Q2pF Studies for 4K Option

Ramesh Gupta Superconducting Magnet Division

a passion for discovery

Overview

- Case studies to understand the magnet. Several cases examined. Only the case of 4.2 K will be presented in some details.
- Strand/wire used: dia =1.065 mm, Cu/Sc =1.6 (may be lower?)
- Cables considered: 19.7 mm wide (including insulation) with 36 strands (used in the design) and LHC inner with 28 strand
- Current density calculations are based on the cables made from strand with fill factor, insulation, degradation (while compacting and keystoning, etc.) - same as done in designing other magnets
- > Coils examined: Single layer (1.8K) and double layer (for 4.2K?)
- Peak field (margin), field quality and field in the electron beam region optimized. Note: this is not the final design but almost good enough (almost ok for CDR) to see that a solution exist.
- > Design gradient 41 T/m (is it reduced?)

June 16, 2020

Q2pF Studies for 4K Option

Cable Current Density

Cable density includ insulat degrac

	Inner wire						
current	Non-Cu(%)	40	Cable Area	20.34	Strands(#)	30	
ty from strand	B(T)	Jc (A/mm2)	Jw(A/mm2)	lwire(A)	Icable(A)	Joverall	
	1	7393	2957	1516	45489	2236	
les fill factor,	2	5164	2066	1059	31774	1562	
tion (plus	3	4151	1660	851	25541	1256	
N•	4	3457	1383	709	21271	1046	
dation)	5	2861	1144	587	17603	865	
	6	2289	916	469	14084	692	
	7	1700	680	349	10460	514	
and the second second second	8	1105	442	227	6799	334	
	9	510	204	105	3138	154	
						Insulated	
PARTITION		Cu/Non-Cu					
		1.500					
			becor and J	mes Jv o = 86	= 2861 v=1144 5 A/mn legrada	A/mm ² n ² even	2

midplane

Q2pF Studies for 4K Option

-Ramesh Gupta

Cables in ROXIE (in RHIC/SSC, we used PAR2DOPT and PARENDOPT)

Superconducting Magnet Division

NATIONAL LABORATORY

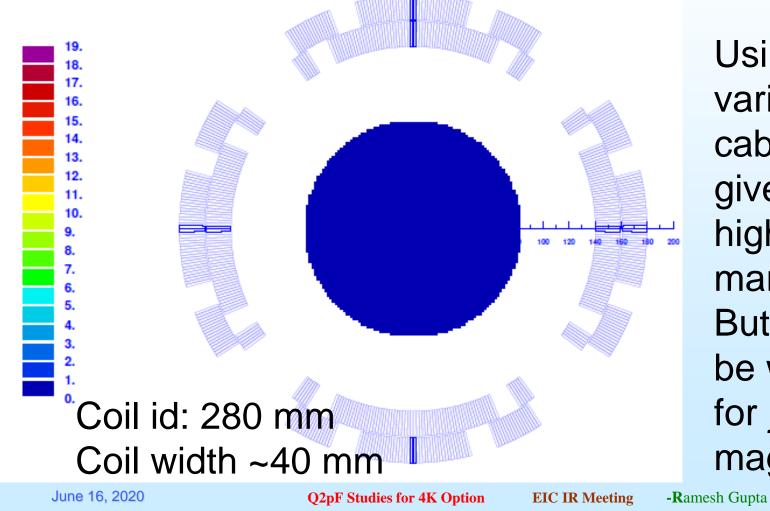
DKH/XVEN

🕣 Strand

N	o Name	diam.	cu/sc	RRR	Tref	Bref	Jc@BrTr	dJc/dB	Comment	
	STREIC1	1.065	1.6	70	1.9	10	1591	500.34	EIC BRUKER-CERN SCALED, 7%DEGRA	$[\Delta]$
	1 STR01	1.065	1.6	70	1.9	10	1433.3	500.34	MB INNER	
	2 STR02	0.825	1.9	80	1.9	9	1953	550.03	MB OUTER, MQ	

	No	Name	height	width_i	width_o	ns	transp.	degrd	Comment	Ë
╧╲	1	EIC3642	19.4	1.773	2.027	36	115	3	EIC 36 STRAND @4.2K	Z
	1	EIC3618	19.4	1.773	2.027	36	115	3	EIC 36 STRAND @1.8K	
	2	EICLHC01	15.1	1.786	2.014	28	115	5	LHC CABLE KEYSTOR FOR EIC 4.2K	
	2	CABLE01	15.1	1.736	2.064	28	115	5	MB INNER LAYER, STR01	
Ì	3	CABLE02	15.1	1.362	1.598	36	100	5	MB OUTER LAYER, STR01	
ľ	А	CARLEO/	9.9	0.78	n o1	36	66	5	אחא בייפחב	

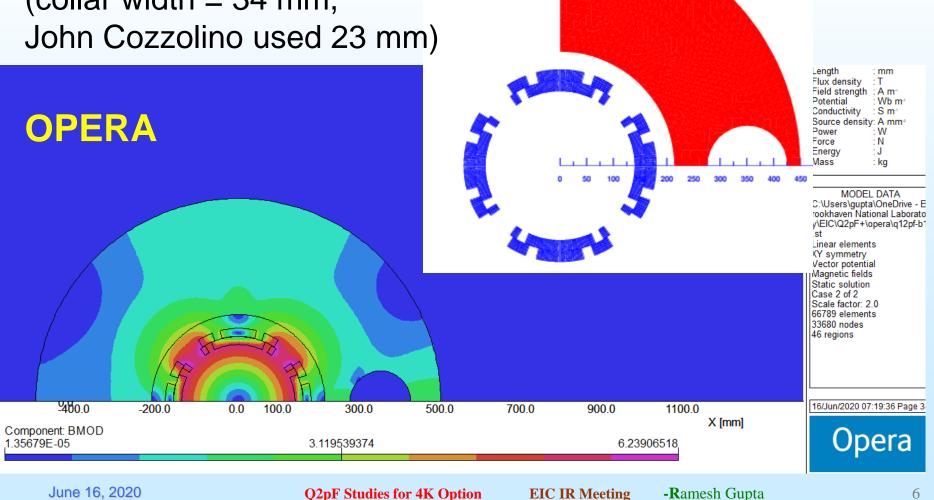
Cable Definition

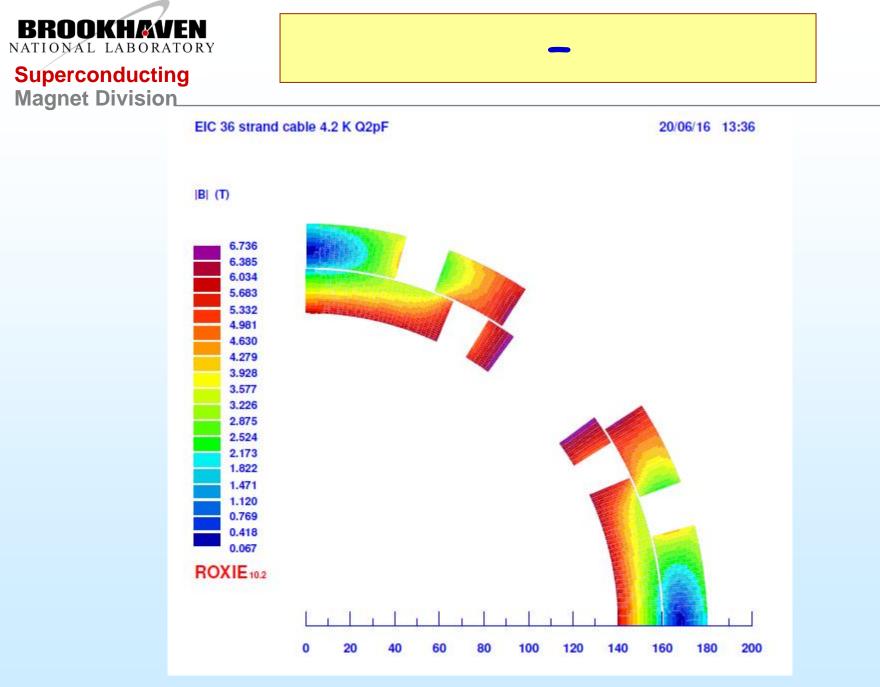

No	Name	Cable Geom.	Strand	Filament	Insul	Trans	Quench Mat.	T0	Comment	Ē
1	LHCIN42K	EICLHC01	STREIC1	NBTII	ALLPOLYIL	TRANS1	NONE	4.2	LHC INNER FOR EIC @4.2K	
1	YELLONIN	CABLE01	STR01	NBTII	ALLPOLYIL	TRANS1	NONE	1.9	V6-1 DESIGN DIPOLE INNER	
2	YELLONOU	CABLE02	STR02	NBTIO	ALLPOLYOL	TRANS1	NONE	1.9	V6-1 DESIGN DIPOLE OUTER	
	*****		01	100.017	· · · · · · · · · · · · · · · · · · ·			1.0		1
37	20mmcable	20mmcable	STR01	NBTII	ALLPOLYIL	NONE	NONE	4.2	20mm cable eRHIC	L
38	20mmcab18	20mmcable	STR01	NBTII	ALLPOLYIL	NONE	NONE	1.8	20mm cable eRHIC at 1.8K	
39	20mmcbnok	20mmcbnok	STR01	NBTII	INSHQ_2	NONE	NONE	4.2	20mm cable eRHIC	L
40	20mmcab2	20mmcab2	STR01	NBTII	INSHQ_2	NONE	NONE	4.2	20mm cable-2	
41	EIC3618	EIC3618	STREIC1	NBTII	ALLPOLYIL	NONE	NONE	1.8	EIC CABLE 36 STRAND, 1.8K	
42	EIC3642	EIC3642	STREI01	NBTII	ALLPOLYIL	NONE	NONE	4.2	EIC CABLE 36 STRAND, 1.8K	
										s.

Cable used in calculation: Strand dia =1.065 mm, Cu/Sc =1.6, width 19.4 mm (bare) with 36 strands

Coil - 2 Layers, 73 turns/pole (36-strand cable, 2 wedges)

Design gradient 41 T/m @ I = ~9kA (earlier single layer design required ~20 kA@1.8K)


Using 2 varieties of cables may give a little higher margin. But may not be worth it for just one magnet.


Iron - Initial Design

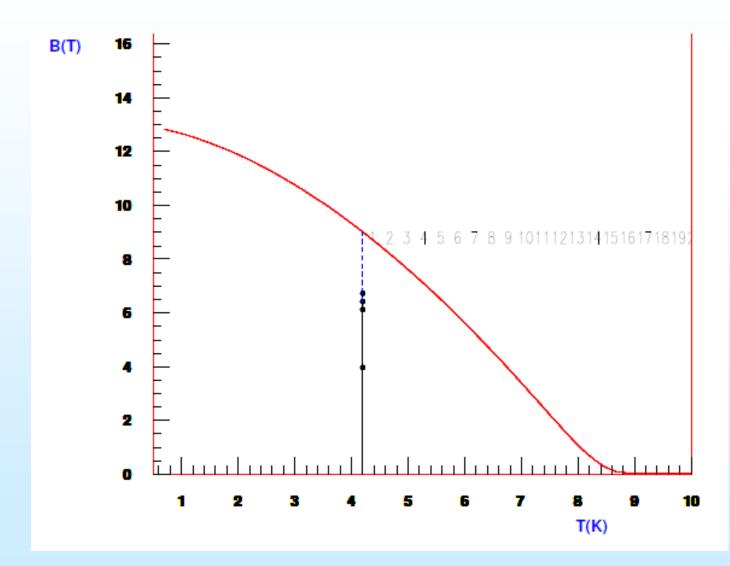
Superconducting **Magnet Division**

> Yoke: ir = 0.214; or = 0.45; Hole: xh = 0.351; rh = 0.075; (collar width = 34 mm,

ROXIE

June 16, 2020

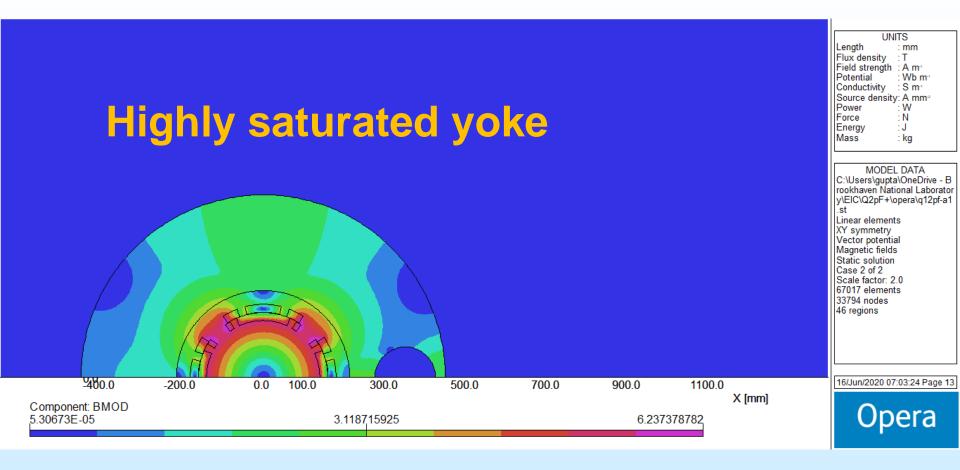
Q2pF Studies for 4K Option


EIC IR Meeting -Ramesh Gupta

Q2pF Studies for 4K Option

Temperature Margin Over Different Blocks

Q2pF Studies for 4K Option

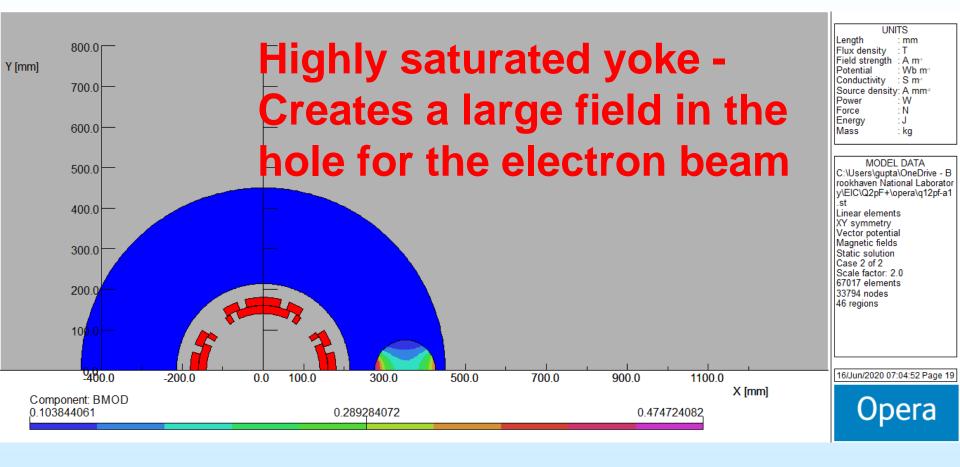

Field Quality (10-4) Can be optimized more

HARMONIC ANALYSIS NUMBER 1 MAIN HARMONIC 2 REFERENCE RADIUS (mm) 83.0000 X-POSITION OF THE HARMONIC COIL (mm) 0.0000 Y-POSITION OF THE HARMONIC COIL (mm) 0.0000 MEASUREMENT TYPE 0.0000 REROR OF HARMONIC ANALYSIS OF Br 0.2495E-03 SUM (Br(p) - SUM (An cos(np) + Bn sin(np))								
MAIN FIELD (г)				3.437028			
MAGNET STREN	GTH (T/(m^(r	n-1))			41.4100			
NORMAL RELAT	IVE MULTIPO	LES (1.D-4):						
b 1: 0.0	90000 b 2:	10000.00000	b 3:	0.00000				
b 4: -0.8	87800 b 5:	-0.00000	b 6:	0.25498				
b 7: -0.0	90000 b 8:	-0.00616	b 9:	0.00000				
b10: 0.0	90008 b11:	-0.00000	b12:	0.00082				
b13: -0.0	90000 b14:	-0.23677	b15:	0.00000				
b16: 0.0	90003 b17:	-0.00000	b18:	0.00087				
b19: 0.0	90000 b20:	-0.00000	b					

Q2pF Studies for 4K Option

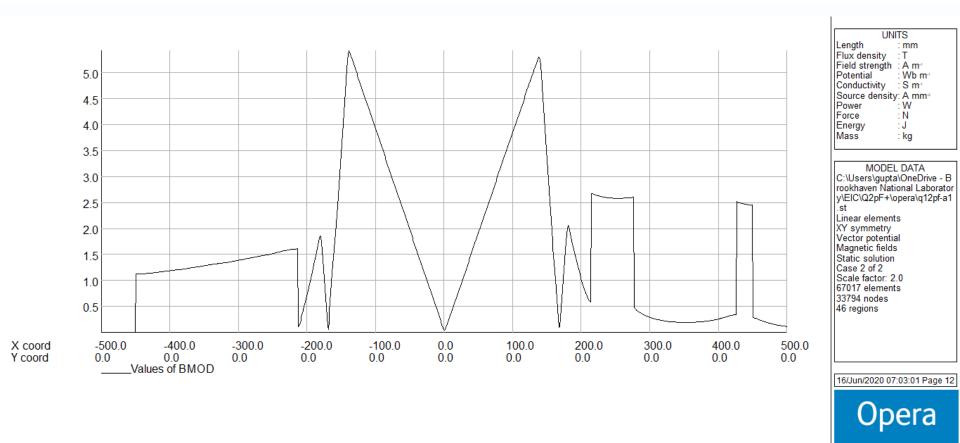
Field in the electron beam region Yoke outer radius = 450 mm

June 16, 2020

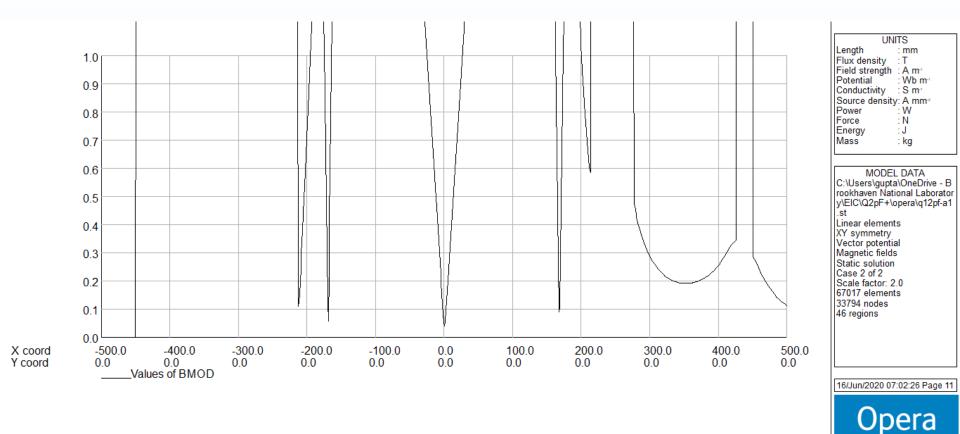

Q2pF Studies for 4K Option

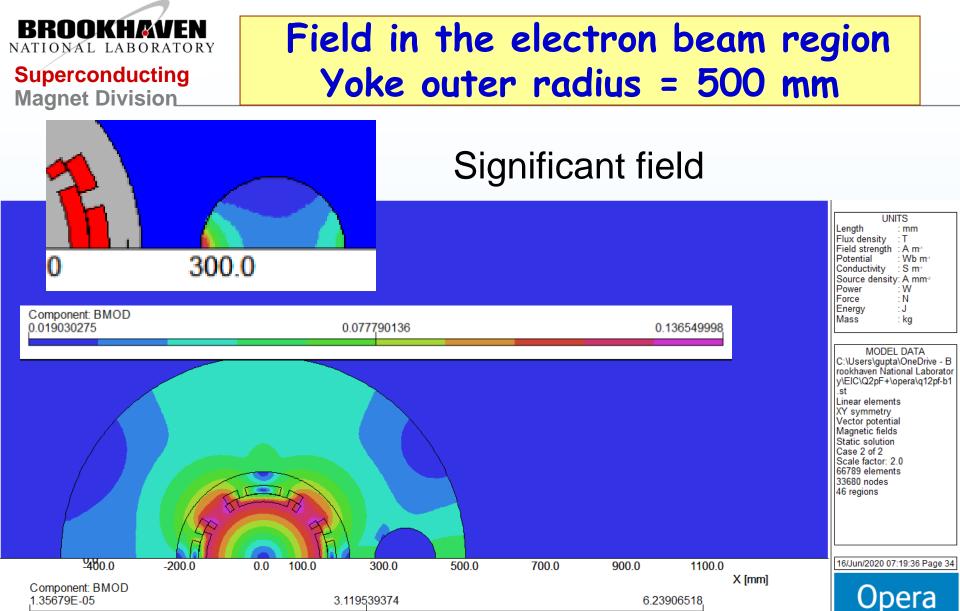
EIC IR Meeting

-Ramesh Gupta



Field in the electron beam region Yoke outer radius = 450 mm




Field in the electron beam region Yoke outer radius = 450 mm

Field in the electron beam region Yoke outer radius = 450 mm

June 16, 2020

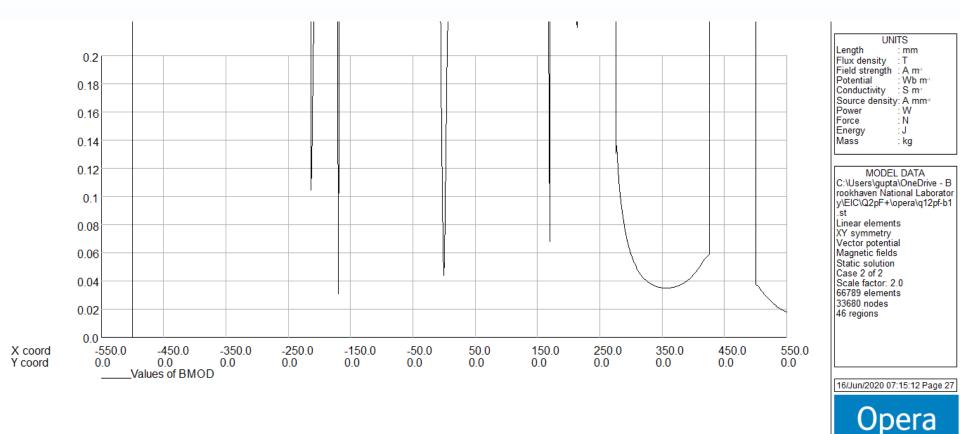
1.35679E-05

O2pF Studies for 4K Option

3.119539374

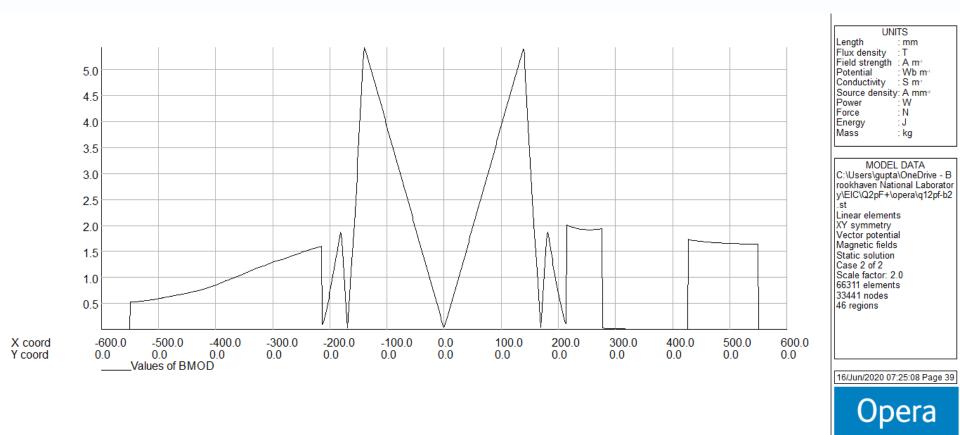
6.23906518

Extra layer reduced the space for the flux return and increased the field the electron beam region.

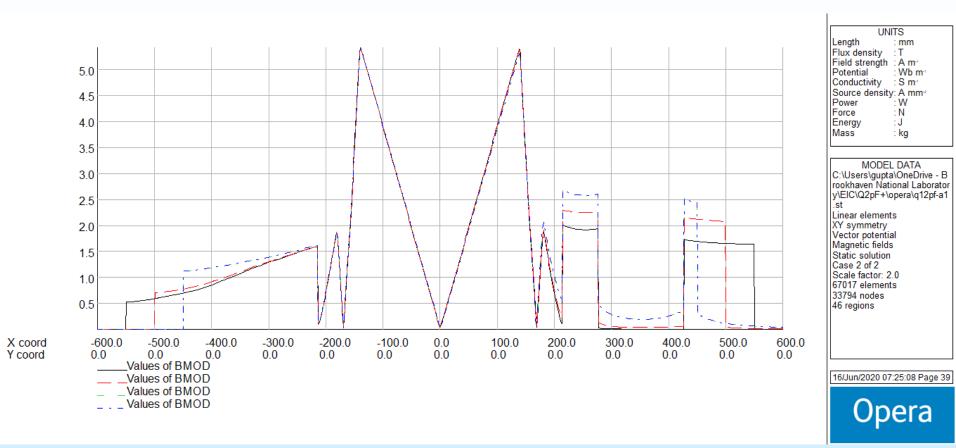

Field in the electron beam region can be reduced by increasing the yoke size

Q2pF Studies for 4K Option

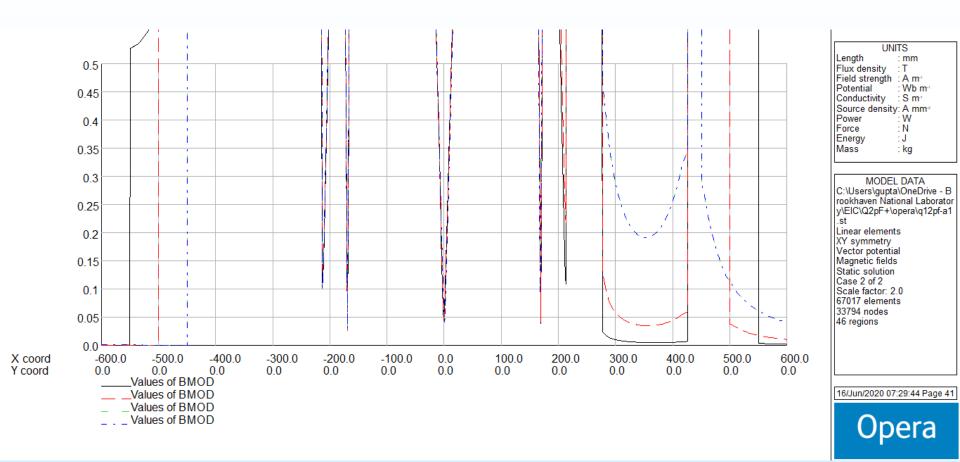
-Ramesh Gupta



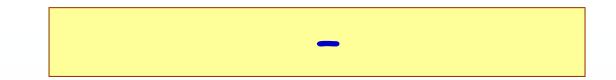
Field in the electron beam region Yoke outer radius = 500 mm

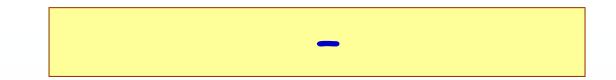


Field in the electron beam region Yoke outer radius = 550 mm



Comparison of yoke od




Comparison of yoke od

