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I. INTRODUCTION 

In this informal review I intend to discuss our understanding of the magnetic 
instabilities which occur in high field superconductors and the implications of our 
understanding for the design of high field, high current density solenoids. 
approach will be mainly tutorial; the bibliography will allow reference to useful 
review articles and to some of the original sources. 

The 

' After first mentioning very briefly the stability problems encountered in prac- 
tical high field superconducting solenoids, we shall review the model which will form 
the basis of our discussion of magnetic instabilities: the critical state model. 
After illustrating the use of this model for isothermal situations, we shall con- 
sider the much more complicated situation in which the temperature is not constant. 
We shall find that under some conditions a small disturbance, say a small temperature 
rise, will grow catastrophically, driving the material into the normal state; the 
system will be unstable. We shall determine the conditions necessary for stability 
in certain limits, limits for. which we can make simple calculations, limits yielding 
results useful for solenoid design. 

The history and present state of development of solenoids has recently been 
reviewed very thoroughly by Chester.l This material will not be repeated here. 

The central problem is the loss of performance of a conductor when it is wound 
into a solenoid, the degradation effect. As an example, a conductor formed of a 
high field superconductor may carry 40 A without a measurable voltage drop in a mag- 
netic field of 40 kOe when tested.in the form of a short length. The same conductor 
systematically will carry less than 20 A in a solenoid generating 40 kOe. This kind 
of performance degradation has been observed in each of the materials used in the 
construction of high field solenoids; it is a general phenomenon. It has been found 
experimentally that the superconducting-to-normal transitions leading to this limited 
performance occur in the lower field regions of the solenoid, not in the high field 
regions in which the critical current density of the superconductor is generally at 
its lowest. 

The degradation effect can be alleviated to some extent by plating or coating 
the conductor with a pure normal metal such as copper or silver, or by winding into 
the solenoid layers of pure normal metal. Further, in some cases, a considerable 
increase in performance is obtained by running a solenoid in superfluid helium. 
Fine wire conductors apparently suffer less degradation than larger conductors. 

The reader is referred to Chester's review' for details and references for the 
above observations. We shall now turn to a description of the critical state model, 
the model on which we plan to base our discussion of magnetic instabilities. 
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11. THE ISOTHWMAL CRITICAL STATE MOD= 

Soon after the demonstration-of the high field capabilities of Nb3Sn and of alloys 
such as NbZr, it was found that a rather simple phenomenological model,2 here called 
the critical state model, allows one to predict the magnetic behavior of a high field 
superconductor in terms of a simple empirical parameter. 'The basic assumption of the 
critical state model is that a changing flux density in a high field superconductor 
induces persistent currents up to a limiting or critical current densify, Jc. 
persistent currents are induced to flow according to Lenz's law in such a way as to 
minimize the change in the flux linking the sample. That portion af a superconductor 
carrying this limiting current density is said to be in the critical state. The para- 
meter Jc depends on both temperature and magnetic field, though in some cases it is 
reasonable to assume that Jc is independent of field. Often Jc is assumed independent 
of field merely in order to simplify calculations. 

These 

Subsequently this phenomenological critical state model received a more physical 
basis. For an ideal, defect free, sample of a type I1 superconductor (Hcl < H < Hc2), 
the flux filaments threading the sample3 are free to move about in the sample subject 
only to their mutual repulsive interactions3r4 and to a viscous drag5 which can be 
characterized by a flux flow resistivity, pf. Nonuniform distributions of flux fila- 
ments, equivalent to field gradients or bulk currents, disappear quickly, with a time 
constant determined by pf. However, for nonideal type I1 superconductors, persistent 
bulk currents or field gradients can occur when the flux filaments are pinned or trap- 
ped by defects in the structure of the material.6 
inclusions, grain boundaries, compositional variations, dislocations, etc. A large 
enough bulk current density or field gradient can free tlie flux filament from the de- 
fect so that it can move; this critical bulk current density is Jc. The pinning and 
freeing of the flux filaments may well be a thermally activated process, a process of 
flux creep.7 This process, and thus the critical current density itself, is tempera- 
ture dependent. If the controlling process is flux creep, there is no true persistent 
critical current density; flux motion and current decay will continue indefinitely, 
albeit at a very slow and ever decreasing rate.' In actual fact, for most purposes 
the currents can be considered as persistent below a given Jc. We shall return to 
this point in a later section. 

Such defects can be voids, normal 

. We have up to this point discussed the critical state model in terms of flux mo- 
tion or of induced persistent currents. It will be convenient throughout most of this 
review to think in terms of the relation between the electric field in the material 
and the current density. We can state the critical state model with some simplifica- 
tions as follows: The electrical and magnetic properties of the superconductor are 
characterized by the nonlinear relation between. the electric field and the current 
density indicated in Fig,. 1. No current flows in the superconductor unless there has 
been a change in flux linkage. While the flux linkage is changing, the electric field 
and current density.are related by the above retation and Maxwell's equations; note 
that local heating occurs, P = E J, even though we are dealing with a superconductor. 
When the steady srate has been obtained, we find that a persistent current density 
f Jc is flowing throughout those regions in which changes in flux linkage Qr magnetic 
field are occurred. 
No current is flowing where no changes in flux linkage occurred. The static magnetic 
properties are determined by Maxwell's equations and the distribution of current den- 
sity: 0, f Jc. 
can easily calculate the final field and current distribution. 
isothermal critical state model. 

The sign is given by the sign of the last nonzero electric field. 

If one restricts himself to isothermal field or current changes, he 
We call this limit the 

In order to illustrate the application of the isothermal critical state model, 
let us work with.the model in its simplest form: 
Thus the E-J relation is as shop in Fig. 2. 

Jc independent of H, and pf infinite. 

. 



. 
Let us consider a s l a b  of a high f i e l d  superconductor cooled' in a f i e l d  H, p a r a l -  

l e l  t o  the plane of the s l a b  (Hc l  e< H, < Hcp), Fig. 3a. Let u s  consider t he  i s o t h e r -  
m a l  response of t h i s  s l a b  t o  changes i n  the  applied f i e ld .  
fie14 cause2 f l u x  penetrat ion i n t o  the sample.-. For t h i s  geometry the Maxwell equat ion 
'V X H 
the  isothermal c r i t i c a l  s t a t e  model 

Increasing t h e  applied 

4rr J/10 ( p r a c t i c a l  Gaussian un i t s )  reduces t o  axHz = - 4rr J y / l O ,  y ie lding , f o r  

where the s ign can be chosen by Lenz's l a w .  
a t r iangular  pene t r a t ion  of f i e l d  as indicated i n  Fig. 3b. The appropriate  current  
d i s t r i b u t i o n  i s  a l s o  indicated.  The depth of f lux penetration, 6 ,  i s  given by 

A change i n  applied f i e l d  AHo thus y i e l d s  

6 = -  AHO 
47 - J  10 c 

For a s u f f i c i e n t l y  l a r g e  change i n  applied f i e l d ,  the f lux  penetration from the two 
s i d e s  meet, and the  f i e l d  and current d i s t r i b u t i o n s  are  as  indicated i n  Fig. 3c. Low- 
e r i n g  the f i e l d  from t h e  peak f i e l d . ( F i g .  3d) causes flux t o  move out of the sample. 
S t a r t i ng  a t  the  surface of the sample and moving inward, t he re  is  a reversal of t h e  
l o c a l  current f l b w .  

It i s  possible  t o  ca l cu la t e  from t h i s  model the f i e l d  d i s t r i b u t i o n ,  the l o c a l  
f l u x  penetration o r  f l u x  linkage, and thus the  local  heating. For more de t a i l ed  des-  
c r i p t i o n s  of t he  app l i ca t ion  of t he  model and of the resul ts  obtained see Bean,2 
London,z K i m  et  al-.,2 Hancox,8 and Hart and  swart^.^ 

Let us now show s i m i l a r  current.and f i e l d  d i s t r ibu t ions  f o r  a c y l i n d r i c a l  w i r e  
carrying a t ransport  cu r ren t .  Let us consider the wire t o  have been cooled i n  a mag- 
n e t i c  f i e l d  Ho parallel t o  the axis  (&I << Ho < Hcg). L e t  u s  apply a t ransport  cu r -  
r e n t  p a r a l l e l  t o  t he  a x i s  and plot  t he  current  d i s t r ibu t ion  and circumferent ia l  f i e l d  
o r  s e l f - f i e l d  d i s t r i b u t i o n .  Before any cu r ren t  ks ap l i e d  the re  i s  no s e l f - f i e l d  
(Fig. 4a).  Upon the  appl icat ion of a current  ( I  < rrR J c ) ,  a flow of cu r ren t  dens i ty ,  
magnitude Jc, pene t r a t e s  from the surface -(Fig. 4b) t o  a depth such t h a t  
Jc ' 0  n(R2 - Rf)  = I. 
thermal model is  rtRZJ,, when R 1  = 0. 
Io < nRZJc, the  cu r ren t  is decreased, a current  reversal  penetrates from the ou t s ide  
as indicated i n  Fig. 4c. Again it i s  possible  t o  calculate  l oca l  f i e l d  and cu r ren t  
d i s t r i b u t i o n s ,  l o c a l  f l u x  penetration (including the instantaneous vol tage drop down 
t h e  wire) ,  and l o c a l  heat ing.  It i s  possible  t o  carry out the ca l cu la t ions  f o r  f i e l d s  
perpendicular t o  the a x i s  as well. Pertinent references are Refs. 2 ,  8, and 9, as 
w e l l  as Grasmehr and F i n z i . l 0  

$ 

The s e l f - f i e l d  i s  as indicated.  The maximum current  i n  the  i s o -  
I f ,  a f t e r  having reached a peak cu r ren t  

We have devoted t h i s  much space t o  the  c r i t i c a l  state model because i t  w i l l  be 
t h e  basis  of our following sections.  
Beansz i n  s t a t i c  experiments a t  f i e l d s  below 10 kOe, has found r a the r  de t a i l ed  agree- 
ment with t h i s  model, using Jc independent of H. 
s ta t ic  experiments covering a wider range of f i e l d s ,  found agreement with the c r i t i ca l  
state model predict ions (with an important qual i f icat ion)  provided they used a f i e l d  
dependent Jc. In.  p a r t i c u l a r ,  they used a 'two-parameter r e l a t ion :  J,(H) = pr,/(H f Bo). 
Other authors have found i n  d i f f e ren t  materials yet other f i e l d  dependences f o r  Jc. 
The f i e l d  dependence of Jc i s  r e l a t ed  .to the  defect s t ruc tu re  yielding the  f lux  pin- 
ning;  t h i s  subject  i s  discussed by J . D .  Livingston i n  another paper i n  t h i s  Brookhaven 
Summer Study series. The important q u a l i f i c a t i o n  i n  the work of K i m  e t  a l .  is t h a t  

We have t o  ask how w e l l  does i t  work i n  p r a c t i c e .  

Kim, Hempstead, and Strnad,2 i n  
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under some conditions the isothermal critical state collapsed; flux rushed into the 
sample; a flux jump occurred. Thus we can say that for static experiments and iso- 
thermal condjtions the isothermal critical state model is a satisfactary description. 
In this paper we shall try to determine the conditions under which the isothermal 
conditions cannot be maintained. 

Several experiments indicate that the critical state model is useful as well in 
cases in which smaller, more rapidly varying fields are involved. 
have measured the instantaneous voltage drop along a wire carrying a 0.8 kHz alterna- 
ting current. In addition they calculated the voltage waveform using the simple form 
of the critical state model (Fig. 2); the agreement between the model prediction and 
the experimental results is excellent. Instead of measuring the voltage directly and 
comparing their results visually, they could have Fourier-analyzed their predicted 
voltage drop and measured the harmonic content of the experimental voltage. The lat- 
ter is what Bean2911 did for the output of a pickup coil containing samples exposed to 
alternating fields. Bean calculated for the higher harmonics that 

Grasmehr and Finzi'O 

2 y-h, f.5 " = o  , - - 
even J~ (H;~ ,TI (n-2) (mt2) ' 'n odd vn 

where n is the harmonic, f is the fundamental rrequency, ho is the alternating field 
amplitude, and y is a constant involving the geometry of the sample- and the pickup 
coil. In Ref. 11 the experimentally observed results (f = 5 kHz) are compared with 
the above predictions. The agreement is excellent through the seventh harmonic; de- 
viations become apparent as one moves towards the seventeenth harmonic. 

Agreement was obtained in these dynamic experiments even though the effects of a 
finite pf (Fig. 1) were (quite properly) ignored. As we shall see later, there are 
some situations in which the finite pf is important. 
that where J < Jc no flux motion occurs, but where J > Jc flux moves according to a 
flux diffusion equation 

At this point let us simply note 

where 

Thus the t-se constant for flux redistribut-Jn for the s ab geometry illustrated in 
Fig. 3b is roughly 7,- k62/D. 
can be made on the basis of the work of Kim et al.5 

Estimates of pf for useful high field superconductors 

The critical state model as we have introduced it can be expected to apply best 

If the applied fields are several kOe or more, we are cor- 
for defect-loaded very high field superconductors such as NbZr, NbTi, or intermetallic 
compounds such as Nb3Sn. 
rect in neglecting surface effects12a13 and the reversible magnetization characteristic 
of type I1 superconductors.3 

111. ADIABATIC CRITICAL STATE MOD= AND MAGNETIC INSTABILITIES 

In Section I1 we followed the field profile in a slab of material as we increased 
We predicted a triangular field penetration until the the applied field isothermally. 

two triangles met. 
While in some studies such flux penetration is observed,:! in many other studies, 

A similar flux penetration is predicted for a cylindrical rod. 
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especially of superconductors having very large critical current densities, the flux 
penetration follows the. predicted behavior over a limited field change and then a 
sudden and nearly complete flux penetration occurs.14 
profile in a divided rod of Nb609bTi upon changing the applied (axial) field. He finds 
that the initial triangular field penetration (Ha < 14 We) is essentially as predicted 
by the isothermal critical state model. At higher fields there is a marked change in 
the mode of flux penetration; at some field the isothermal profile collapses and flux 
rushes in to bring the internal field up to the applied field. 
crease leads to a new triangular shaped flux penetration profile until another cata- 
strophic flux penetration occurs. 
larly with a field spacing of between 4 and 8 kOe. These are the flux jumps or mag- 
netic instabilities which we wish to understand; we wish to be able to predict their 
occurrence in terms of the properties of the high field superconductor. 

Coffeylfi has probed the field 

' 

. A further field in- 

These unstable flux penetrations occur rather regu- 

. 
Let us start out by recognizing the difficulty in maintaining isothermal condi- 

tions while changing the field. As pointed out by Swartz and Bean,16 and by Wipf,l7 
the magnetic flux can under some conditions diffuse through the useful high field 
superconductors much faster than can the heat generated by the moving flux; thus the 
superconductor can heat appreciably if a sudden field change occurs. The consequence 
of such a temperature rise can be seen qualitatively by looking at Fig. 3b while re- 
calling that the critical current densit of a high field superconductor generally de- 
creases with increasing temperature.18?18 As we saw in Section 11, S(T) = 10~Ho/4nJc(T). 
Thus a temperature rise leads to a further field penetration, which generates heat 
leading to a greater temperature rise and, in turn, to a yet greater flux penetration, 
etc. 
away, a catastrophic flux jump. 

This thermal-magnetic feedback can under some.conditions lead to a thermal run- 

As the field applied to a high field superconductor is increased, flux penetrates 
the sample. This flux penetration, even in the absence of flux jumps, is not smooth; 
it is a. noisy20 random process accompanied by local fluctuations of flux density about 
the critical state profile. Our concern is whether or not these fluctuations grow 
into gross flux jumps. 
ing with two coupled diffusion processes: the diffusion of flux and the diffusion of 
heat, the coupling arising from the genera.tion of heat upon flux motion and the decrease 
in flux pinning or critical current density with an increase of temperature. Little 
progress has been made in this general problem., 
for which simplifications occur. 

The general problem is a very complicated one, for we are deal- 

We shall consider only extreme llmits 

Let us first consider the instability problem in the limit that no heat flows out 
of the region of flux penetration, a quasi-adiabatic limit. Let us consider a semi- 
infinite block cooled in a fieJd Ho applied parallel to the face of the block 
(H,l << €Io << Hc2). Let us isothermally increase the applied field by an amount AHo. 
The field profile is now that characteristic of the bath temperature T1. We can con- 
sider the stability of this profile against small disturbances by calculating the en- 
ergies involved in going from this profile to others at higher temperatures. In order 
to simplify the computatichal details, let us assume that the critical current density 
is independent of field and that the total heat developed in any flux penetration is 
spread evenly throughout the region of flux penetration, i.e. the new temperature is 
uniform across this region. This last rather artificial a'qsumption will later be re- 
laxed. We consider the two uniform temperature critical state profiles illustrated in 
Fig. 5. We are interested in the amount of heat developed by the motion of flux in 
going 'from .profile 1 to profile 2 ,  Qm, and in the amount of energy absorbed in heating 
the sample from T1 to Tp, %. 
In our quasi-adiabatic limit only those profiles are allowed for which.% = +. 
excluded field AHo is small (Fig. 7a), Qm is always smaller than QT and only one solu- 
tion is allowed, T2 = TI. 
ficiently large excluded field AHo (Fig. 7b), another higher temperature profile is 
allowed (and in our simple case is clearly accessible); the system is unstable, for a 

.' 

These quantities are illustrated schematically in Fig. 6. 
If the 

For a suf- The system is stable against small disturbances. 
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small disturbance w i l l  start the system towards the higher temperature s t a t e .  I f  t h e  
i n i t i a l  slope of t h e  Qm v s  T2-T1 curve i s  greater  than the i n i t i a l  slope of the % vs 
T -T curve, i n s t a b i l i t i e s  a re  possible;  the extent o f , t h e  f lux  jump depends on t h e  
nonl inear i t ies  of t h e  curves,  i n  p a r t i c u l a r  on the temperature dependences of the heat  
capacity and the cr i t ical  current densi ty .  
i c a l  parameters, l e t  u s  ca lcu la te  Q,,, and QT a s  functions of T2 and Ti.  
the c r i t i c a l .  cur ren t  dens i ty  t o  be decreasing l i n e a r l y  with temperaturela: 

2 1  
In  order t o  determine the important phys- 

L e t  us assume 

T-Tl  ) 
Jc(T) = Jc(T1> ( 1 - 

TU - T1 
3 

where T 
perat  u r 3  : 

T(Jc= 0), and t h e  heat capac i ty  t o  be proportional t o  the  cube of the t e m -  

C(T) e C1 (T/T1)3 (J/’K cm3) . . . .  

We calc2late 
vector  P = 10 P X H / 4 ~ r ,  and then subt rac t ing  tha t  portion of t h i s  energygoing i n t o  the 
increase i n  the energy of the  magnetic f i e l d :  

by-calculating the t o t a l  energy input t o  the system using’ the Poynting 

m 

2 - [H:(x) - H1(x)] ‘dx . 
8n 0 

The remainder is  t h e  heat  generated. We first calculate  the various quant i t ies  per 
uni t  surface area. Using the Poynting vector  we find: 

where Acp12(xtO) i s  t h e  t o t a l  f lux c r o s s i n g ‘ t h e  surface i n  going from p r o f i l e  1 t o  
p r o f i l e  2. 
Therefore the t o t a l  energy input is: . 

From t h e  t r iangular  p r o f i l e  (Fig. 5) we f ind A~l2(x=O) = AH0(62-61)/2. 

where 

and 

The t o t a l  change i n  f i e l d  energy is: 
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0 

61 2 
[Ho + AHo(l - ~ / 6 ~ )  ?dx - 

0 0 
[Ho + AHo(l - x/bl)]  dx - -- 10-7 { {2 

81-r 

o r  

= -,( 10’~ Ho f 3 AHO ) AH0*(62 - 61) 
AE12 8rr 

Therefore the t o t a l  heat generation (per un i t  surface area) is: 

and the heat generation per  uni t  volume of f l u x  penetrat ion is: 

fo r  T2 S Tu. The energy absorbed i n  heat ing t h e  sample,  QT, is  simply 

For our assumed C(T) we obtain: 

4 4 3  % = C1(T2 - T1)/4T1 . 
Let us now ca lcu la t e  the excluded f i e l d  below which no i n s t a b i l i t i e s  occur, the 

excluded f i e l d  f o r  which the i n i t i a l  s lopes of Qm and % are i d e n t i c a l .  W e  have: 

2 

8 i ~  3 T U -  TI 
(AHo) IO-’ 2 

C(T1) = C1 ,- . - . -= 

and thus: 

f 7 
. o  AH ( i n s t a b i l i t y )  = (12n C1.10 *(Tu -T1)} . 

Noting tha t  

1 -  1 aJc - - - -  
a T  a 

TU - T1 JC 

we can w r i t e  a s l i g h t l y  more general r e s u l t :  
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mo(instability) = {12*~*10 7 -Cl-(- - 

For a given C(T)/C1 the extent of a flux jump for a given starting AHo and an isother- 
mal profile depends on the ratio of AHo to AH(instabi1ity) and on the ratio of Tu to 
TI. For C T3 and for T1/Tu much less than one, flux jumps for AH,/AH(instability) 
just greater than one lead to insignificant flux penetration and heating; for T1 near 
Tu any flux jump leads to complete flux penetration and to a final temperature above 
Tu.16 Even at the lower temperature a sufficiently large AHo can lead to a complete 
or full flux jump. In Fig. 8 we illustrate this dependence of the size of the flux 
jump on AH,; here Tu/T1 = 5. 
a full flux jump for the present geometry the following condition must be satisfied 
in addition to having AHolAH(instability) 2 1: 

Wipf and Lube1122 have pointed out that in order to have 

.-. - T (AH I L  
2 z C(T) dT . 8n 

T1 

Examining our result for AH(instabi1ity) we see three things: 1) the higher the 
heat capacity the higher the stable excluded magnetic field; 2) the smaller the de- 
crease in Jc with increasing temperature, the, higher the 'stable excluded field; in 
fact if aJC/aT 2 0 the system is inherently stable against small disturbances; and 
3) for this semi-infinite geometry the actual magnitude of Jc cancels out. 

Let us now remove the artificial assumption of a uniform final temperature; let 
us assume no heat flow at all, a locally adiabatic problem. 
solved this problem exactly. They derive and solve a second order differential equa- 
tion for the flux crossing a surface Acp(x); the equation is of the form 

Swartz and Bead6 have 

n 

where h is a characteristic distance for flux jumps: 

- = - .  1 4Tr 3f (-+.%) . 
a2 109c C 

Their solution indicates ,that instabilities can occur only if the critical state pene- 
tration distance 6 is greater than %d. Thi's leads to a stable excluded field limit, 
similar to our AH(instability), which they call Hfj: 

2 . 3 2  This expression differs from our a roximate one only by .the factor (TT 112) . Wipf 
and Lube11,22 Hancox,23 ,and Lange,lt have derived very similar results. Swartz and 
Bean have considered in the same limit the size of a flux jump, the effects of differ- 
ent temperature dependences for the heat capacity, and the effect of having a slab of 
finite thickness. If the thickness of a slab is less than Trh, then no flux jumps can 
occur, for the flux penetration distance can never reach the critical value. Another 
way of saying the same thing is that if H" < Hfj the system is stable, where H* is the 
field at which the flux penetrating from the two sides meets at the center. Setting 
the thickness of the slab, w, equal to nh,  we obtain the first of several stability 
restrictions on the critical current density and the sample size: 
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2 2  TT 109-c (- 1 aT j1 J c w  S z -  
C 

This r e s u l t  i m p l i e s  t h a t  s t a b i l i t y  may be more e a s i l y  achieved f o r  a f i n i t e  sample 
cooled i n  a l a rge  f i e l d  than fo r  one cooled i n  a small f i e l d ,  f o r  Jc usually decreases 
i n  increasing f i e l d s .  

. 

Experimental tests of our r e s u l t s  are by no means quan t i t a t ive ;  see Swartz and 
Bean.16 Though many have observed f l u x  jumps, few have measured the per t inent  prop- 
erties of the samples under study, few have t r i e d  t o  maintain t h e  adiabat ic  conditions 
assumed. Neuringer and Shapira25 have observed a series of incomplete f lux  jumps i n  
cylinders of NbZr ;  t he  spacings of t he  jumps seem t o  be about t h e  value predicted by 
the expression f o r  H f j .  
composite superconductor i n  l imited contact  with the  l i qu id  helium bath t h a t  the i n t r o -  
duction of a high heat capacity element such as mercury doubled t h e  spacing of the f l u x  
jumps, but the s tudies  w e r e  not quan t i t a t ive .  
of HancoxP6 who studied a sample of porous Nb3Sn, again in l imited thermal contact with 
the helium bath. 
and c r i t i c a l  current densi ty  of t he  sample. 
here w a s  a t  l e a s t  semi-quantitative,  i.e., within a f ac to r  of two. He found, as had 
Goldsmidt and C0rsan,~7 tha t  allowing l i q u i d  helium i n t o  the  porous Nb3Sn increased by 
an order of magnitude the s table  excluded f i e l d ,  presumably because of the very l a rge  
heat capacity of l iquid helium. 

The present author  has  found i n  magnetization s tud ie s  of a 

One of the b e t t e r  measurements i s  t h a t  

He not only observed f l u x  jumps but a l s o  measured the heat capaci ty  
The agreement with the picture  presented 

LivingstonZ8 showed t h a t  i n  a PbInSn a l l o y  properly heat t r ea t ed  i t  is possible . 
~ 

t o  obtain dJc/dT > 0 over a l imited range of f i e l d  and temperature. 
out t h a t  such a material should be s t a b l e  i n  t h a t  region. The present author and 
Livingston, i n  an experiment designed t o  be e spec ia l ly  sensitive t o  f lux jumps, have 
studied the f lux  jump behavior of t h i s  material.29 Flux jumps w e r e  c l e a r l y  observed i n  
those regions i n  which dJc/dT < 0; f l u x  jumps w e r e  absent where dJc/dT > 0. 

9 One can make very s imi l a r  c a l c u l a t i o n s  f o r  nonzero t r anspor t  currents.  

He fu r the r  pointed 

Swartz 
has performed such calculat ions f o r  i so l a t ed  round wires and f o r  f l a t  sheets o r  f i lms. 
Here w e  s h a l l  simply remark tha t  under some conditions a w i r e  o r  f i lm  w i l l  quench a t  a 
current well below the isothermal cr i t ical  current ;  i n  f a c t  t he  quench current can ac- 
t u a l l y  decrease as the isothermal c r i t i ca l  cu r ren t  is  increased. Swartz tested h i s  
predictions using deposited NbO f i lms  and found agreements somewhat more quan t i t a t ive  
than those w e  mentioned earlier. 

Hancox3' has applied concepts s i m i l a r  t o  these t o  wires i n  the winding of a sole-  
noid. 
he approximates a s ing le  layer wound from round w i r e  as a t h i n  sheet ,  thickness D, f o r  
which the f i e l d  i s  p a r a l l e l  t o  the surface;  t h e  f i e l d  i s  l a rge  enough f o r  complete f l u x  
penetration. 
t ha t  a winding is  s t a b l e  up t o  i t s  f u l l  cr i t ical  current  provided t h a t  

He uses  the quasi-adiabatic approximation with which we s t a r t e d .  I n  addi t ion,  

He f inds i n  a ca l cu la t ion  analogous t o  a c a l c u l a t i o n  of AH(instabi1ity) 

Jc  2 2  D s 3 - lo9. c. (- Jc 1 aJc )-I 

Thus s t a b i l i t y  i s  improved i f  the hea t  capaci ty  i s  increased, i f  -aJc /aT i s  decreased, 
i f  D is decreased (a f i n e r  wire),  and i f  Jc is  decreased, e.g., by placing a f i e l d  on 
the winding before energizing the windin.g, a s  has  been discussed by the RCA group.31 

Hancox a l s o  makes a more de t a i l ed  ca l cu la t ion  introducing the temperature  depend- 
ence of the heat capacity,  a ca l cu la t ion  i n  e f f e c t  of the extent  of a f lux  jump. He 
considers the f i e l d  and current d e n s i t y  d i s t r i b u t i o n  i l l u s t r a t e d  i n  Fig. 9. Balancing 
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the energy dissipated in the flux penetration against the increase in thermal energy 
he finds the following expression for the current degradation expected in a solenoid: 

m 

2 2 Here nD Jc1/4 is the short 'sample current for the wire and nD Jc2/4 is the quench cur- 
rent of the solenoid. 
enough flux jum s do not quench the solenoid, they merely give small voltage pulses 

jump will quench the solenoid. At the Summer Study Hancox presented informally a very 
complete phase diagram for a wire wound solenoid indicating the' conditions under which 
quenching ,instabilities are to be expected. 

Here we are allowing minor or partial flux jump,s to occur; small 

across the coil f and perhaps a noisy field in the solenoid. A sufficiently large flux 

Again the agreement with experience is. at best semi-quantitative; the predictions 
appear optimistic. Iwasa and 
we may be optimistic in our predictions because we have always assumed that the flux 
jump is one-dimensional; we have ignored any variations of the flux penetration in the 
y or z directions. 

suggest on the basis of their experiments that 

The importance of their suggestion is not yet clear. 

Recalling Hancox's first expression we find essentially the same pertinent para- 
meters determining flux jump stability: the heat capacity of the winding, the loss of 
Jc with increasing temperature, the size of the conductor, and the magnitude of Jc. 
Let us note that Hancox's stability expression for a slab carrying a,transport current 
is about four times as severe as Swartz and Bean's similar expression for zero trans- 
port current (it would be exactly four if the same thermal approximations had been 
used). This factor of four can easily be reconciled if one recognizes that the field 
profile for a slab carrying the full isothermal critical current is similar to the pro- 
file for one half a slab carrying-no transport current but exposed to a field greater 
than H*. The factor is four because the dimension is squared in our expressions. 

The stabilization of a solenoid against flux jumps by the use of the heat capacity 
It appears of the winding is called adiabatic stabilization or enthalpy stabilization. 

possible to make some conductors fine enough to make them stable'; the problem is that 
these fine conductors are embedded in parallel in a normal metal. In order to obtain 
the full advantage of the fine conductors tliere must be an effective transposition of 
the superconducting wires. Twisting is effective as far. as uniform applied fields are 
concerned, but is not effective for transport currents. 
transposition there is an effective diamagnetism for times long compared to the period 
of field increase; this diamagnetism is temperature dependent and can still lead to 
instabilities. The effectiveness of twisting instead of the much more difficult trans- 
position is yet to be determined. 

The problem is that without 

IV. MAGNETIC INSTABILITIES: ATTEMPTS TO INCLUDE THE FINITE 
THERMAL AND MAGNETIC DIFFUSIVITIES 

In the preceding section we have considered magnetic instabilities in the limiting 
case of the adiabatic critical state model. Though, as pointed out by Swartz and Bean, 
this is often a rather good approximation for Nb3Sn and similar materials, there are 
some situations in which the nonzero thermal conductivity and the finite flow resistiv- 
ity are of importance. The treatment of this problem is sufficiently difficult that 
little progress has been made. 
work of Wipf.17 
paper for details. 

The .most detailed and general attempt thus far i s  the 
Wipf's discussion is sufficiently complex that I shall refer you to his 

(His introduction is a very good discussion of flux instabilities 
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in terms of the motion and pinning of fluxoids.) 
infinite block excluding a magnetic field, assuming the heat capacity to be independent 
of temperature. Within this approximation he distinguishes three regions of excluded 
field: ' 

Wipf analyzes the problem of a semi- 

1) AHo < AH(ful1 stability): 
2) AH(ful1 stability) S AHo C AH(1imited instability): A flux disturbance 

No instabilities can occur. 

can take place but the heat conduction out of the flux penetration re- 
gion restores Jc before appreciable flux penetration occurs. 

If a flux disturbance occurs, the growth 
of the flux penetration region is too rapid to allow thermal recovery; a 
near adiabatic runaway instability or full flux jump can occur. (As 
stated above, this discussion neglects the increase in heat capacity with 
temperature .) 

3) AH(1imited instability) < AH,: 

No simple expressions are given for the boundaries of these regions, except for 
AH(ful1 stability), for which essentially our AH(instabi1ity) or Hfj is obtained. 
Speaking loosely, if the time constant for flux penetration into the conductor is much 
longer than the time constant for the diffusion of heat out of the conductor, 
AH(1imited instability) can be appreciably greater than AH(ful1 stability). The time 
constant for heat flow out of the superconductor depends in a rather simple way on the 
thermal conductivity and the geometry. The time constant for flux penetration depends 
on the geomktry and on the effective flux flow or flux creep resistivity. Looking 
back at Fig. 1 we see that the flux motion time constant depends on pf. For the use- 
ful high field superconductors, the thermal conductivities and flow resistivities are 
such that the thermal time constants are long compared to the magnetic time constants 
as long as the superconductor experiences an appreciable flux motion or electric field. 
In this case, i.e., for rapidly varying fields, the adiabatic limit is appropriate and 
hH(1imited instability) is very close to AH(ful1 stability). However, for very slowly 
varying fields, i.e., very small electric fields, flux creep may be the controlling . 
mechanism; our Fig. 1 is then an oversimplification, there is no sharp corner in the 
E-J  relation near Jc. In fact, both the flux creep model7 and the present somewhat 
limited experimental evidence' ,33 indicate that for small electric fields we should 
write p~ = YE. Thus for a slow enough rate of change of field the effective resist- 
ivity is small enough that the magnetic time constant becomes long compared with the 
thermal time constant; AH(1imited instability) becoms appreciably greater than 
AH(ful1 stability). This trend is often observed experimentally. 

Of more practical interest, the effective magnetic time constant can be greatly 
increased by introducing pure normal metals in close magnetic coupling with the super- 
conductor, increasing AH(1imited instability) well above AH(ful1 stability). 

Let us now'consider magnetic instabilities in .the extreme limit that the magnetic 
ti& constant, Tm, is much longer than the thermal time constant, an extreme limit 
yielding closed form answers of practical importance for certain structures. (It is 
a limit of interest to the present author.) 
superconductor of thickness or width w exposed to a magnetic field parallel to the 
plane of the slab, a geometry similar to that of Fig. 3 .  The superconducting or crit- 
ical state properties of this material are described by Fig. 1 with Jc assumed inde- 
pendent of H. The thermal conductivity of the material is denoted by K (W cm-1 OK-1). 
There is in addition an interface barrier.to the flow of heat out of the superconductor 
described by the linear relation: t h.ATs (W cm-2). Here ATs is the difference be- 
tween the surface temperature of the superconductor and the temperature of the surround- 
ing medium, perhaps a liquid helium bath, perhaps a normal metal bonded to the super- 
conductor. Initially let us assume that the flux.penetration fronts from the two sides 
have reached a common point, as in Fig. 3c; the critical current density has been in- 
duced to flow throughout the entire sample. 

Let us consider a slab of a high field 

We shall neglect entirely any stability 
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resu l t ing  from t h e  heat capaci ty  of t h e  superconductor. 

We-shall apply a sudden small disturbance t o  t h e  system and calculate whether o r  
not a thermal runaway occurs. For convenience let  the i n i t i a l  dis turbance be a sudden 
small temperature rise AT. Our  c r i t e r i o n  f o r  s t a b i l i t y  w i l l  now be a dynamic one, i n  
contrast  t o  the s t a t i c  c r i t e r i o n  of Section 111. The system w i l l  be  considered dynam- 
i c a l l y  s tab le  i f  the temperature rise i m e d i a t e l y  decays back towards t h e  o r i g i n a l  . 
equilibrium temperature; it w i l l  be considered unstable i f  the temperature increases 
fur ther  yet. W e '  s h a l l  neglect any nonl inear i t ies  i n  the  problem. This is a r a t h e r  
conservative or  pessimistic c r i t e r i o n .  

. 

I n  the extreme l i m i t  of a very long magnetic t i m e  constant ( r e l a t i v e  t o  the ' ther -  
mal t i m e  constants) the calculat ion i s  grea t ly  s implif ied because w e  can then  assume 
that the  i n i t i a l  magnetic . f i e l d  p r o f i l e  and t h e  i n i t i a l  current  d i s t r i b u t i o n  determine 
the f l u x  motion and heating r a t e  for  some time a f t e r  t h e  i n i t i a l  temperature r i s e .  
Upon a sudden increase i n  temperature there  is a sudden decrease i n  the f l u x  pinning 
in  the  superconductor, a sudden decrease i n  the  c r i t i c a l  current  dens i ty ,  bu t  not in  
the t o t a l  current density; f l u x  begins t o  move through t h e  sample generat ing heat.  
Referring t o  Fig.  10, assuming that  pf  is r e l a t i v e l y  unaffected by the  change i n  t e m -  
perature, w e  f ind  that  the i n i t i a l  heating r a t e  is: 

We see tha t  the l o c a l  heating rate i s  proportional t o  t h e  l o c a l  temperature rise. The 
dynamic s t a b i l i t y  of the system i s  determined by t h e  relative magnitudes of t h e  r a t e s  
of heat  generation and of heat  removal. The b a r r i e r s  t o  heat removal a r e  t h e  in te rna l  
thermal res is tance of the mater ia l  and the surface i n t e r f a c e  b a r r i e r .  W e  s h a l l  solve 
the problem f o r  the two l imi t ing  cases: 1) surface i n t e r f a c e  b a r r i e r  predominant, 
and 2) the  in te rna l  thermal res i s tance  predominant. W e  s h a l l  quote the  r e s u l t  for  the 
intermediate case.' 

For the f i r s t  l imit ing case le t  ys assume t h a t  t h e  e f f e c t i v e  barrier t o  heat  re- 
moval is  the in te r face  b a r r i e r ,  AT = Qfh. 
of t h e  p l a t e  is  la rge  enough tha t  w e  have a uniform temperature across  t h e  p la te .  
s t a b i l i t y  c r i t e r i o n  i s  obtained by wr i t ing  an energy balance equation: 

We thus assume t h a t  the thermal conductivity 
The 

The solut ion of t h i s  d i f f e r e n t i a l  equation i s  an exponential:  

AT(t) = ATo exp(M) ; t << T . m 

We thus have dynamic s t a b i l i t y  i f  cy . .  < 0: 

or i f :  

< o  c 
w * c  

2 2h 
Jc w < 



The result just found applies for arbitrary transport current for full flux penetra- 
tion, H > H*. 
2=/(4~r~~/lO) and the result is a limiting excluded field: 

If the flux penetration is incomplete, the width w is replaced by 

4nh . -  AH^ 5 

Here E is the average of the excluded fields on the two sides of the slab. 
\ 

For our second case let us assume that the interface barrier is very small (h is 
large) and that the barrier to heat removal is determined by the thermal conductivity 
K. Again let us assume complete flux penetration, H > H*, an arbitrary'transport cur- 
rent, and a field independent J,. We must now solve the thermal diffusion equation34 
with a heat generation term: - 

a' AT aAT K - - C - + i = O  , 2 at ax 
where 

2 1 aJc 4 = aAT = Jclpf (- J ) AT . 
C 

Our boundary conditions are that the surface temperatures (x = f w/2) are equal to the 
bath temperature and that the initial temperature, just after the heat pulse, is equal 
to AT,. Choosing the 
origin of the coordinate system in the center of the plate, we can expand the initial 
temperature disturbance as a cosine series. Our trial solution.wil1 thus be the ser.ies 

Our trial solution will be a time-dependent Fourier series. 

m 

AT(x,t) = 1 b cant cos {(2n+l)mr/w] ; ' t << 7 . n m 
n=O 

Introducing the general term into the differential equation we find that we have a 
solution provided that 

Our requirement for stability is that all terms in the sum decay; none blow up. 
most severe,requirement is the term n = 0. 

The 
Thus the criterion for stability is that: 

or 

For incomplete.flux penetration and zero transport current we again find a limiting 
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excluded field: 

It is possible to solve our problem 

1 aJc ) > ” .  
(- <aT 
for arbitrary values of K and h,’as long as 

the magnetic time constant remains long compared to the thermal time constant. The 
result for H > H* is an inequality: 

tan 

Again, for partia.1 penetration and zero transport current, another inequality in which 
the stable excluded field is determined is: 

where 
2 1 aJc 

a e JclPf (- J ) 
C 

We have used as our‘disturbance a uniform heat pulse. The same result would be 

I must caution you that a disturbance in the form 
obtained for a nonunifo heat pulse or for a uniform heating rate. For the latter 
see Carslaw’ and Jaeger,% p. 404. 
of an instantaneous field rise would not lead to this simple analysis, and might lead 
to slightly different numerical factors in the resulting expressions. The results we 
have obtained are pessimistic in that we have neglected any stabilizing influence of 
the heat capacity of the material. 

Before applying these results to a practical system let us note the properties 
We see once again that a material having aJc/aT > 0 influencing dynamic stability. 

is stable against small disturbances. We see once again that systems presenting small 
cross sections (small w) to the magnetic field tend to be more stable. The new results 
are that the larger the thermal conductivity, the smaller the boundary resistance, and 
the lower the effective resistivity, the more stable the system. In composite inate- 
rials the inclusion of pure normal materials can greatly lower the resistivity and.can 
sometimes ‘increase the per.tinent thermal conductivity. 

Let us now attempt a simplified application of these dynamic stability concepts 
to instabilities in structures wound from wide, thin (e.g., 4 in. X 0.005 in.) com- 
posite tapes. Such tapes are available commercially and are in use at several labo- 
ratories, including AEC laboratories. In those portions of the magnet for which the 
field is parallel t o  the.plane of the tape, the material is stable by adiabatic stabi- 
lization, for 

where d, is the thickness of the superconductor, and Js is the critical current den- 
sity of the superconductor. 
an appreciable component of the field perpendicular to the plane of the tape the wind- 
ing is not adiabatically stable. 

However, for those portions of the magnet where there is 

As described by Graham and Hart,35 a winding formed 
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- . 
. of thin wide tapes is effectively a diamagnetic body for the component of field per- 

pendicular to the tapes; its properties can be described by a critical state model in 
which the properties are averaged over the cross section. It is thus very similar to 
the slabs we have just been considering; the thickness of the slab, w, is the width 
of the tape. (See Fig. 11.) This composite diamagnetic body is both theoretically . 
and experimentally adiabatically unstable (see Fig. 12); we must depend on dynamic 
stabilization, the transfer of heat ultimately to helium, to avoid flux jumps (see 
Pig. 13). 

In a simple solenoid the less stable regions occur at the ends of the solenoid 
where the radial field component (perpendicular to the plane of the tape, parallel to 
the face of our equivalent slab) is the largest. In quadrupoles the largest perpen- 
dicular field can be at the most critical point in the winding, the region of highest 
winding current density. We shall not attempt an analysis of a real structure; we 
shall simply discuss the dynamic stability of a slab formed by stacking the tapes. 
There are several ways in which instabilities can occur; we shall take them in turn. . 

First, any heat generated because of a temperature rise must be removed from the 
superconductor itself to the neighboring normal metal. There are two barriers to the 
removal of this heat, a bond resistance and, more important, the very poor thermal 
conductivity of the superconductor itself. 
regions into which the perpendicular (to the plane of the tape) field has penetrated. 
Assuming perfect magnetic coupling between the superconducting and the normal layers 
of the tapes, we can write for the local rate of heat generation in the superconducting 
material (see Fig. 11): 

The following calculation applies to those 

Usually we can assume 

Applying the same dynamic stability criteri'on as we did in our earlier calculations, 
we find the following restrictions on the properties of the superconducting layer in 
the tape: 

1 '  As I have mentioned .before, these expressions are somewhat pessimistic. Chester has 
presented an expression essentially the same as the second of these; his expression is 
more pessimistic than mine by a factor of $14. This second equation, involving the 
very poor thermal conductivity of the superconductor, is very important because some 
of the commercial high current Nb3Sn composite tapes presently used are just barely 

. I  
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stable; some others are almost certainly unstable. Notice that for all other prop- 
erties held fixed, the thicker the superconductor the greater the chance of instabil- 
ity. 
is proportional to' the product of Js and ds. 
will be a tendency for tapes of higher critical currents to be less stable. The tape 
user cannot ask the manufacturer to deliver ever higher critical current tapes (of 
constant width) without running into instabilities at some point. These statements 
are not meant to stop all progress; they are just a warning. 
the system is stable.) 

Notice also that the short sample or isothermal critical current of the tape 
Thus for constant width of tape there 

(Again, if aJc/aT > 0, 
We save our discussion of the factor h/pn until later. 

Now, assuming we have a tape which passes the above stability requirements, we 
can consider the dynamic stability of our composite slab. If we have a typical disk 
winding, one in which useful helium does not exist between the tapes, we must have a 
sufficient transverse thermal conductivity to assure that the heat reaches the tape 
edge 

and a sufficient heat transfer to the helium bath to assure stability 

Again, these requirements are not met trivially. 

If one takes the care necessary to insure useful liquid helium between the tapes, 
he greatly increases the interface area and also removes the need for a good trans- 
verse thermal conductivity. The use of superfluid helium imnediately suggests itself. 
One still must get the heat out of the superconductor and across any barrier such as 
stainless-steel strengtheners, insulation, etc., into the liquid helium, as we calcu- 
lated above. 

In of these expressions there appears a factor such as dn/pn, or l/Fn. 
magnet builder can influence this factor in two very useful ways. For those regions 
having large field components perpendicular to the tape he can either order his tape 
with enough pure enough normal metal bonded to the superconductor to insure stability, 
or he can co-wind into his disk, along with the composite conductor, a tape of pure 
normal metal. 
composite superconductor in order to influence dnlpn or l/Fn. 
techniques have been found quite successful; at this time, however, the amount of nor- 
mal metal needed must be found empirically. 

36 

The 

This extra tape need not be electrically or thermally bonded t o  the 
In our laboratory both 

V. CONCLUSION 

. In considering magnetic instabilities and solenoids we have concentrated on 
understanding two extreme limiting cases, both of which are important in practice. 
In both limits we find that stable performance would be assured if we could find use- 
ful materials for which aJ,/aT 2 0; I have hopes that such materials will someday be 
found. . 

In one limit, the adiabatic limit, we found that small enough conductors 
(4 0.002 cm diam) can be stabilized against flux jumps with their own heat capacity. 
There is a major qualification: if the fine conductors are connected electrically 
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. 
at more than.one point, some form of transposition will be required to gain the full 
advantage of the small di-nsions. 
be forthcoming (see P.F. Smith's contribution to this Sunrmer Study). 

There is some promise that such conductors will 

In the other limit, in which the winding is well cooled and the flux motion is 
'Slowed by a normal metal, we find that we can attain a useful dynamic stability1 by 

The positive permeation of a 
the proper use of a very pure normal metal in close magnetic coupling with the super- 
conductor. 
winding with liquid helium, particularly superfluid helium, should aid the attainment 
of stability. 

Again, fine dimensions offer. advantages.1 

R. Hancox has prepared, but not yet published, an excellent summary of the ef- 
fects of instabilities on the performance of wire wound solenoids. P.F. Chester's 
review of superconducting solenoids1 deserves careful reading for it has as 'one of its 
main themes the importance of magnetic stability for.solenoids. Finally, S.L. Wipf's 
concise review of instabilities printed elsewhere in these Proceedings is recommended 
to the reader. 

I would like to thank my many colleagues in the General Electric superconductivity 
effort for helping, and forcing me to learn about magnetic instabilities in high field 
superconductors. 
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Fig. 1. The nonlinear relation between the electric field E (V/cm) and . 
the current density J (A/cm2). 
effective flux flow resistivity for the superconductor; in some 
cases pf includes the effects of normal metals, i.e., in composite 
structures. This E-J relation may be considered one formulation 
of the critical state model. 

Here p f  (R-cm) represents the 

Fig. 2.  A simplified relation between E and J which is often used in 
critical state model discussions. In this version the response 
of a superconductor to a field change is instantaneous. 
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h 

0- 

Fig. 3. The h i s t o r y  dependent d i s t r i b u t i o n s  of  f i e l d  and c u r r e n t  i n  a high 
f i e l d  superconducting s l ab  wi th  a magnetic f i e l d  app l i ed  p a r a l l e l  
t o  the plane of the sl.ab. 
text.  
s ides  m e e t  ( 6  = w/2)  i s  ca l l ed  H . 

The d e t a i l e d  h i s t o r y  is described i n  the 
The excluded f i e l d  a t  whigh the f l u x  f r o n t s  from tha two 

Thus i n  Fig. 3c, Bo > H*. ' 
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. 'Fig.  4. The history dependent distributions of f i e ld  and current for a 
round w i r e  carrying'a current. See the text for d e t a i l s .  
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Fig. 5. Uniform temperature flux penetration” profiles for a semi-infinite 
slab €or two different temperatures. 
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Fig. 6. Schematic illustrations of the heat generated, Qm, and, absorbed, 
QT, in going from one field profile, temperature TI, to a new 

tion are Jfcm . .field profile temperature T2. The units of Q in this calcula- 3 
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SMALL 0 

b. 

AH0 0 . LARGE 

Fig. 7 .  Schematic i l l u s t r a t i o n s ' o f  Qm and % vs T z - T l  for two cases: 
a) Small excluded f i e l d ;  stable  against small disturbances. 
b) Large excluded f i e l d ;  unstable. 
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'ADIABATIC" FIELD PROFILE -- ISOTHERMAL FIELD PROFILE 

x / l [ A H  (INSTABILITY)] -c 

Fig. 8. Isothermal and quasi-adiabatic field profiles (.following small 
disturbances) €or a semi-infinite slab of a high field supercon- 
ductor. The profiles were obtained as described in the text 

' assuming T1/T, = 0.2. . 

- 595 - 



H =O t D 

MAGNETIC FIELD DISTRIBUTION 

CURRENT DISTRIBUTION 

Fig. 9.  The distribution of field and current density in a slab exposed to 
a field parallel to the plane of the slab (H > H*) for a nonzero ' 

transport .current. The two distributions shown are for the start- 
ing temperature, TI, and for the highest temperature, T2, for which 
the transport current can be carried as a supercurrent, i.e., the 
quench temperature. This is the current distribution used by 
Hanc0x3~ in his approximate treatment of a winding layer in a round 
wire solenoid. 
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Fig.  10. For H > H*, as illustrated, the magnetic time constant Tm is given 
in terms of the slab thickness and the effective flux flow resist- 
ivity. 
temperatures; T2 > Ti. 
field and current density applicable for t << Tm if the temperature 
is suddenly changed from T1 to T2. 
tion is E.J. 

In the lower portion the E-J relation is given for two 
The dashed lines illustrate the electric 

The local rate of heat genera- 

. .  
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Fig. 11. I n  our  ana lys i s  we rep lace  a magnet winding wound f r o m  a wide t h i n  
composite tape with a s t a c k  of such t apes .  
ponent of magnetic f i e l d  perpendicular t o  the  p l ane  of the  tape  the  
s t ack  excludes f i e l d  a s  would a c r i t i ca l  state superconductor with 
a c r i t i c a l  cur ren t  dens i ty  equal t o  Tc. A s i m p l i f i e d  c r o s s  sec t ion  
of a tape is  shown. 

When there i s  a com- 
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Pig.  12. A s tack  of d i sks  punched from a t h i n  Nb3Sn-copper composi te  t ape  
was exposed t o  a magnetic f i e l d g e r p e n d i c u l a r  t o  t h e  p l ane  of t h e  
tape. The s t ack  (1 i n .  high,  t in .  diam) was r e l a t i v e l y  i s o l a t e d  
from the  l i q u i d  helium bath.  
magnetization curve ind ica t e  t h a t  the  system is no t  a d i a b a t i c a l l y  
s t ab le .  

The major flux jumps observed i n  t h e  
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Fig. 13. A magnetization curve for a stack of disks similar t o  that of 
Fig.  12 except that very good thermal contact was made with a 
4.20K liquid helium bath. 
that we have achieved dynamic s tabi l i ty .  

The absence of  flux jumps indicates * 
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