux flow resistivity, pg. Nonuniform distributions of flux fila-
ments, equivalent to field gradients or bulk currents, disappear quickly, with a time
constant determined by pg. However, for nonideal type II superconductors, persistent
bulk currents or field gradients can occur when the flux filaments are pinned or trap-
ped by defects in the structure of the material.® Such defects can be voids, normal
inclusions, grain boundaries, compositional variations, dislocations, etc. A large
enough bulk current density or field gradient can free the flux filament from the de-
fect so that it can move; this critical bulk current demsity is Jo. The pinning and
freeing of the flux filaments may well be a thermally activated process, a process of
flux creep./ This process, and thus the critical current density itself, is tempera-
ture dependent. If the controlling process is flux creep, there is no true persistent
critical current demsity; flux motion and current decay will continue indefinitely,
albeit at a very slow and ever decreasing rate.” In actual fact, for most purposes
the currents can be considered as persistent below a givenm J,. We shall return to
this point in a later section.

We have up to this point discussed the critical state model in terms of flux mo-
tion or of induced persistent currents. It will be convenient throughout most of this
review to think in terms of the relation between the electric field in the material
and the current density. We can state the critical state model with some simplifica-
tions as follows: The electrical and magnetic properties of the superconductor are
characterized by the nonlinear relation between. the electric field and the current
density indicated in Fig. 1. No current flows in the superconductor unless there has
been a change in flux linkage. While the flux linkage is changing, the electric field
and current density are related by the above relation and Maxwell's equations; note
that local heating occurs, P = E - J, even though we are dealing with a superconductor.
When the steady state has been obtained, we find that a persistent current density
+ J. is flowing throughout those regions in which changes in flux linkage or magnetic
field are occurred. The sign is given by the sign of the last nonzero electric field.
No current is flowing where no changes in flux linkage occurred. The static magnetic
properties are determined by Maxwell's equations and the distribution of current den-
sity: 0, £ J,. If one restricts himself to isothermal field or current changes, he
can easily calculate the final field and current distribution. We call this limit the
isothermal critical state model. :

In order to illustrate the application of the isothermal critical state model,

let us work with .the model in its simplest form: J, independent of H, and pg infinite.
Thus the E-J relation is as shown in Fig. 2.
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Let us comsider a slab of a high field superconductor cooled in a field H, paral-
lel to the plane of the slab (H.} << Hy < H¢2), Fig. 3a. Let us consider the isother-
mal response of this slab to changes in the applied field. Increasing the applied
field causes flux penetration into the sample.. For this geometry the Maxwell equation
V xH= 4 J/10 (practical Gaussian units) reduces to dzH, = - 4m Jy/10, yielding for
the isothermal critical state model

9H

z _ 4u
ox 0, F70 10 Jc ’

where the sign can be chosen by Lenz's law. A change in applied field AH, thus yields
a triangular penetration of field as indicated in Fig. 3b. The appropriate current
distribution is also indicated. The depth of flux penetration, 8§, is given by

Yz}
o

For a sufficiently large change in applied field, the flux penetration from the two
sides meet, and the field and current distributions are as indicated in Fig. 3c. Low-
ering the field from the peak field (Fig. 3d) causes flux to move out of the sample.
Starting at the surface of the sample and moving inward, there is a reversal of the
local current flow.

It is possible to calculate from this model the field distribution, the local
flux penetration or flux linkage, and thus the local heating. For more detailed des-
criptions of the application of the model and of the results obtained see Bean,2
London,2 Kim et al-, Hancox,8 and Hart and Swartz.?

Let us now show similar current .and field distributions for a cylindrical wire
carrying a tranmsport current. Let us consider the wire to have been cooled in a mag-
netic field H, parallel to the axis (Hpj << H, < H¢2). Let us apply a tramsport cur-
rent parallel to the axis and plot the current distribution and circumferential field
or self-field distribution. Before any current is apglled there is no self-field
(Fig. 4a). Upon the application of a curremt (I < mR“J.), a flow of current density,
magnitude J., penetrates from the surface (Fig. 4b) to a depth such that
Je " 1'r(R2 - R{) = I, The self-field is as indicated. The maximum current in the iso-
thermal model is nRZJc, when Ry = 0. 1If, after having reached a peak current
I, < nRZJc, the current is decreased, a current reversal penetrates from the outside
as indicated in Fig. 4c. Again it is possible to calculate local field and current
distributions, local flux penetration (including the instantaneous voltage drop down
the wire), and local heating. It is possible to carry out the calculations for fields
perpendicular to the dxis as well. Pertinent references are Refs. 2, 8, and 9, as
well as Grasmehr and Finzi.l

We have devoted this much space to the critical state model because it will be
the basis of our following sections. We have to ask how well does it work in practice.
Bean,2 in static experiments at fields below 10 kOe, has found rather detailed agree-
ment with this model, using J, independent of H. Kim, Hempstead, and Strnad,2 in
static experiments covering a wider range of fields, found agreement with the critical
state model predictions (with an important qualification) provided they used a field
dependent J.. In. particular, they used a two-parameter relation: J (H) = Qb/(H + By) .
Other authors have found in different materials yet other field dependences for J.

The field dependence of J. is related to the defect structure yielding the flux pin-
ning; this subject is discussed by J.D. Livingston in another paper in this Brookhaven
Summer Study series. The important qualification in the work of Kim et al. is that
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under some conditions the isothermal critical state collapsed; flux rushed into the
sample; a flux jump occurred. Thus we can say that for static experiments and iso-
thermal conditions the isothermal critical state model is a satisfactory description.
In this paper we shall try to determine the conditions under which the isothermal
conditions cannot be maintained.

Several experiments indicate that the critical state model is useful as well in
cases in which smaller, more rapidly varying fields are involved. Grasmehr and Finzil0
have measured the instantaneous voltage drop along a wire carrying a 0.8 kHz alterna-
ting current. In addition they calculated the voltage waveform using the simple form
of the critical state model (Fig. 2); the agreement between the model prediction and
the experimental results is excellent. Instead of measuring the voltage directly and
comparing their results visually, they could have Fourier-analyzed their predicted
voltage drop and measured the harmonic content of the experimental voltage. The lat-
ter is what Bean?,ll did for the output of a pickup coil containing samples exposed to
alternating fields. Bean calculated for the higher harmonics that

2
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where n is the harmonic, f is the fundamental frequency, hy is the alternating field
amplitude, and vy is a constant involving the geometry of the sample- and the pickup
coil. 1In Ref. 11 the experimentally observed results (f = 5 kHz) are compared with
the above predictions. The agreement is excellent through the seventh harmonic; de-
viations become apparent as one moves towards the seventeenth harmonic.

Agreement was obtained in these dynamic experiments even though the effects of a
finite pg (Fig. 1) were (quite properly) ignored. As we shall see later, there are
some situations in which the finite pg is important. At this point let us simply note
that where J < J, no flux motion occurs, but where J > J. flux moves according to a
flux diffusion equation
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Thus the time constant for flux redistribution for the slab geometry illustrated in
Fig. 3b is roughly 7 ~ %6 /D. Estimates of Pg for useful high field superconductors
can be made on the b331s of the work of Kim et al.?

The critical state model as we have introduced it can be expected to apply best
for defect-loaded. very high field superconductors such as NbZr, NbTi, or intermetallic
compounds such as Nb3Sn. If the applled fields are several kQe or more, we are cor-
rect in neglecting surface effectsl2;13 and the reversible magnetization characteristic
of type II superconductors.3

III. ADIABATIC CRITICAL STATE MODEL AND MAGNETIC INSTABILITIES

In Section II we followed the field profile in a slab of material as we increased
the applied field isothermally. We predicted a triangular field penetration until the
two triangles met. A similar flux penetration is predicted for a cylindrical rod.
While in some studies such flux penetration is observed,“ in many other studies,
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especially of superconductors having very large critical current densities, the flux
penetration follows the predicted behavior over a limited field change and then a
sudden and nearly complete flux penetration occurs, 14 Coffey15 has probed the field
profile in a divided rod of Nb60%Ti upon changing the applied (axial) field. He finds
that the initial triangular field penetration (Hy < 14 kOe) is essentially as predicted
by the isothermal critical state model. At higher fields there is a marked change in
the mode of flux penetration; at some field the isothermal profile collapses and flux
- rushes in to bring the internal field-up to the applied field. A further field in-
crease leads to a new triangular shaped flux penetration profile until another cata-
strophic flux penetration occurs. These unstable flux penetrations occur rather regu-
larly with a field spacing of between 4 and 8 kOe. These are the flux jumps or mag-
netic instabilities which we wish to understand; we wish to be able to predict their
occurrence in terms of the properties of the high field superconductor.

Let us start out by recognizing the difficulty in maintaining isothermal condi-.
tions while changing the field. As pointed out by Swartz and Bean,1 and by Wipf, 17
the magnetic flux can under some conditions diffuse through the useful high field
superconductors much faster than can the heat generated by the moving flux; thus the
superconductor can heat appreciably if a sudden field change occurs. The consequence
of such a temperature rise can be seen qualitatively by looking at Fig. 3b while re~-
calling that the critical current densitg of a high field superconductor generally de-
creases with increasing temperature. As we saw in Section II, 5(T)= 104H, /4ﬂJ ™.
Thus a temperature rise leads to a further field penetration, which generates heat
leading to a greater temperature rise and, in turn, to a yet greater flux penetration,
etc. This thermal-magnetic feedback can under some conditions lead to a thermal rum-
away, a catastrophic flux jump.

As the field applied to a high field superconductor is increased, flux penetrates
the sample. This flux penetration, even in the absence of flux jumps, is not smooth;
it is a-noisy2 random process accompanied by local fluctuations of flux density about
the critical state profile. Our concern is whether or not these fluctuations grow
into gross flux jumps. The general problem is a very complicated one, for we are deal-
ing with two coupled diffusion processes: the diffusion of flux and the diffusion of
heat, the coupling arising from the generation of heat upon flux motion and the decrease
in flux pinning or critical current density with an increase of temperature. Little
progress has been made in this general problem. We shall consider only extreme limits
for which simplifications occur.

Let us first consider the instability problem in the limit that no heat flows out
of the region of flux penetration, a quasi-adiabatic limit. Let us consider a semi-
infinite block cooled in a field H, applied parallel to the face of the block
(H.; << H, << H¢2). Let us isothermally increase the applied field by an amount AH,.
The field profile is now that characteristic of the bath temperature Ty. We can con-
sider the stability of this profile against small disturbances by calculating the en-
ergies involved in going from this profile to others at higher temperatures. In order
to simplify the computational details, let us assume that the critical current density
is independent of field and that the total heat developed in any flux penetration is
spread evenly throughout the region of flux penetration, i.e. the new temperature is
uniform across this region. This last rather artificial assumption will later be re-
laxed. We consider the two uniform temperature critical state profiles illustrated in
Fig. 5. We are interested in the amount of heat developed by the motion of flux in
going from profile 1 to profile 2, Qn> and in the amount of energy absorbed in heating
the sample from Ty to Ty, Qp. These quantities are illustrated schematically in Fig. 6.
In our quasi-adiabatic limit only those profiles are allowed for which Qp = Qp. If the
excluded field AH, is small (Fig. 7a), Qy is always smaller than Qp and only one solu-
tion is allowed, Tp = T1. The system is stable against small disturbances. For a suf-
ficiently large excluded field AH, (Fig. 7b), another higher temperature profile is
allowed (and in our simple case is clearly accessible); the system is unstable, for a
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small disturbance will start the system towards the higher temperature state. If the
initial slope of the Q vs T3-T; curve is greater than the initial slope of the Qp vs
To~-Tp curve, instabilities are possible; the extent of the flux jump depends on the
nonlinearities of the curves, in particular on the temperature dependences of the heat
capacity and the critical current density. In order to determine the important phys-
ical parameters, let us calculate Q; and Qp as functions of Ty and Tj. Let us assume
the critical.current density to be detreasing linearly with temperaturel8:

T=-T

@ =gy (-7 )
. u 1

where T, = T(J.= 0), and the heat capacity to be proportional to the cube of the tem-
perature<*:

c(m =¢ - (T/T1)3 (3/°% emd) .

We calculate by_calculating the total energy input to the system using the Poynting
vector P = 10 X H/4m, and then subtracting that portion of this energy going into the
increase in the energy of the magnetic field: .

-7 [++} - .
l—g;—fo [ (x) - Hi(x)] dx .

The remainder is the heat generated. We first calculate the various quantities per.
unit surface area. Using the Poynting vector we find:

t t
r2 10 7 j 2 .
AWIZ J Pdt = T P(x=0) -(Ho + AHO) dt
. t t
1 1
10”7

P (HO + AHO) Acp12 (x=0) s

where A9p12(x=0) is the total flux crossing the surface in going from profile 1 to
profile 2. From the triangular profile (Fig. 5) we find Ay (x=0) = AH,(89-87)/2.
Therefore the total energy input is: )

10”7

My, = g (B, + bH)AH . (8, -8

12
where
AH
(o)
10 Jc(TZ)

and
AH
0

. 1 41t
s 10 Jc(Ty)

The total change in field energy is:
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Therefore the total heat generation (per unit surface area) is:

-7
I_ - =10
Q, = &y, - BB, =y

win

2
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and the heat generation per unit volume of flux penetration is:

1 .
chl 10T 2 gy (L) 2 gyt 20
Q 5, 8 3 o 5, 8w 3 o T -1,

for T9 < T,,. The energy absorbed in heating the sample, Qyp, is simply
2 u T :
' T

fzunu

T

For our assumed C(T) we obtain:
_ A 4 3
Qp = (T, - T;) /l+'r1 .

Let us now calculate the excluded field below which no instabilities occur, the
excluded field for which the initial slopes of Q, and Qp are identical. We have:
. 2
107 2 (4B)

.———-—.-————:C(Tl)=c

8m 3 Tu- T1 1

and - thus:
7 f
.AHo(lnstablllty) = {12ﬂ C1-10 -(Tu-Tl)

Noting that

1 p 3,

u 1 Jc or

we can write a slightly more general result:
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For a given C(T)/Cl the extent of a flux jump for a given starting AH, and an isother-
mal profile depends on the ratio of AH, to AH(instability) and on the ratio of Ty, to
Ty. For C = T3 and for Ty /T, much less than one, flux jumps for AHo/AH(instability)
just greater than one lead to insignificant flux penetration and heating; for Ty near
Ty any flux jump leads to complete flux penetration and to a final temperature above
Tu.l6 Even at the lower temperature a sufficiently large AH, can lead to a complete
or full flux jump. 1In Fig. 8 we illustrate this dependence of the size of the flux
jump on AMHg,; here T,/Ty; = 5. Wipf and Lubell22 have pointed out that in order to have
a full flux jump for the present geometry the following condition must be satisfied

in addition to having AH,/AH(instability) = 1:

2 T

) u

zf c(T) dT .
T

-7 (AHO
8m

10

Examining our result for AH(instability) we see three things: 1) the higher the
heat capacity the higher the stable excluded magnetic field; 2) the smaller the de-
crease in Jo with increasing temperature, the higher the stable excluded field; in
fact if 0J./dT 2 O the system is inherently stable against small disturbances; and
3) for this semi-infinite geometry the actual magnitude of J, cancels out.

Let us now remove the artificial assumption of a uniform final temperature; let
us assume no heat flow at all, a locally adiabatic problem. Swartz and Bean-® have
solved this problem exactly. They derive and solve a second order differential equa~-
tion for the flux crossing a surface AY(x); the equation is of the form

-y .
dhv(x) . . L1 Ap(x). + const. ,
axz AZ

where A is a characteristic distance for flux jumps:

_L=_ﬂ.J2(-_1.’aJc)
2 9 c JC?T— .

Their solution indicates that instabilities can occur only if the critical state pene-
tration distance 6 is greater than 3¥m\. This leads to a stable excluded field limit,
similar to our AH(instability), which they call Hfj:

AT \-1L\%
= (Pl (2 32)F

This expression differs from our agzroximate one only by .the factor (ﬂ2/12)%. Wipf
and Lubell,22 Hancox,23 and Lange, have derived very similar results. Swartz and
Bean have considered in the same limit the size of a flux jump, the effects of differ-
ent temperature dependences for the heat capacity, and the effect of having a slab of
finite thickness. 1If the thickness of a slab is less than mA, then no flux jumps can
occur, for the flux penetration distance can never reach the critical value. Another
way of saying the same thing is that if H* < Hfj the system is stable, where B* is the
field at which the flux penetrating from the two sides meets at the center. Setting
the thickness of the slab, w, equal to ™\, we obtain the first of several stability
restrictions on the critical current density and the sample size:
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~ This result implies that stability may be more easily achieved for a finite sample
cooled in a large field than for one cooled in a small field, for J, usually decreases
in increasing fields.

Experimental tests of our results are by no means quantitative; see Swartz and
Bean.l® Though many have observed flux jumps, few have measured the pertinent prop-
erties of the samples under study, few have tried to maintain the adiabatic conditions
assumed. Neuringer and Shapir325 have observed ‘a series of incomplete flux jumps in
cylinders of NbZr; the spacings of the jumps seem to be about the value predicted by
the expression for Hfj. The present author has found in magnetization studies of a
composite superconductor in limited contact with the liquid helium bath that the intro-
duction of a high heat capacity element such as mercury doubled the spacing of the flux
jumps, but the studies were not quantitative. One of the better measurements is that
of Hancox?6 who studied a sample of porous Nb3Sn, again in limited thermal contact with
the helium bath. He not only observed flux jumps but also measured the heat capacity
and critical current density of the sample. The agreement with the picture presented
‘here was at least semi-quantitative, i.e., within a factor of two. He found, as had
Goldsmidt and Corsan,2’ that allowing liquid helium into the porous Nb3Sn increased by
an order of magnitude the stable excluded field, presumably because of the very large

_heat capacity of liquid helium.

~Livingston28 showed that in a PbInSn alloy properly heat treated it is possible
to obtain dJo/dT > 0 over a limited range of field and temperature. He further pointed
out that such a material should be stable in that region. The present author and
Livingston, in an experiment designed to be especially sensitive to flux jumps, have
studied the flux jump behavior of this material.2? Flux jumps were clearly observed in
those regions in which dJ./dT < 0; flux jumps were absent where dJ./dT > 0.

Ope can make very similar calculations for nonzero transport currents. Swart29
has performed such calculations for isolated round wires and for flat sheets or films.
Here we shall simply remark that under some conditions a wire or film will quench at a
current well below the isothermal critical current; in fact the quench current can ac-
tually decrease as the isothermal critical current is increased. Swartz tested his
predictions using deposited NbO films and found agreements somewhat more quantitative
than those we mentioned earlier.

Hancox30 has applied concepts similar to these to wires in the winding of a sole-
noid. He uses the quasi-adiabatic approximation with which we started. In additiom,
he approximates a single layer wound from round wire as a thin sheet, thickness D, for
which the field is parallel to the surface; the field is large enough for complete flux
penetration. He finds in a calculation analogous to a calculation of AH(instability)
that a winding is stable up to its full critical current provided that

LK) -1
22 e B0 o (- L e
I D =zF 10°. ¢. J, dT '

Thus stability is improved if the heat capacity is increased, if -3J./9T is decreased,
if D is decreased (a finer wire), and if J, is decreased, e.g., by placing a field on
the winding before energizing the winding, as has been discussed by the RCA group.

Hancox also makes a more detailed calculation introducing the temperature depend-

ence of the heat capacity, a calculation in effect of the extent of a flux jump. He
considers the field and current density distribution illustrated in Fig. 9. Balancing
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the energy dissipated in the flux penetration against the increase in thermal energy
he finds the following expression for the current degradation expected in a solenoid:

Ty

2 J
D 2 _ 2 2 el Y _ 1n9 f
A (Jcl 35, + 63, ln 5 = 10° . c(T) dT .
c2 T1

Here ﬁDch1/4 is the short sample current for the wire and nDch2/4 is the quench cur-
rent of the solenoid. Here we are allowing minor or partial flux jumps to occur; small
enough flux jumfs do not quench the solenoid, they merely give small voltage pulses

. across the coil! and perhaps a noisy field in the solenoid. A sufficiently large flux
jump will quench the solenoid. At the Summer Study Hancox presented informally a very
complete phase diagram for a wire wound solenoid indicating the conditions under which
quenching instabilities are to be expected. )

Again the agreement with experience is- at best semi-quantitative; the predictions
appear optimistic. Iwasa and Williams32 suggest on the basis of their experiments that
we may be optimistic in our predictions because we have always assumed that the flux
jump is one-dimensional; we have ignored any variations of the flux penetration in the
y or z directions. The importance of their suggestion is not yet clear.

Recalling Hancox's first expression we find essentially the same pertinent para-
meters determining flux jump stability: the heat capacity of the winding, the loss of
Jo with increasing temperature, the size of the conductor, and the magnitude of J¢.

Let us note that Hancox's stability expression for a slab carrying a transport current
is about four times as severe as Swartz and Bean's similar expression for zero trans-
port current (it would be exactly four if the same thermal approximations had been
used) . This factor of four can easily be reconciled if one recognizes that the field
profile for a slab carrying the full isothermal critical curremt is similar to the pro-
file for ome half a slab carrying. no transport current but exposed to a field greater
than H¥. The factor is four because the dimension is squared in our expressions.

The stabilization of a solenoid against flux jumps by the use of the heat capacity
of the winding is called adiabatic stabilization or enthalpy stabilization. It appears
possible to make some conductors fine enough to make them stablel; the problem is that
these fine conductors are embedded in parallel in a2 normal metal. In order to obtain
the full advantage of the fine conductors there must be an effective transposition of
the superconducting wires. Twisting is effective as far as uniform applied fields are
concerned, but is not effective for transport currents. The problem is that without
transposition there is an effective diamagnetism for times long compared to the period
of field increase; this diamagnetism is temperature dependent and can still lead to
instabilities. The effectiveness of twisting instead of the much more difficult trans-
position is yet to be determined.

IV. MAGNETIC INSTABILITIES: ATTEMPTS TO INCLUDE THE FINITE
THERMAL AND MAGNETIC DIFFUSIVITIES

In the preceding section we have considered magnetic imstabilities in the limiting
case of the adiabatic critical state model. Though, as pointed out by Swartz and Bean,
this is often a rather good approximation for Nb3Sn and similar materials, there are
some situations in which the nonzero thermal conductivity and the finite flow resistiv-
ity are of importance. The treatment of this problem is sufficiently difficult that
little progress has been made. The most detailed and general attempt thus far is the
work of Wipf.17 Wipf's discussion is sufficiently complex that I shall refer you to his
paper for details. (His introduction is a very good discussion of flux instabilities
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in terms of the motion and pinning of fluxoids.) Wipf analyzes the problem of a semi-
infinite block excluding a magnetic field, assuming the heat capacity to be independent
of temperature. Within this approximation he distinguishes three regions of excluded
field: '

. 1) 8H, < AH(full stability): No instabilities can occur.

2) AH(full stability) < AMH, < AH(limited instability): 'A flux disturbance
can take place but the heat conduction out of the flux penetration re-
gion restores J. before appreciable flux penetration occurs.

3) AH(limited instability) < AH,: If a flux disturbance occurs, the growth
of the flux penetration region is too rapid to allow thermal recovery; a
near adiabatic runaway instability or full flux jump can occur. (As
stated above, this discussion neglects the increase in heat capacity with
temperature.)

No simple expressions are given for the boundaries of these regions, except for
AH(full stability), for which essentially our AH(instability) or Hfj is obtained.
Speaking loosely, if the time constant for flux penetration into the conductor is much
lorntger than the time constant for the diffusion of heat out of the conductor,
MH(limited instability) can be appreciably greater than AH(full stability). The time
constant for heat flow out of the superconductor depends in a rather simple way on the
thermal conductivity and the geometry. The time constant for flux penetration depends
on the geometry and on the effective flux flow or flux creep resistivity. Looking
back at Fig. 1 we see that the flux motion time constant depends on pg. For the use-
"ful high field superconductors, the thermal conductivities and flow resistivities are
such that the thermal time constants are long compared to the magnetic time constants
as long as the superconductor experiences an appreciable flux motion or electric field.
In this case, i.e., for rapidly varying fields, the adiabatic limit is appropriate and
AH(limited instability) is very close to AH(full stability). However, for very slowly
varying fields, i.e., very small electric fields, flux creep may be the controlling
mechanism; our Fig. 1 is then an oversimplification, there is no sharp cormer in the
E-J relation near J,. 1In fact, both the flux creep model’ and the present somewhat
limited experimental evidence’»33 indicate that for small electric fields we should
write pgp = YE. Thus for a slow endugh rate of change of field the effective resist-
ivity is small enough that the magnetic time constant becomes long compared with the
thermal time constant; AH(limited instability) becomes appreciably greater than
AH(full stability). This trend is often observed experimentally.

Of more practical interest, the effective magnetic time constant can be greatly
increased by introducing pure normal metals in close magnetic coupling with the super-
conductor, increasing AH(limited instability) well above 8H(full stability).

Let us now consider magnetic instabilities in the extreme limit that the magnetic
time constant, Tp, is much longer than the thermal time constant, an extreme limit
- yielding closed form answers of practical importance for certain structures, (It is
a limit of interest to the present author.) Let us consider a slab of a high field
superconductor of thickmess or width w exposed to a magnetic field parallel to the
plane of the slab, a geometry similar to that of Fig. 3. The superconducting or crit-
ical state properties of this material are described by Fig. 1 with J. assumed_ inde-
pendent of H., The thermal conductivity of the material is denoted by K (W em~1 og-1y,
There is in addition an interface barrier 'to the flow of heat out of the superconductor
described by the linear relation: Q = h-ATg (W cm~2). Here ATg is the difference be-
tween the surface temperature of the superconductor and the temperature of the surround-
ing medium, perhaps a liquid helium bath, perhaps a normal metal bonded to the super-
conductor. Initially let us assume that the flux penetration fronts from ‘the two sides
have reached a common point, as in Fig. 3c¢c; the critical current density has been in-
duced to flow throughout the entire sample. We shall neglect entirely any stability
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resulting from the heat capacity of the superconductor.

We “shall apply a sudden small disturbance to the system and calculate whether or
not a thermal runaway occurs. For convenience let the initial disturbance be a sudden
small temperature rise AT. Our criterion for stability will now be a dynamic one, in
contrast to the static criterion of Section III. The system will be considered dynam-
ically stable if the temperature rise immediately decays back towards the original
equilibrium temperature; it will be considered unstable if the temperature increases
further yet. We shall neglect any nonlinearities in the problem. This is a rather
conservative or pessimistic criterion.

In the extreme limit of a very long magnetic time constant (relative to the ther-
mal time constants) the calculation is greatly simplified because we can then assume
that the initial magnetic ‘field profile and the initial current distribution determine
the flux motion and heating rate for some time after the initial temperature rise.
Upon a sudden increase in temperature there is a sudden decrease in the flux pinning
in the superconductor, a sudden decrease in the critical current density, but not in
the total current density; flux begins to move through the sample generating heat.
Referring to Fig. 10, assuming that pg is relatively unaffected by the change in tem-
perature, we find that the initial heating rate is:

\ 2 1 ¥
46 = JEG) = 3 g0, U g I = 35 e (- 5 ) - e .

We see that the local heating rate is proportional to the local temperature rise. The
dynamic stability of the system is determined by the relative magnitudes of the rates

of heat generation and of heat removal. The barriers to heat removal are the internal
thermal resistance of the material and the surface interface barrier. We shall solve

the problem for the two limiting cases: 1) surface interface barrier predominant,

and 2) the internal thermal resistance predominant. We shall quote the result for the
intermediate case.

For the first limiting case let us assume that the effective barrier to heat re-
moval is the interface barrier, AT = Q/h. We thus assume that the thermal conductivity

of the plate is large enough that we have a uniform temperature across the plate. The
stability criterion is obtained by writing an energy balance equation:

oJ
WeCe '—L_"lddéT = WJCZ:].pf (- J_I-_a—"fc- - AT - ZhAT
[+

The solution of this differential equation is an exponential:

AT(t) = ATO exp(at) ; E<T .

We thus have dynamic stability if o < O:

9J

2 ( 1 _c).
WerPe \" T BT b
— <0
or if:
2 2h
Jc w < 37 .

(__1._c
Pe\"T T
c

- 582 -



The result just found applies for arbitrary tramsport current for full flux penetra-
" tion, H > H*. 1If the flux penetration is incomplete, the width w is replaced by
286/ (4mI./10) and the result is a limiting excluded field:

— 4tth -
AH < BJ .

8
¢ f J. BT

Here AH is the average of the excluded fields on the two sides of the slab.

N
For our second case let us assume that the interface barrier is very small (h is
large) and that the barrier to heat removal is determined by the thermal conductivity
K. Again let us assume complete flux penetration, H > H*, an arbitrary transport cur-
rent, and a field independent J,. We must now solve the thermal diffusion equation
with a heat generation term: ) '

2
9 AT BAT

Kaz e td=o0 .,
X

where
3J
- = g2 “l_£)
q = alT Jclpf ( Jc 3T AT .

Our boundary conditions are that the surface temperatures (x = x w/2) are equal to the
bath temperature and that the initial temperature, just after the heat pulse, is equal
to AT,. Our trial solution will be a time-dependent Fourier series. Choosing the
origin of the coordinate system in the center of the plate, we can expand the initial
temperature disturbance as a cosine series. Our trial solution will thus be the series:

AT(x,t) = p_ %t

N cos {(2n+D)mx/w} ; t << L

i1

Introducing the general term into the differential equation we find that we have a
solution provided that

a - K(2n-k1)2'( 3; )
w

o = C o

Our requirement for stability is that all terms in the sum decay; none blow up. The
most severe requirement is the term n = 0. Thus the criterion for stability is that:

nZ
a-k - <0 ,
w

or

2
2 2 7 K
Jc w < 37 .

(-J_l-—a?c)pf
[o4

For incomplete flux penetration and zero transport current we again find a limiting
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excluded field:

Coret B
AHS<{2_5'%.(--L1_£)} :
e oT

It is possible to solve our problem for arbitrary values of K and h, as long as
the magnetic time constant remains long compared to the thermal time constant. The
result for H > H* is an inequality:

S [3(3) <1

Again, for partial penetration and zero transport current, another 1nequa11ty in which
the stable excluded field is determlned iss
)

4nJ .
e S

(ka)*

where

oJ
a=J%0p (-—-——c .
cl™f Jc or

We have used as our disturbance a uniform heat pulse. The same result would be
obtained for a nonunifogm heat pulse or for a uniform heating rate. For the latter
see Carslaw and Jaeger, . 404. I must caution you that a disturbance in the form
of an instantaneous field rlse would not lead to this simple analysis, and might lead
to slightly different numerical factors in the resulting expressions. The results we
have obtained are pessimistic in that we have neglected any stabilizing influence of
the heat capacity of the material.

Before applying these results to a practical system let us note the properties

influencing dynamic stability. We see once again that a material having 3J./0T > 0

is stable against small disturbances. We see once again that systems presenting small
cross sections (small w) to the magnetic field tend to be more stable. The new results
are that the larger the thermal conductivity, the smaller the boundary resistance, and
the lower the effective resistivity, the more stable the system. In composite mate~
rials the inclusion of pure normal materials can greatly lower the resistivity and can
sometimes ‘increase the pertinent thermal conductivity.

Let us now attempt a simplified application of these dynamic stability concepts
to instabilities in structures wound from wide, thin (e.g., % in. X 0.005 in.) com-
posite tapes. Such tapes are available commercially and are in use at several labo-
ratories, including AEC laboratories. In those portions of the magnet for which the
field is parallel to the.plane of the tape, the material is stable by adiabatic stabi-
lization, for

22 ax10’ | (’_l_aJc -1
s s 4mr J, of ’

where dg is the thickness of the superconductor, and Jg is the critical current den-
sity of the superconductor. However, for those portions of the magnet where there is
an appreciable component of the field perpendicular to the plane of the tape the wind-
ing is not adiabatically stable. As described by Graham and Hart,35 a winding formed
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of thin wide tapes is effectively a diamagnetic body for the component of field per-
pendicular to the tapes; its properties can be described by a critical state model in
which the properties are averaged over the cross section., It is thus very similar to
the slabs we have just been considering; the thickness of the slab, w, is the width
of the tape. (See Fig. 11.) This composite diamagnetic body is both theoretically
and experimentally adiabatically unstable (see Fig. 12); we must depend on dynamic
stabilization, the transfer of heat ultimately to helium, to avoid flux jumps (see
Fig. 13).

In a simple solenocid the less stable regions occur at the ends of the solenoid
where the radial field component (perpendicular to the plane of the tape, parallel to
the face of our equivalent slab) is the largest. In quadrupoles the largest perpen-
dicular field can be at the most critical point in the winding, the region of highest
winding current density. We shall not attempt an analysis of a real structure; we
shall simply discuss the dynamic stability of a slab formed by stacking the tapes.
There are several ways in which instabilities can occur; we shall take them in turn.

First, any heat generated because of a temperature rise must be removed from the
superconductor itself to the neighboring normal metal. There are two barriers to the
removal of this heat, a bond resistance and, more important, the very poor thermal
conductivity of the superconductor itself. The following calculation applies to those
regions into which the perpendicular (to the plane of the tape) field has penetrated.
Assuming perfect magnetic coupling between the superconducting and the normal layers
of the tapes, we can write for the local rate of heat generation in the superconducting
material (see Fig. 11):

Usually we can assume .

Applying the same dynamic stability criterion as we did in our earlier calculations,
we find the following restrictions on the properties of the superconducting layer in
the tape: ‘

2 .2 n 1
1) 3% a% < 2n -2 ,
5 8 Py (- 1'8Jc )
J oT
c
d
2 .3 2 n 1
2) Js ds < 17 KS pn ) aJc .
(’J 3T
c

As 1 have mentioned ‘before, these expressions are somewhat pessimistic. Cheste“r1 has
presented an expression essentially the same as the second of these; his expression is
more pessimistic than mine by a factor of ﬂ2/4. This second equation, involving the
very poor thermal conductivity of the superconductor, is very important because some
of the commercial high current Nb3Sn composite tapes presently used are just barely
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stable; some others are almost certainly unstable. Notice that for all other prop-
erties held fixed, the thicker the superconductor the greater the chance of instabil-~
ity. Notice also that the short sample or isothermal critical current of the tape

is proportional to the product of Jg and dg;. Thus for constant width of tape there
will be a tendency for tapes of higher critical currents to be less staple. The tape
user cannot ask the manufacturer to deliver ever higher critical current tapes (of
constant width) without running into instabilities at some point. These statements
are not meant to stop all progress; they are just a warning. (Again, if 8J./9T > 0,
the system is stable.) We save our discussion of the factor d,/p, until later.

Now, assuming we have a tape which passes the above stability requirements, we
can consider the dynamic stability of our composite slab., If we have a typical disk
winding, one in which useful helium does not exist between the tapes, we must have a

" sufficient transverse thermal conductivity to assure that the heat reaches the tape

f c

and a sufficient heat transfer to the helium bath to assure stability

- 4nh ( -1
1< 10Jp J )

Again, these requirements are not met trivially.

If one takes the care necessary to insure useful liquid helium between the tapes,
he greatly increases the interface area and also removes the need for a good trans-
verse thermal conductivity. The use of superfluid helium immediately suggests itself.
One still must get the heat out of the superconductor and across any barrier such as
stainless-steel strengtheners, insulation, etc., into the liquid helium, as we calcu-
lated above.

36

In each of these expressions there appears a factor such as d,/p,, or 1/pn. The
magnet builder can influence this factor in two very useful ways. For those regions
having large field components perpendicular to the tape he can either order his tape
with enough pure enough normal metal bonded to the superconductor to insure stability,
or he can co-wind into his disk, along with the composite conductor, a tape of pure
normal metal. This extra tape need not be electrically or thermally bonded to the
composite superconductor in order to influence d,/p, or 1/5n. In our laboratory both
techniques have been found quite successful; at this time, however, the amount of nor-
mal metal needed must be found empirically.

V. CONCLUSION

. In considering magnetic instabilities and solenoids we have concentrated on
understanding two extreme limiting cases, both of which are important in practice.
In both limits we find that stable performance would be assured if we could find use~
ful materials for which 0J./0T 2 0; I have hopes that such materials will someday be

found. . w
In one limit, the adiabatic 1limit, we found that small enough conductors

(% 0.002 cm diam) can be stabilized against flux jumps with their own heat capacity.
There is a major qualification: if the fine conductors are connected electrically
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at more than.one point, some form of transposition will be required to gain the full
advantage of the small dimensions. There is some promise that such conductors will
be forthcoming (see P.F. Smith's contribution to this Summer Study).

In the other limit, in which the winding is well cooled and the flux motion is
‘slowed by a normal metal, we find that we can attain a useful dynamic stability1 by
the proper use of a very pure normal metal in close magnetic coupling with the super-
conductor. Again, fine dimensions offer advantages.l The positive permeation of a
winding with liquid helium, particularly superfluid helium, should aid the attainment
of stability.

R. Hancox has prepared, but not yet published, an excellent summary of the ef-
fects of instabilities on the performance of wire wound solenoids. P.F. Chester's
review of superconducting solenoidsl deserves careful reading for it has as one of its
main themes the importance of magnetic stability for solenoids. Finally, S.L. Wipf's
concise review of instabilities printed elsewhere in these Proceedings is recommended
to the reader.

I would like to thank my many colleagues in the General Electric superconductivity
effort for helping, and forcing me to learn about magnetic instabilities in high field
superconductors.
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"Jc (H,T)

Ed

The nonlinear relation between the electric field E (V/cm) and

Here py (R-cm) represents the

Fig. 1.
the current density J (A/cm?).
effective flux flow resistivity for the superconductor; in some
cases Pg includes the effects of normal metals, i.e., in composite
structures. This E-J relation may be considered one formulation
of the critical state model.
E
_Jc
0 Je J
Fig. 2.

A simplified relation between E and J which is often used in.

critical state model discussions. 1In this version the response

of a superconductor to a field change is instantaneous.
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Fig. 3. The history dependent distributions of field and curremnt in a high
field superconducting slab with a magnetic field applied parallel
to the plane of the slab. The detailed history is described in the
text. The excluded field at which the flux fronts from the two
sides meet (8 = w/2) is called H*. Thus in Fig. 3c, An, > %,
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‘Fig. 4. The history dependent distributions of field and current for a
round wire carrying a current. See the text for details.
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T=T; T=Tp

Fig. 5. Uniform temperature flux penetration profiles for a semi-infinite
slab for two different temperatures.
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Fig. 6. Schematic illustrations of the heat generated, Q, and absorbed,
Qr, in going from one field profile, temperature Tj, to a new
.field profile, temperature T7. The units of Q in this calcula-
tion are J/cmé.
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Fig. 7. Schematic illustrations of Q, and Qp vs T3-T; for two cases:
a) Small excluded field; stable against small disturbances.
b) Large excluded field; unstable.
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Fig. 8.

\ —~————— "ADIABATIC" FIELD PROFILE
\ ————— |SOTHERMAL FIELD PROFILE

i0 : 20
x/8[AH ONSTABILITY)]  —=

Isothermal and quasi-adiabatic field profiles (following small
disturbances) for a semi-infinite slab of a high field supercon-
ductor. The profiles were obtained as described in the text
assuming T1/T, = 0.2.
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Fig. 9.
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CURRENT DISTRIBUTION

The distribution of field and current density in a slab exposed to
a field parallel to the plane of the slab (H > H*) for a nonzero
transport current. The two distributions shown are for the start-
ing temperature, Ty, and for the highest temperature, Ty, for which
the transport current can be carried as a supercurrent, i.e., the
quench temperature. This is the current distribution used by
Hancox30 in his approximate treatment of a winding layer in a round
wire solenoid.
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Fig. 10. For H > H*, as illustrated, the magnetic time constant Ty is given

in terms of the slab thickness and the effective flux flow resist-
ivity. 1In the lower portion the E-I relation is given for two
temperatures; Tp > Ty. The dashed lines illustrate the electric
field and current density applicable for t << Ty if the temperature

is suddenly changed from T; to T,. The local rate of heat genera-
tion is E-J. ’
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Fig. 11.
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In our analysis we replace a magnet winding wound from a wide thin
composite tape with a stack of such tapes. When there is a com-
ponent of magnetic field perpendicular to the plane of the tape the
stack excludes field as would a critical state superconductor with
a critical current demsity equal to J.. A simplified cross section
of a tape is shown. '
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Fig. 12. A stack of disks punched from a thin Nb3Sn-copper composite tape
was exposed to a magnetic field perpendicular to the plane of the
tape. The stack (1 in. high, % in. diam) was relatively isolated
from the liquid helium bath. The major flux jumps observed in the

magnetization curve indicéate that the system is not adiabatically
stable. .
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Fig. 13.

A magnetization curve for a stack of disks similar to that of
Fig. 12 except that very good thermal contact was made with a

4.29K liquid helium bath. The absence of flux jumps indicates
that we have achieved dynamic stability. ;
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