

3rd INTERNATIONAL WORKSHOP on Cooling Systems for High Temperature Superconductor Applications **GE Research Center**

1 Research Circle Niskayuna, NY 12309

October 15, 2019-October 17, 2019

BNL experience with HTS magnets and coils Ramesh Gupta on behalf of SMD@BNL BROOKHAVEN a passion for discovery

A pictorial tour

Highlights of the HTS Magnet Program at BNL

- First US national lab to start HTS magnet R&D (over 20 yrs ago)
 - Opted the approach of demonstrating capabilities of HTS to create new opening and create excitement, rather than waiting for the conductor to get matured before starting magnet R&D
- A wide ranging HTS magnet R&D at BNL
 - High field, high temperature and the middle course
 - Solenoid, racetrack, cosine theta, curve coils, clover-leaves, ...
- Number of HTS coils and magnets designed, built and tested
 - Well over 150 HTS coils and well over 15 HTS magnets
- HTS used: Bi2223, Bi2212, ReBCO, MgB₂ wire, cable, tape
- Amount of HTS acquired: Over 60 km (4 mm tape equivalent)

DOKHÆVEN

- Have complex end geometry with tight bend radius
- Large Lorentz forces cause strain on the conductor
- Design not friendly for high field HTS magnets

A High Field Collider Dipole Design for HTS Coils

- Common coil 2-in-1 design with large bend radii (determined by the spacing between the two bores rather the size of the bore itself)
- Conductor friendly simple racetrack coils
- Coils move as a unit under large Lorentz forces
- Replaceable coil modules for flexible, low cost, systematic R&D

Superconducting Magnet Division @BNL started working on it in 1996

2019 IWC-HTS @

Oct 15-17, 2019

Common Coil Magnets With HTS Tape

Superconducting Magnet Division

BROOKHAVEN NATIONAL LABORATORY

Bi2223 Tapes

1998

Status of HTS tape coils at BNL

	Size, mm	Turns	Status	
Nb ₃ Sn	0.2 x 3.2	168	Tested	
IGC	0.25 x 3.3	147	Tested	, 1
ASC	0.18 x 3.1	221	Tested	
NST	0.20 x 3.2	220	Under construe	ction
VAC	0.23 x 3.4	170	Under construe	ction
2019 IWC-HTS @			Oct 15-17, 2019	

Two HTS tape coils in common coil configuration

-Ramesh Gupta

5

HTS Coils and Magnets @BNL (2002)

BNL had built 14 test coils and several HTS magnets by 2002

HTS Cable Coils in support structure

Two HTS tape coils in common coil configuration

2019 IWC-HTS @ 💮

HTS Cable Coil

Oct 15-17, 2019

Magnet Division

Results Reported at MT13 (2003)

Oct 15-17, 2019

BNL experience with HTS magnets and coils

-Ramesh Gupta

7

Bi2212 Cable Coil for Dipoles

Magnet Division

Racetrack coil made with React & Wind Rutherford cable

-Ramesh Gupta

2019 IWC-HTS @

Oct 15-17, 2019

BNL experience with HTS magnets and coils

1970

3370

4300

4200

2019 IWC-HTS @

A Learning Experience

- To learn, perhaps one has to burn! And we certainly did that!!
- In magnet DCC014 one of the two HTS coils was damaged (burnt-out) during the test after two quenches.
- The quench protection (as used in LTS coils) was unable to protect the high current HTS coil at 4K.
- Now, of course, we do things differently.
- This particular program was stopped after this test.

Before Test After Test Oct 15-17, 2019 BNL experience with HTS magnets and coils -Ramesh Gupta

Magnet Division

Round 2 (SBIR with PBL 2014-2017) High Field HTS/LTS Hybrid Dipole

Oct 15-17, 2019 BN

BNL experience with HTS magnets and coils

11

2G HTS Coils for Hybrid Dipole

PBL/BNL SBIR

Conductor: • 12 mm 2G ASC tape

Insulation: • Nomex

Two coils used ~300 meters of 4 mm equivalent

77 K Test HTS Coils in Various Configurations

Superconducting Magnet Division

2019 IWC-HTS @

Oct 15-17, 2019

Superconducting **Magnet Division**

HTS/LTS Hybrid Dipole with a 10 T Nb₃Sn React & Wind Dipole

Five Simple Steps/Components

- 1. Magnet (dipole) with a large open space
- 2. Coil for high field testing
- 3. Slide coil in the magnet
- 4. Coils become an integral part of the magnet
- 5. Magnet with new coil(s) ready for testing

Oct 15-17, 2019

-Ramesh Gupta

Quench Protection

- BNL advanced quench protection with fast energy extraction
- Quench protection system was designed to protect
 both the main magnet coils
 and insert coils (including HTS coils)

Oct 15-17, 2019

HTS/LTS Hybrid Dipole Test (Round 2, Year 2016)

YBCO coils ramped up till they quenched with different background field from Nb₃Sn coils

Several quenches.

> No training

(compare to LTS)

No damage and no degradation

<u>Encouraging</u> <u>results</u>

Quench threshold 0.2 V (just like in LTS)

2019 IWC-HTS @

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division New HTS Coils being Prepared for yet another Hybrid Dipole Magnet Test

Magnet Division

Other Geometries for HTS Dipole Magnets

Oct 15-17, 2019 BNL experience with HTS magnets and coils

Cosine Theta Coil with 4 mm 2G HTS Tape - PBL/BNL SBIR (1)

BROOKHAVEN NATIONAL LABORATOR Superconducting Magnet Division Cosine Theta Coil with 12 mm 2G Tape PBL/BNL SBIR (2)

2019 IWC-HTS @

Oct 15-17, 2019

Demonstrations of the Dipole Coil Overpass/Underpass e2P/BNL SBIR

77 K Test Results

-Ramesh Gupta

2019 IWC-HTS @

BROOKHAVEN NATIONAL LABORATORY

Superconducting Magnet Division

Oct 15-17, 2019

Magnet Division

- Two Phase II SBIR with Particle Beam Lasers (PBL) for Muon Collider
- ARPA-E SMES Solenoid
- > IBS 25 T, 100 mm No-insulation coils for Axion search
- High Field Solenoid for Neutron Scattering

High Field Solenoids with PBL

- Two SBIRs for 25 mm and 100 mm coils, each to generate 10-12 T field for a combined field of 22 T
- HTS tape is co-wound with insulating stainless steel tape to reduce hoop stress
- Also to help in quench protection

pancakes

Outsert solenoid

2019 IWC-HTS @

Oct 15-17, 2019

16 T HTS Solenoid (2012) (plus a wide range of operating temperature)

Insert solenoid: 14 pancakes, 25 mm aperture

2019 IWC-HTS @

Superconducting Magnet Division

High Field HTS Solenoid for SMES (funded by ARPA-E)

2019 IWC-HTS @

Oct 15-17, 2019

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

Pancake coils: inner and outer 77 K Test Fixture for outer

2019 IWC-HTS @

Advanced Quench Detection System with Fast Energy Extraction

- Fast energy extraction in larger magnets creates high voltages as "L" increases
- Develop electronics that can tolerate high isolation voltage (>1 kV)
- Divide coils in several sections

Cabinet #1 (32 channels, 1kV)

Cabinet #2 (32 channels, 1kV) (expandable to 64 and 3kV)

BNL experience with HTS magnets and coils

2019 IWC-HTS @

Oct 15-17, 2019

HTS SMES Coil High Field Tests

Oct 15-17, 2019

 2019 IWC-HTS @
 Oct 15-17, 2019
 BNL experience with HTS magnets and coils
 -Ramesh Gupta

- □ High Field : 25 T (must use HTS; it's all HTS)
- □ Large Volume: 100 mm bore, +/-100 mm long

Stresses: J X B X R

- □ Field quality: ~10%
- □ Ramp-up time: up to 1 day

Relaxed field quality and slow ramp rate allows the use of <u>No-Insulation</u> windings to (a) tolerate defect in HTS tapes, and (b) expected to offer a more reliable quench protection

2019 IWC-HTS @

Winding of IBS NI HTS Coils with BNL Universal Coil Winder

2019 IWC-HTS @

Oct 15-17, 2019

Quench Scenario in Large No-Insulation Coil BROOKHAVEN NATIONAL LABORATORY (fast 4K propagation within coil and coil-to-coil)

Magnet Division

Superconducting

Large No-Insulation HTS coil became normal in <200 msec (even faster than in many LTS magnets)

Large number of voltage-taps gives a detailed insight of what is happening

- Within a pancake: fast propagation due to resistive heating through contact resistance between turns when the current flows across (not around) in a "No-insulation" coil
- Pancake to pancake: fast propagation due to inductive coupling of the drop in local field
- The mechanism seems scalable to long solenoids made with many pancake coils

2019 IWC-HTS @

BNL experience with HTS magnets and coils

-1.25

-1.50-0.04

-0.02

0

0.02

0.04

0.06 0.08

Time (Seconds)

-Ramesh Gupta

1000

900

800

700

600

400

300

200

100

-100

1000

900

800

700

600

500

400

300

200

100

0.14 0.16

-25-T10

Current

0.1

0.12

Current (A 500

PBL/BNL SBIR for Neutron Scattering BROOKHAVEN NATIONAL LABORATORY Solenoid (conical shape HTS coils) Superconducting

- ➢ Goal: 25 T solenoid with a large opening
- Successful coil winding and 77 K testing in Phase I Next Phase II application

Magnet Division

- Medium field (2-3 T), medium temperature (30-50 K)
- Very large heat and radiation loads

HTS Quadrupole R&D for the Facility for Rare Isotope Beams (FRIB)

Superconducting Magnet Division

Fragment Separator Quadrupole for FRIB

Up to 400 kW of beam power hits the target.
 Quad triplet in the fragment separator is exposed to very high radiation and heat loads.
 ~15 kW is deposited in the first quadrupole itself.

(2003)

- Conventional superconductors and insulators can't tolerate such heat and radiation loads
- BNL performed a significant R&D on HTS quadrupoles
 with stainless steel insulation
- 1st generation with 2213 tape and 2nd with ReBCO tape

2019 IWC-HTS @

77 K Test of Coils Made with ASC 1st Generation HTS

Each single coil uses ~200 meter of tape

13 Coils made HTS tape in year #1

12 coils with HTS tape in year #2

Note: A uniformity in performance of a large number of HTS coils

Superconducting Magnet Division

HTS Coil Winding

Earlier coils wound with manual controls

Later coils wound with a computer controlled winding machine

Assembled Coils with Internal Splice

Three pairs of coils during their assembly a support structure

2019 IWC-HTS @

1st Generation HTS Quad

Magnet Division

Mirror cold iron

Mirror warm iron

Three magnet structures, built and tested

Warm Iron Design to Reduce Heat Load

2019 IWC-HTS @

Oct 15-17, 2019

BNL experience with HTS magnets and coils

-Ramesh Gupta

Operation over a large temperature range- only possible with HTS

2019 IWC-HTS @

Oct 15-17, 2019

Magnet Division

Energy Deposition Experiments

Stainless steel tape heaters for energy deposition

experiments

Magnet operated in a stable fashion with large heat loads (25 W, 5kW/m³) at the design temperature (~30 K) at 140 A (design current is 125 A).

Magnet Division

Second Generation Quadrupole for FRIB

Magnet Division

HTS Coils for FRIB with the Second Generation (2G) HTS Tape

(~9 km of standard 4 mm equivalent used)

2019 IWC-HTS @

Oct 15-17, 2019

Magnet Division

Completed 2G HTS Quad for FRIB

2019 IWC-HTS @

Advanced Quench Protection Electronics

Superconducting Magnet Division

NATIONAL LABORATORY

DOKHÆVEN

Detects onset of pre-quench voltage at < 1mV and with isolation voltage > 1kV allows fast energy extraction

2019 IWC-HTS @

Oct 15-17, 2019

BROOK NATIONAL LA Supercond Magnet Div Magnet Div Protection of HTS Magnet During an Operational Accident Near Design Current

2019 IWC-HTS @

Oct 15-17, 2019

BNL experience with HTS magnets and coils

-Ramesh Gupta

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

Cryo-cooler based HTS Coil R&D

- Coils reached <40 K (goal was 40 to 50 K)
 Cryo-coolers turn-on at 5 pm in the evening before leaving and coils cooled at 8:30 am in the morning.
- Cryo-coolers removed a significant heat efficiently removed at 50 K.

Oct 15-17, 2019

Curved HTS Coil (SBIR)

-Ramesh Gupta

re"

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division Test Results of HTS Curved Coils Reached Expected Performance @48K

- HTS magnets provide the opportunities that did not exist before
- This is the only superconductor that can work over 20 T, or can work over 20 K, or can take very high heat loads.
- Yes there are some challenges but no show stoppers. I just summarized BNL R&D experience on a wide ranging applications.
- We are very interested in working with various organizations to contribute to the new applications of HTS technology
- With a unique team experienced in large scale magnet productions in partnership with industry, BNL can help develop HTS magnets that industry can build

Magnet Division

Extra Slides

2019 IWC-HTS @ (1) Oct 15-17, 2019 **BNL experience with HTS magnets and coils** -Ramesh Gupta

- 25 T, 100 mm HTS solenoid for IBS, Korea (Work for Others)
- Hybrid Dipole with CORC® Cable (Phase II SBIR)
- High field solenoid for Neutron Scattering (Recent SBIR)
- Passive shielding for Electron Ion Collider (Phase I SBIR)
- Modular racetrack coil quadrupole for EIC (Phase I SBIR)
- 100 mm aperture "12.5 T @27 K" HTS SMES solenoid (arpa-e)
- High field collider dipole (Phase II STTR)
- Curved ReBCO tape dipole (Phase II SBIR)
- MgB₂ solenoid (Phase II SBIR)
- High field open HTS midplane dipole (Phase I SBIR)
- High radiation HTS Quadrupole for FRIB (Collaboration)

54

- 25 mm aperture 16 T HTS solenoid (SBIR)
- 100 mm aperture 9 T HTS solenoid (SBIR)
- HTS quadrupole for RIA (Collaboration with MSU)
- Bi2223 HTS tape common coil dipole (funded by DOE)
- Bi2212 Rutherford cable Common Coil Collider Dipole (DOE)
- HTS solenoid for Energy Recovery Linac (BNL project)
- HTS magnet for NSLS (BNL Project)
- Cosine theta dipole with 4 mm YBCO/ReBCO tape (SBIR)
- Cosine theta dipole with 12 mm YBCO/ReBCO tape (SBIR)
- ...and a few others.

Superconducting Magnet Division

Quench Protection of HTS Coils in HTS/LTS Hybrid Magnet

HTS coils operated like HTS coils Significant voltage in HTS coils

- HTS and LTS coils were operated with different power supplies and had separate energy extraction under a common platform
- Coupling between HTS & LTS

2019 IWC-HTS @

Oct 15-17, 2019

BNL experience with HTS magnets and coils

-Ramesh Gupta

Structures for HTS and HTS/LTS Magnet R&D with Racetrack Coils

2019 IWC-HTS @

Oct 15-17, 2019

Unique BNL Common Coil Dipole

- > BNL built a magnet to demonstrate "React & Wind" Nb₃Sn technology in 10+ T dipole
- Structure specifically designed to provide a large open space (31 mm wide, 338 mm high)
- > New racetrack coils can be inserted in the

- magnet without any disassembly or reassembly
- New HTS insert coils become an integral part of the magnet. Coil tests become magnet tests
- Rapid-turn-around, lower cost approach allowed hybrid dipole in DOE/SBIR program

58

Superconducting **Magnet Division**

Four Possible Configurations for **Insert Coils and the Cable Tests**

