Off-centered CORC Coil in DCC017

Ramesh Gupta, BNL

March 15, 2022
The desired location of the insert coils in DCC017 is that the vertical magnetic center of the coils align with the magnetic center of DCC017. This makes the net vertical force on the insert coil zero. The question is what happens when if not, specially for the MDP CORC insert coil, as designed? Is it still acceptable, even if not desirable?

Net vertical force (density) is insert CORC coil downward. The peak is smaller than that in Nb$_3$Sn coils. However, the turns are captured in a structure. Moreover, the bobbin can take the net downward forces.
Off-centered CORC Coil in DCC017

Net vertical force (density) is insert CORC coil downward. The peak is smaller than that in Nb$_3$Sn coils. However, the turns are captured in a structure. Moreover, the bobbin can take the net downward forces.
Magnetic Field Contours

Off-centered CORC Coil in DCC017

Ramesh Gupta, BNL
March 15, 2022
Contours of the Vertical Component of the Lorentz force density (Nb$_3$Sn and CORC Coils)
Contours of the Vertical Component of the Lorentz force density (in CORC Coils only)

Conclusion:
Even though the location of turns in the CORC insert coil for MDP is not ideal, however, since the turns are captured in a structure that, and the bobbin should be able to handle the net forces.