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INTRODUCTION o

The analysis of magnetic fields produced by currents is an essential part of the
design and construction of superconducting magnets. Beyond this, of course, a broad
range of engineering judgements is involved, such as those concerning cost, materials,
mechanical design, machining, production, assembly, testing, etc. These are not taken
up in this summary, nor is the use of iron in the magnetic field.

A static magnetic field is always a three-dimensional configuration in space.
While the basic physical principles are well understood their detailed analytical ap-
plication to a whole three-dimensional magnet can rapidly become unmanageable, even
with computers, unless appropriate simplifications and idealizations are introduced.

For accelerator and many other applications transverse magnetic fields are used
to guide and focus beams of charged particles. When the beam cross section dimensions
are small compared to the radius of curvature of the beam it is often an appropriate
simplification to use a two-dimensional analysis to make the initial design of a mag-
net. Three-dimensional features, such as end effects, can later be taken into account
as necessary along with engineering modifications once an idealized two-dimensional
design has been chosen.

It should be clearly recognized, however, that certain, possibly very useful,
three-~dimensional patterns, such as spiral or alternating spiral fields, are expressly
left out of consideration when we restrict ourselves to an idealized two-dimensional
design,

The main purpose of the present paper is to describe and illustrate some of the
methods now available for the analysis of two-dimensional fields.

I. TWO-DIMENSIONAL FIELDS PRODUCED BY CURRENTS

Redquired Field and Aperture

The components, Hy and Hy, of the transverse field required in a beam handling
magnet will lie in an X,Y plane normal to the beam and the beam cross section will
iie within a specified "aperture' region in this X,Y plane. The primary problem is
to find an arrangement of longitudinal currents, assumed infinitely long, straight
and perpendicular to the X,Y plane (current filaments, current sheets, or solid cur-
rent "blocks") lying outside the aperture which will produce the required two-dimen-
sional field within the aperture. Usually this primary problem is solved in an
inverse way — i.e., by assuming a distribution of current magnitudes and locations
and calculating the field that would be produced, then modifying the assumed currents
and/or their locations until the calculations give the required field with sufficient

*
Work performed under the auspices of the U.S. Atomic Energy Commission.
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, Obviously the eff1c1ency of this procedure will be greatly enhanced if the
L current distributions can be guided by idealized but mathematically precise
';g@solutlons such as those which can be obtained by the methods described here.
w

."'

These methods also enable us to obtain analytical solutions to a wide range of
secondary problems in the idealized case — for example, finding the external field,
the field within conductors, the field forces acting on conductors, and the energy
stored in the magnetic fieid.

Complex Representation

Maxwell's equations for a static two-~dimensional magnetic field parallel to the
X,Y plane may be written in the form

oy Oy

X 3y 4no(X,Y)
@8]
= M v -0 o
where o(X,Y) is the density of current' normal to the X,Y plane and B = When

g = constant (including 0), these two Maxwell equations may be ldentlfled with the
two Cauchy-Riemann equations

U _ v
3X oY
(2)
3V _ _3u
X~ T Y

-

which are necessary and sufficient for
F =2U+ iV

to be an analytic function, F(Z), in any region of the Z = X + iY plame. It is easily
seen that the identification may be made by setting

U =HY-2-rrcX

\Y4 HX + 2oy |,

or

tzj
I

=F - 2noz" - (3)

where Z* = X - i¥ and

= H§F+ iHX = i(EX - iHY) . (4)

is taken, by definition, as the complex field.

1. R.A. Beth, J. Appl. Phys. 38, 4689 (1967).
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_ Field as a Complex Power Series

In any region without currents (e.g., in a magnet aperture), 0 = 0 and H(Z)?is
itself an analytic function without singularities. Hence any two-dimensional field
that satisfies Maxwell's equations can be written as a complex power series

o
N 2 ~ n~1
H{Z) H1+sz+ﬁ32 F i = Z B Z (5)
n=1

about any point within the regular region as origin. The complex coefficients, H,,
completely specify H(Z); thus H) specifies the dipole component, Hy the quadrupole,
Hy the sextupole, and, in general, H, the 2n-pole component.

For many applications the desired field will be antisymmetric above and below

some "median plane" through the origin. When the X-axis represents the median plane
all of the H, coefficients are real.

Current Filaments

The magnetic field at Z due to a filament current I at z is2

21 .
H(Z) = =5 = By + iH, . (6)

Thus an isolated filament current I constitutes a simple pole with residue 21 for the
two-dimensional magnetic field defined by Eq. (4).

Since the integral of H(Z) around any closed contour C in the Z-plane is 2mi
times the sum of the residues within C, it follows that

35 Hdz = 4mI, , (7
c

where Ig is the total current within C.

Current Sheets

If 41 is the filament current flowing along the elements of a cylinder perpen-
dicular to the Z-plane in the interval dz then the field discontinuity between the
right and left sides of dz can be shown from (6) to bed "

B(z) - B (2) = 4mi § ®)

where Hp(z) and HL(z) are the limit values at the cylinder where Z = z of the fields
Hp(Z) and HL(Z) in the regions to the right and left of the cylindrical current sheet.

2. R.A. Beth, J. Appl. Phys. 37, 2568 (1966).

3. R.A. Beth, Brookhaven National Laboratory, Accelerator Dept. Report
_ AADD-102 (1966).
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Curreﬂ% ocks

When the current denSLty is uniform (o = constant), a straight conductor, repre-
sented by its cross section in the Z-plane, may be called a current block. For such
a current block the function F(Z) in Eq. (3) can be shown to bel

* .
P =10 § e (9
c

. : % .
where z = x + iy represents the points of the cross-section boundary, and z° = x - iy.
Then the fields inside and outside the conductor are

H,
in

H

out

. . w®
F(Z;) + 2moZ;,
' (10)

I

F(Z_ ) .

out

These are both given by the single formula

pe e f (55 e

* *
since the residue of Z /(z-2) is Z for Z = Z;, and is zero for Z = Z,,-

Field Forces

The resultant field force acting on a unit length of all the currents within an
arbitrary contour C in the Z-plane can be shown®33 to have X and Y components which
are given by the contour integral

= 3 —_—1-§ 2
£= fY + :LfX v H dZ . (12)

Similarly the force df acting on unit length of a current sheet in the interval
dz is given by

1 2 2 .
L. Téw - Lo | | 5
which, using (8), can be written in the form

L - & (14)

4. R.A. Beth, Brookhaven Natibmal Laboratory, Accelerator Dept. Report
AADD-107 (1966).

5. R.A. Beth, in Proc. 2nd Intermn. Conf. Magnet Technology, Oxford, 1967,
p. 135.

6. R.A. Beth, in Proc. 6th Intern. Conf. High Energy Accelerators, Cambridge, Mass.
- 1967, p. 387.
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where ) . ~ -
i) =3[ B + 5@ | (15)

is the mean of the limits of the left and right fields at the current sheet.

Potentials

In any simply connected region without currents the integral of the analytic
function H(Z) between two points is independent of the path of integration. The
vector and scalar potentials, A(X,Y) and Q(X,Y), are then given by

[~<3

. Z
~a-m=u@ = [ naz=) tu (16)
(]

n=1

where H is defined as in (4) and Z = 0 lies in the regular region. Conversely, the
field is given by ’

The curves A = constant give the lines of force of the magnetic. field and are every-
where orthogonal to the scalar equipotentials, {} = constant.

It will be seen that the vector potential A(X,Y) in this two-dimensional case

is really only the component of the three-dimensional vector potential normal to
the field plane; the other two components lie in the field plane and are constant.

Field Energy

The vector and scalar potentials
A= AX,Y) and Q=07 (18}

specify a transformation from the X,Y plane to an A,Q plane whose Jacobian is

34 34

g2 -H

83X oY vy
_ 2.0 | _ I T S
TTIEYD T | aa Hy * By = H a9

x v | ™% H
i.e., J is proportional to the field energy density. Hence the field energy per unit

thickness in any region R of the X,Y plane is proportional to the area of the trans-
formed region R’ in the A,Q plane,”>’ i.e., -

e [Jomar-d Jo
Ep = g JJ JORAY = & dadQ . (20)
R R’ '

7. R.A. Beth, Brookhaven National Laboratory, Accelerator Dept. Report
AADD-106 (1966).
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When thé potential function W(Z), defined in (15), 1s known in complex form it
is often convenient to calculate the area of the region R’ in the W plane as a contour
integral around its boundary C’:

=L * sj :
JJ dad = 5+ § W = 5 waw— (21)
R’ c’ c’

* . 7
where W 1is the complex conjugate of W.

ITI. ILLUSTRATIVE EXAMPLES

Multipole Field in a Circular Aperture

The most genaral nonsingular Maxwell field in two dimensions may be represented
as a superposition of multlgie fields as in (5).
3 llg.'i’ ‘ﬁ"“ }
Suppose we wish to produce the 2n-pole component

- n-1
Hln(Z) = Hn Z . (22)

within a circular aperture of radius a by an array of current filaments.

, The array of minimum lateral size and minimum field energy storage will be ob-
tained with a cylindrical current sheet tightly surrounding the required circular
aperture. Let the points z of the cylinder cross section, and the arc length s meas-
ured around the circumference be

z = aele 0 =8< 2m

(23)

s = ab .

Then z* = ae-le = a2/z and dgz = izd@ = i(z/a)ds.
By means of the current sheet theorem (8) we can see that the required currant
distribution is
e, |

a1 _ _L( n **“)_ —n o-l
i y— an + an = 5 2 .cos (nb + en) s (24)
iy . .
where H, = lan e ", and the external field is
- aZn
Houe® = = By "o - (25)
Thus the required linear current demnsity in the cylinder is proportional to an_‘1 and

varies sinusoidally as an nth harmonic of the central angle 8 around the circumference
of the cylinder. Note that the phase angle 8, merely specifies the orientation of the
multipole field with respect to the direction chosen for ® = 0.

The field force acting on unit area of the current sheet, df/ds, can be evaluated

by using the force theorem (14). It turns out that the radial component is everywhere
zero and the tangential component is
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as
6 _ dI n-1 .
T e Bl a7 sinme+e) . (26)

Thus the tangential force density (26) is zero where the current density (24) is zero
or has maximum magnitude. The tangential force is directed toward the nearest abso-
lute maximum of (24) at intermediate points.

It can be shown from the energy theorem (20) that the internal and external field
energies are equal for a circular multipole current sheet and that

’Hnlz a2n
Bin = Boue = 8a | (27)
For an elliptic aperture and current sheet the formulas are somewhat more compli-
cated; they have been worked out together with the case of two confocal elliptic (or

concentric circular) cylinders required to produce a prescribed field within the inmer
cylinder while cancelling the field external to the outer cylinder.8

Step~Funciion Approximation for cos ¢

We may wish to approximate the smoothly varying current density (24) by a step
function made up of intervals of constant current density. We set

®=n8+ 6 (28)

and seek to approximate cos @ by a function of N steps per quadrant. With cosine sym-
metry as shown in Fig. 1, the Fourier composition of the step functiomn is

S(q?) = Z Cm cos 2m-~1) © -,
m=1

where the coefficients Gy will depend on N values of g, and N values of ¢,. These 2N
values can be chosen to make C; # 0 and Gy = 0 for m = 2, 3, ... 2N. The solution” is

- L
cos (V- o v=1,2, ... N

g =

v ,co8 ko ?
(29)
cpv=voz N v=1, 2, ... N ,
where
@ 2N:1=2_1?'
(30)
M o= 4N+ 2 .

8., - R.A. Beth, IEEE Trans. Nucl. Sci. NS-14, No. 3, 386 (1967).

9. R.A. Beth, Brookhaven National Laboratory, Accelerator Dept. Report
AADD-135 (1967).
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With these values of g, and @, the Fourier expansion of the step functiom is

_M m T cos (kM+1) @ _ cos (kM-1) o
Sy(@ =ptang| [ WM + 1 Z M - 1 ] -G
=0

so that, after the fundamental, all harmonics are eliminated up to the cos (4N+1) o
term — which, in view of (28), means sinusoidal functioms of n(4N+1)8 and a deviation
of the order of

4Nn

1 _z_) . ’ |
] ( 3 times the fundamental (32)

from the ideal field (22).9 Figures 2 through 6 show the general form of Sy(v) and
the first few cases N = 1, 2, 3, and 4.

It will be seen that the approximation is so good that practical comstruction
inaccuracies will soon outweigh the deviation of Sy from a pure cos o fiéld even for
= 3 or 4. The construction of step-function dipoles and quadrupoles was described
by Britton during this Summer Study. 0 .

Constant Gradient Field in an Elliptic Aperture

Any desired field (5) can be produced within an eliiptic aperture by providing
the proper current distribution on the elliptic cylinder determined by the specified
aperture; the resulting external field and field energy can be calculated.8

~ The relations for a constant gradient field in an elliptical aperture may be
surmarized as follows>:

To produce the field

Hin = B0 (1 + K2Z) (dipole + quadrupole) (33)

within the elliptical cylinder whose normal section is

z=acos 8+ ibsinb=rel® + 6 (020<2m (3%)
where

r = %a+ b) 6= 4a - b) (35)

requires the current distribution in the ecylinder elements

B

d1 o 2
38 = "~ 3q (T cos @+ 'R cos 20) , (36)
with
= a?- b2 = 4ré . w, = 2r (r + B)
) §=Z+J22-c2 W2=2r2(r2+52)K.

16. R.B. Britton, these Proceedings, p. 893,
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The external field is

_ -1 -2 7 2
H, = Bo[wlg + 2, & ]/Jz -t (37)

The complex potentials are W = - (A + i) such that H = dW/dZ

R R R e
Win Bo [ Z + 5 KZ Wout Bo W0 -+ Wl g -+ WZ 3 . (38)
Vector potential A is continuous across the ellipse when Wy = xé =~c2/4.

Circular cylinder case: r =a=0b, 6 =0, ¢ = 0,

The field energies per unit length are:

_1.2 _1_222]

Ein 8 BO [ ab + Z K ab(a + b") |
=_1_2[2_1_22 ] '

Eout ) B0 a + ) + b ) 39
1.2 1.2 2 .2

Etotal =3 Bo (a + b) [a + A K'(a+ b)(a” + b )]

~ The ring magnets of the Brookhaven Alternating-Gradient Synchrotron provide a
constant gradient field with XK = 0.0425 cm” -l within a roughly elliptical aperture for.
which a = 8.8 em, b = 4.0 cm.

Such a field can be produced by an elliptic cylinder current ‘sheet chosen to fit
the aperture. The equipotential curves U = ~ A(X,Y) = counst and V = -~ Q(X,Y) = const
are plotted in the left side of Fig. 7 and the corresponding A, plot with areas pro-
portional to field energy is shown in the right side of the same figure.

The U = const curves show lines of force of the magnetic field in the space
plot. Since the total field energy is always finite, the potential plot will always
cover only finite regions of the U,V (or A,Q) plane. Areas can be calculated by the
area theorem {(21). Selected corresponding regions have been crosshatched similarly
to elucidate the interrelations of the two plots.

Superposition of Elliptical Current Blocks

By means of the integral formula (9) the fields (10) inside as well as outside
an elliptical conductor bounded by

z=a cos B+ ib sin 8
and carrying a uniform current density, ¢ = const, can be evaluatedl:

_ _hmo
Hin iy (BbX iaY)

(40)
4mo ab

. =
2
Z +-N/22 -c”

where
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If we superpose two equal area elliptical conductors with ¢’ = - &, ab = a’b’,
and centers at Z, = -~ Xg, Zé = X,, as shown in Fig. 8(a), then the overlap region
forms an empty aperture (since o + ¢’ = 0) with the resultant interior constant

gradient field:

- 41106
in (a+b){a’'+b")

1 [(ab' + a’b + 2bb") X, +(a’b - ab”) z] (41)

where
ab =a’d’ .
We obtain a pure dipole field

8mg b X

0 _ _
Hin =2+ const (42)

for equal ellipses, a’ = a and b’ = b, as in Fig. 8(b).
We obtain a pure gquadrupole field

_4mo (a’b -~ ab’) - 4
in - (atb)(a’ + b7 2 (43)

when both ellipses are centered at the origin, X, = 0, as in Fig. 8(c).

% % ek ow ok % %

Remarks on Complex Methods

The complex variable methods for two-dimensional fields described and illustrated
in this paper go beyond the older methods which focus on setting up a potential that
satisfies Laplace's equation in a region without currents. Here the natural emphasis
is on the pair of field components which have direct physical significance everywhere
— even within current bearing regions where both potentials cannot be defined. Cur-
rents are systematically taken into the theory as singularities and all three aspects
of analytic functions — Cauchy-Riemann equations, Cauchy integrals, and power series
representations — turn out to have useful physical applications. Field forces and
field energy storage can be calculated. 1In these and other ways the methods described
form useful extensions of the usual complex treatment of two~dimensional fields.
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Fig. 1. General form of ste'p function.
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= L) =
N steps o= ST M=4N+ 2
2 g_M ud
a/tanz—ntanM
_ M uf i _cos (M- 1) o cos M+ 1) o
SN(w)—ntanM [coszp M1 + var
_ cos (Z2M-1) © 4 Sos (2M+1) ©
2M - 1 2M + 1
_ cos (3M-1)cp+cos (3M+1) o©
M-1 M+ 1

e e ]



1L.oo

0507

cos ¢

/00000

S @

Fig. 3.

1.

= 4l

tan 30° = 1.10266

0266

cos @ -~

- 854 -

5

11

——

17

i cos 59 + %

cos lig +

cos 179 +

cao

-+

cos 7o

%3 cos 13m

i
19 cos 19

]



1,00 l.ooccco
Cos ¢
52(‘5)
06,6180 4
» L5504+
&< . 2¢¢
— : ;
o° 30° 3¢° <o’ 72% 9&
Fig. 4.  Sy(9)
N = 2 steps o= 1;—~ 36° M= 10
2 ean2=210 .1 18° = 1.03425
o 2 ™

1 1 :
Sz(cp) = 1.03425 jcos © ~ 5 cos 90 + 11 cos 1lo

1 1
.wAcos 19 + 57 CO8 21

1 1
5 €08 29¢p + 31 cos 3iop

- .;.. + cuee ]

- 855 ~



¢’ L0000
CON

\ Sa@)
0,80 194
Q.50 .
0.44504
o | 20K : %'f
° L °© ' } l
= 3© &0° 9&
Fig. 5. Sé(@)
N = 3 steps =-171~*25-§-0 M= 14
% tan % = -1-1_-% tan 12 -g' ° = 1.01712
- L L
SB(tp) = 1,01712 jcos © - 13 cos 13p + i cos 15@
- 5177- cos 27¢ + -2% cos 2%
- 41 + L cos 43
1 cOSs 03] 43 ©

856 -



\ WaTr1oTY-Y
cos &
\\ 0,872 38
\\ 0,.65270
0.50 - \
% . ¥ ki N
c° 30° ¢o° s\’\
Fig. 6.  §4(v)
N = 4 steps a/“—‘-g-*ZOo M= 18
2 tan €218 1an 10° = 1.01030
o 2 ks
- ' A L
Sa(cn) 1.01030 jcos @ 17 cos 170 + 19 cos 19¢
- = c0s 35 +-1-c s 37
35 0+ 37 €08 20
—-l—cos 53 +—1—c555
53 ® ¥ 55 cos O

- 857 -



-~ 868 -

SPACE PLOT OF
POTENTIAL CURVES

POTENTIAL PLOT OF
SPACE COORDINATES
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Fig. 7. Constant gradient field within an elliptical curreni: sheet.



Fro,

Fig. 8.

Apertures formed by overlapping ellipiical conductors.
(a) Constant gradient field.

{(b) Dipole field.
{(c) Quadrupole field.
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