Obtaining Harmonics from Opera-2D Results

Animesh Jain
Brookhaven National Laboratory Upton, New York 11973-5000, USA

US Particle Accelerator School on Superconducting Accelerator Magnets Phoenix, Arizona, January 16-20, 2006

2-D Fields: Harmonic Series

$$
\begin{aligned}
& B_{r}(r, \theta)=\sum_{n=1}^{\infty}\left(\frac{r}{R_{\text {ref }}}\right)^{n-1}\left[B_{n} \sin (n \theta)+A_{n} \cos (n \theta)\right] \\
& B_{\theta}(r, \theta)=\sum_{n=1}^{\infty}\left(\frac{r}{R_{r e f}}\right)^{n-1}\left[B_{n} \cos (n \theta)-A_{n} \sin (n \theta)\right] \\
& B_{y}(r, \theta)=\sum_{n=1}^{\infty}\left(\frac{r}{R_{r e f}}\right)^{n-1}\left[B_{n} \cos \{(n-1) \theta\}-A_{n} \sin \{(n-1) \theta\}\right] \\
& B_{x}(r, \theta)=\sum_{n=1}^{\infty}\left(\frac{r}{R_{r e f}}\right)^{n-1}\left[B_{n} \sin \{(n-1) \theta\}+A_{n} \cos \{(n-1) \theta\}\right]
\end{aligned}
$$

$$
A_{z}(r, \theta)=\operatorname{Re}\left[-\int \boldsymbol{B}(z) d z\right]=\sum_{n=1}^{\infty}\left(\frac{r}{R_{r e f}}\right)^{n-1}\left(\frac{r}{n}\right)\left[A_{n} \sin (n \theta)-B_{n} \cos (n \theta)\right]
$$

Obtaining Harmonics from Field

The harmonic coefficients, B_{n} and A_{n}, can be obtained by Fourier analyzing ANY component of the field, $O R$ by Fourier analyzing the vector potential, at a fixed radius, as a function of angle.

Exception: B_{y} and B_{x} are insensitive to A_{1} and B_{1} (dipole terms) respectively.

Vector Potential may be a good choice: Primary quantity obtained by Opera-2D. Fields are derived from the Vector Potential.

Harmonics from Vector Potential

$$
\begin{aligned}
& A_{z}(r, \theta)=\sum_{n=1}^{\infty}\left(\frac{r}{R_{r e f}}\right)^{n-1}\left(\frac{r}{n}\right)\left[A_{n} \sin (n \theta)-B_{n} \cos (n \theta)\right] \\
& \int_{0}^{2 \pi} \cos (n \phi) \cos (m \phi) d \phi=\pi \delta_{m n} ; \int_{0}^{2 \pi} \sin (n \phi) \cos (m \phi) d \phi=0
\end{aligned}
$$

$$
\int_{0}^{2 \pi} A_{z}(r, \theta) \cos (n \theta)(r d \theta)=-\pi B_{n}\left(\frac{r}{R_{r e f}}\right)^{n-1}\left(\frac{r^{2}}{n}\right)
$$

$$
\int_{0}^{2 \pi} A_{z}(r, \theta) \sin (n \theta)(r d \theta)=\pi A_{n}\left(\frac{r}{R_{r e f}}\right)^{n-1}\left(\frac{r^{2}}{n}\right)
$$

Command File for Opera-2D

- abpot_gen.comi - Notepad	$\square X$
File Edit Format View Help	
/ UNITS LENGTH=MM FLUX=TESLA FIEL=A/M DENS=A/MM2 ENERG=JOULE/MM	\wedge
/ HARMONIC ANALYSIS FOR NO SYMMETRY IN THE MODEL. / ALL NORMAL AND SKEW TERMS ARE ALLOWED. INTEGRATION FROM 0 TO 2*PI	
/ \#LUNI IS NO. OF LENGTH UNITS/METER (=100 FOR L IN CM.)	
\$CONS \#LUNI 1000.	
\$CONS \#RREF 25.0	
\$CONS \#R 30.0	
\$CONS \#PI 3.1415926535897932384	
\$CONS \#XOFF 0.0	
\$CONS \#YOFF 0.0	
\$CONS \#MAG 2	
\$PARA \#N \#MAG	
/NOTE: EXPRESSION FOR \#GN DEPENDS ON LENGTH UNITS:	
\$PARA \#GN \#N* $10000 . / \# \mathrm{PI}) *(\# R R E F / \# R) * *(\# N-1) * \# L U N I /(\# R * \# R)$	
\$PARA \#X X-\#XOFF	
\$PARA \#Y Y-\#YOFF	
/ Calculate the stored energy (integral of B.H):	
\$CONS \#STOR ENERGY1	
/ Calculate Amplitude of fundamental term for normalization:	
\$CONS \#BRFB -INTEGRAL/10000.	
INTC COMP=POT*SIN ($\# \mathrm{~N}$)*ATAN2 (\#Y; \#X)) , ERRO=512	
\$CONS \#BRFA INTEGRAL/10000.	
\$CONS \#BREF \#GN*(\#BRFA**2+\#BRFB**2)**0.5	

Command File for Opera-2D

