Q1ApF Coil and Q1BpF Iron plus Q1BpF Coil Redesign for 4K Operation Ramesh Gupta Superconducting Magnet Division BRUOKHAVEN July 14, 2020 IONAL LABORATORY a passion for discovery

Overview

- > Design studies of Q1ApF coil for a possible 4.2 K operation.
- > Q1BpF yoke optimization to reduce field in electron beam region.
- > Q1BpF coil redesign to increase margin for 4.2 K operation
- > Several cases examined; only one each of above will be presented.
- In all cases, peak field (margin), field quality and field in the electron beam region are being optimized together.
- The design consider several fronts geometric, mechanical, magnetic design. Anis will continue on further optimization.
- Strand/wire used: dia =1.065 mm, Cu/Sc =1.3 and 1.6.
- > Use this cable (and RHIC dipole type cable) for all EIC magnets.
- > Some thoughts on system optimization

July 14, 2020

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

Q1ApF Coil 2 Layers, Four wedges 41 turns/pole (18 inner, 23 outer)

- Poles of inner and outer layers aligned
- Coil poles have proper angles for collaring
- Two wedges in each layer to deal with keystone
- Coil radius: 71 mm (Q1B had 93 and Q2B had 140

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation

EIC IR Meeting

-Ramesh Gupta

Field Harmonics in Q1BpF

A reasonably good field quality is obtained with a good mechanical design (coil radius 71 mm) (all harmonics <1 unit)

36.0

Gr	ac	lie	nt
72	.6	T/	m
at	~9).3	kA

···	
MAGNET STRENGTH (T/(m^(n-1))	72.6821

NORMAL RELATIVE MULTIPOLES (1.D-4):

REFERENCE RADIUS (mm)

b 1:	-0.77119	b 2:	10000.00000	b 3:	-0.17439
b 4:	-0.03551	b 5:	-0.01107	b 6:	-0.18329
b 7:	-0.00119	b 8:	-0.00028	b 9:	-0.00008
b10:	0.17361	b11:	-0.00001	b12:	-0.00000
b13:	-0.00000	b14:	0.04157	b15:	-0.00000
b16:	-0.00000	b17:	0.00000	b18:	-0.00097
b19:	-0.00000	b20:	-0.00000	b	

July 14, 2020

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation

EIC IR Meeting

Iron Yoke - Initial Design

Yoke: ir = \sim 131 mm; or = 550 mm (or 500 mm) Hole@ x = 230.5 mm to 259 mm Radius of hole = 44.6 & 58.4 mm (+20 mm for electron beam) Collar width = \sim 20 mm

ROXIE

Field Margin at 4.2 K

eRHIC Quad Q1PF

20/07/14 07:01

Very Good Margin

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation

EIC IR Meeting

Field Margin at 4.2 K

July 14, 2020

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC IR Meeting

-Ramesh Gupta

Temperature Margin at 4.2 K Over Different Blocks____

Superconducting Magnet C

Temperature margin (at Jop,Bop,Top)(K)

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC IR Meeting -Ramesh Gupta

Field Margin at 4.6 K, Cu/Sc =1.6

eRHIC Quad Q1PF

20/07/14 07:07

July 14, 2020

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC IR Meeting -Rame

-Ramesh Gupta 9

Iron Optimization to Reduce Field in the electron Beam Region

July 14, 2020 Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC IR Meeting -Ramesh Gupta

Field in the electron beam region Yoke OR = 550 mm, Hole@288.3 mm

Shown a couple week ago (6/30/2020) Field in electron Beam Region 0.02 T

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation

EIC IR Meeting

Several techniques from the first principle examined. Only a couple of cases shown

July 14, 2020 Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC IR Meeting -Ramesh Gupta 12

Superconducting

Magnet Division

Technique: Guide flux away from electron beam region

Provide circular shielding for electron and ion beam

July 14, 2020

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC

EIC IR Meeting -Ramesh Gupta

Over an order of magnitude reduction in field

This field can be shield with mu-metal, etc.

July 14, 2020

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation

EIC IR Meeting

Superconducting

Magnet Division

Further Reduction

Tiny current on the two side of circular yoke over e-beam (still shielding for electron and ion beam)

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC IR Meeting

Two order of magnitude reduction

Tiny current on the two side of circular yoke over e-beam gives a solution (still shielding for electron and ion beam)

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation

EIC IR Meeting

Redesign of Q1B to increase margin

July 14, 2020 Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC IR Meeting -Ramesh Gupta 18

New Q1BpF Coil 2 Layers, 4 Wedges NKH AVEN NATIONAL LABORATORY 54 turns/pole (24 inner, 30 outer) Superconducting **Magnet Division**

Poles of inner and outer layers aligned

- Coil poles have proper angles for collaring
- Two wedges in each layer to deal with keystone

Coil radius: 93 mm (Q1A has 7a and Q2B has 140 mm)

July 14, 2020

O1ApF Coil, O1BpF Iron, QIDpr Con Keuesign for 4K Operation

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division Coil 2 Layers, Three wedges (2+1) 54 turns/pole (24 inner, 30 outer)

Poles of inner and outer layers aligned Coil poles have proper angles for collaring Two wedges in the inner to deal with keystone Coil radius: 93 mm (Q2B had 140 mm)

July 14, 2020

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC

EIC IR Meeting

Field Harmonics in Q1BpF

EIC Quad Q1PF 4.2K

A reasonably good field quality is obtained with a good mechanical design (coil radius 93 mm) (all harmonics <1 unit)

REFERENCE RADIUS (mm) . 36

Gradient 66.2 T/m at ~9.8 kA

NORMAL	RELATIVE MU	LTIPOL	.ES (1.D-4):		
b 1:	-4.01552	b 2:	10000.00000	b 3:	-0.42580
b 4:	-0.08594	b 5:	-0.02245	b 6:	-0.37287
b 7:	-0.00156	b 8:	-0.00035	b 9:	-0.00008
b10:	-0.03587	b11:	-0.00001	b12:	-0.00000
b13:	-0.00000	b14:	0.00119	b15:	-0.00000
b16:	0.00000	b17:	-0.00000	b18:	-0.00002

JUIN 17, 2020

VIAPL COIL, VIDEL HOIL, VIDEL COIL VCCORD IN 48 OPERATOR

-Ramesh Gupta **EIC IR Meeting**

Superconducting

Magnet Division

Field Margin at 4.2 K

July 14, 2020

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation

EIC IR Meeting

Superconducting

Magnet Division

Temperature Margin at 4.2 K Over Different Blocks

July 14, 2020

Q1ApF Coil, Q1BpF Iron, Q1BpF Coil Redesign for 4K Operation EIC IR Meeting

-Ramesh Gupta

- **Good results for 4.2 K option**
- > Q1A and Q1B have the same polarity
- Q1A has much bigger margin than Q1B (though new Q1B is in acceptable range)
- Re-optimize optics for either increasing length of Q1B (reduce length of Q1A) or increasing design gradient of Q1A and reducing that of Q1B

➢ Next task – Q1A iron