

U.S. MAGNET DEVELOPMENT PROGRAM

ReBCO – BNL Status Report Ramesh Gupta

USMDP General Meeting July 6, 2022

ReBCO – BNL Status Report -Ramesh Gupta

USMDP General Meeting, July 6, 2022

Office of

- 1. CORC coil quench studies (MDP) Coil wound and tested at 77 K at ACT, to arrive at BNL soon for testing with the 10 T Nb₃Sn common coil dipole
- CORC coil 13-14 T HTS/LTS hybrid dipole (STTR) Coils to be wound soon and tested at 77 K; once delivered in support structure will try to meet extended (2+2) 8/22 deadline
- PSI Nb₃Sn coil and BNL HTS coil for HTS/LTS hybrid test at high field (hopefully >12.3 T)
 Both coils wound and are at BNL in their respective support structure
- 4. VIPER cable in U-shape (arpa-e fusion) Cable available, working on the details
- 5. Magnum-NX coil test with SMS (fusion) Waiting for the coil to be wound
- 6. CORC cable-in-conduit test with General Atomics (fusion) Test article ready at GA, waiting for administrative/legal work to be completed
- 7. HTS coils with ceramic insulation (US-Japan) likely in FY 2023

Significant investment from BNL for higher current (20 kA with power supply, and 50 kA with SC transformer) and higher temperature testing (20K, 4-40K)

Two Related R&D programs. Magnet Design Program (MDP) and Small Business Technology Transfer (STTR)

- MDP: "In-field quench studies of a long CORC cable" in the background field of common coil dipole via one 8-turn HTS coil (S-turn in to flip the polarity)
- STTR: "Demonstration of a high field HTS/LTS hybrid dipole" with two sets of double pancake coils made with 6+8 turns (total 28 turns) of CORC cable

Office of Science MDP: Quench studies & technology demo (10.7 T with 10 T from LTS)

STTR: High field Demo (13-14 T with 10 T from LTS)

A Few Coil Structure Parts Shown Below CONTROBINED PROGRAM (all parts for MDP coil test obtained)

ReBCO – BNL Status Report -Ramesh Gupta

nesh Gupta

Click to edit Master title style

ACT proposed an alternate design and requested to wind the MDP coil as a practice winding for the STTR CORC coil

ReBCO – BNL Status Report

-Ramesh Gupta

New Design from ACT

All pics: Courtesy ACT

ReBCO – BNL Status Report

-Ramesh Gupta

MDP CORC COIL INSERT in DCC017

ReBCO – BNL Status Report -Ra

-Ramesh Gupta

Pre-test in Liquid Nitrogen at ACT

Will request ACT to make full presentation in our subgroup meeting

V(I) at 76 K

Office of

Science

2021ERG

ReBCO – BNL Status Report -Ramesh Gupta

Click to edit Master title style

HTS/LTS Hybrid Dipole STTR with CORC coil

ReBCO – BNL Status Report -Ramesh Gupta

nesh Gupta US

Recap: CORC Coils with the Common Coil Dipole

STTR Coils two sets: Each with 6 and 8 turns

STTR: High field Demo (13-14 T with 10 T from LTS)

MDP: Quench studies and technology demo (10.7 T with 10 T from LTS)

CORC[®] coils will run in series with the Nb₃Sn coils

Office of Science

ReBCO – BNL Status Report

-Ramesh Gupta

MDP Coil

4+4 turns

10

with an S-turn

Finite element analysis performed for the CORC coil in a structure @10 kA inside BNL common coil dipole @10 T

-Ramesh Gupta

11

Early Design Work at BNL

Conductor fully supported

But cable was difficult to put in place

Office of Science

U.S. DEPARTMENT OF

Work Performed at ACT

4 Plate Coil

- Outer plates have 8 turns
- Inner plates have 6 turns
- Coils centered at ± 118mm
- The left-hand and righthand coils are mirrors of each other

Status of STTR

e-mail from Danko (this morning):

- 1. Zack, who made the model of the STTR coil is on vacation this week, but I'll have someone else prepare a STEP file of the STTR coil.
- 2. The current connectors are the same as four the MDP coil. We've sent an overview last week, which is attached. The only difference between the STTR and MDP coils is that the lead position may have shifted by no more than an inch. The STEP file should clarify this. I assume that the lead connectors will interface with flexible Rutherford cables so this should be no problem and the current lead interface blocks could be machined.
- 3. The cable for the STTR coil will be finished this week, while all remaining parts for the coil should arrive next week. The STTR coil will be wound the week of July 18th, tested in liquid nitrogen the week of July 25th, and shipped top BNL before the end of that week. Assuming shipping freight takes one week, **the coil should arrive at BNL before August 5th**. There is a likelihood that we might speed things up and deliver sooner, but I'll keep you updated.

- Discussion on the detail instrumentation
- Discussion on the detail test plan

Both will be formalized soon.

ReBCO – BNL Status Report -Ramesh Gupta

Click to edit Master title style

PSI Nb₃Sn coil Test and HTS/LTS High Field Hybrid Dipole Test

ReBCO – BNL Status Report -Ramesh Gupta

USMDP General Meeting, July 6, 2022

16

MDP BigBoX Test Nb₃Sn Coil Test with PSI

Science

- Coil in support structure received
- Suggest a separate presentation from PSI
- As such one aperture is available, use this
- Taking advantage and testing an HTS coil

ReBCO – BNL Status Report

-Ramesh Gupta

USMDP General Meeting, July 6, 2022 17

Room for Improvement in Previous MDP Test of 12.3 T HTS/LTS Dipole

New MDP HTS Coil in a Support Structure

Question: Can a higher hybrid field be reached with some intermediate structure on HTS coil (stress management)?

- A simple, low-cost, versatile structure made
- Recently wound coil with leftover conductor tested at 77 K in the structure

ReBCO – BNL Status Report -Rame

-Ramesh Gupta

....

We need high current cables with many wires/tapes- for accelerator magnets

- □ Insert coil made with high current STAR cable (request to MDP made)
 - This is high current cable different from the cable limited by bend radius restriction
- □ Insert coil made with VIPER cable (in discussion with CFS)
- □ Insert coil made with Magnum (Alex Otto) Cable

Conductor friendly designs offer many benefits, such as they allow wide range of cables to their potential

BNL Milestones

Table 5. Milestones for the REBCO effort within the HTS area of the MDP.

	Milestone #	Description	Target
	Magnet technology development		
ACT/BNL	Allb-M1	Demonstrate first COMB (Conductor on Molded Barrel) technology	May 2021
STTR	Allb-M2	Test of CORC [®] subscale common coil in 10 T background field	June 2021
	Allb-M3	CORC [®] CCT to reach 5 T dipole field	December 2021
	Allb-M4	Complete COMB insert test	May 2022
	Allb-M5	Complete design study of a 8 T REBCO dipole magnet	December 2021
	Allb-M6	Generate 1 T with REBCO insert in a background field of 8 T from Nb₃Sn CCT5	June 2022
	Allb-M7	COMB performance demonstration	March 2023
	Allb-M8	REBCO magnet generate a 8 T dipole field stand-alone	March 2023
	Conductor characterization		
BNL/LBL	Allb-M9	CORC® wire quench study at BNL 10 T common coil magnet	December 2020
····=· /	Allb-M10	Impact of Lorentz load on CORC [®] wires using ASC 14 T solenoid	June 2021
	Key assumptions: infrastructure availability		
	Allb-M11	Commission Nb₃Sn CCT5 test platform	June 2021
	Allb-M12	Hybrid test platform with outsert magnet available at FNAL	June 2021
	Allb-M13	120 mm aperture 10 – 12 T Nb₃Sn magnet	June 2022

08/22

Completion date depends on the delivery of the coils (if STTR coil doesn't arrive in time, then MDP coil can be tested sooner)

Acknowledgement

This presentation benefited from the discussions with and direct contributions from the following colleagues:

ACT: Danko van der Laan, Jeremy Weiss, Zachary Johnson BNL: Anis Ben Yahia, Michael Anerella, Jesse Schmalzle, Piyush Joshi, Mithlesh Kumar,...

- FNAL: Vadim Kashikhin, Vito Lomardo
- LBNL: Xiaorong Wang, Maxim Martchevsky, Reed Teyber,...

... and more

Summary

- HTS/LTS program at BNL is primarily based on a Common coil dipole with a large opening which provides a rapid-turn-around and low-cost R&D option for developing and testing technologies and instrumentation and for addressing specific questions - one at a time.
- This is alternate and complimentary to developing and demonstrating technology by building magnets which takes much longer time and uses much larger budget.
- Several tests with several collaborators (domestic and international; research institutions and industries) are planned within MDP and with others (SBIR, fusion, international, etc.) to develop and tests various aspects of designs and technologies at ~10 T or above.
- Specific questions to be addressed: HTS/LTS hybrid magnets, quench, magnetization, high current HTS cables, joints, high ramp rates, insulation, instrumentation, etc..
- > More synergistic programs are invited. Please evaluate and see what and how to do it.

