

U.S. MAGNET DEVELOPMENT PROGRAM

## 20 T HTS/LTS Hybrid Common Coil Design

## **Ramesh Gupta**

# September 7, 2021



20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL





A reasonably evolved HTS/LTS Hybrid Common Coil Design

- Optimized for a good field quality
- Provides desired margin for both CORC and Bi2212 cable
- Same initial magnetic design is used for both CORC and Bi2212
- New design for including space for structure in CORC option
  - To be verified by the actual mechanical analysis
  - $\circ~$  Common coil design allows higher  $J_e\, or\, J_o\, CORC$



20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



## 50 mm, 20 T Common Coil Hybrid Design





20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



## Field Quality in 20 T Common Coil Hybrid Design

| HARMONIC ANALYSIS NUMBER1MAIN HARMONIC1REFERENCE RADIUS (mm)15.0000X-POSITION OF THE HARMONIC COIL (mm)0.0000X DOSITION OF THE HARMONIC COIL (mm)169.0000 |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| MEASUREMENT TYPE                                                                                                                                          | All harmonics <10 <sup>-4</sup> |
| MAIN FIELD (T)       20.097535         MAGNET STRENGTH (T/(m^(n-1)))       20.0975                                                                        | * Mostly 10 <sup>-5</sup> *     |

| NORMA | L RELATIVE MUI | LTIPOLES | (1.D-4): |      |          | SKEW | RELATIVE MULT | IPOLES | (1.D-4): |      |          |
|-------|----------------|----------|----------|------|----------|------|---------------|--------|----------|------|----------|
| b 1:  | 10000.00000    | b 2:     | 0.00000  | b 3: | 0.00886  | a 1: | 0.00000       | a 2:   | 0.01125  | a 3: | 0.00000  |
| b 4:  | 0.00000        | b 5:     | 0.00866  | b 6: | -0.00000 | a 4: | 0.02070       | a 5:   | -0.00000 | a 6: | 0.09133  |
| b 7:  | -0.12569       | b 8:     | 0.00000  | b 9: | -0.14757 | a 7: | 0.00000       | a 8:   | -0.18568 | a 9: | -0.00000 |
| b10:  | 0.00000        | b11:     | -0.25870 | b12: | -0.00000 | a10: | -0.32507      | a11:   | -0.00000 | a12: | -0.10123 |
| b13:  | -0.09200       | b14:     | 0.00000  | b15: | 0.01722  | a13: | 0.00000       | a14:   | 0.02355  | a15: | -0.00000 |
| b16:  | 0.00000        | b17:     | 0.00085  | b18: | -0.00000 | a16: | -0.00354      | a17:   | -0.00000 | a18: | -0.00405 |



20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

## 50 mm, 20 T Common Coil Hybrid Design





**U.S. MAGNET** 

PROGRAM

DEVELOPMENT

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



#### > Enough margin at 4.2 K as well (plots for Jo)



**ENERGY** Office of Science

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



#### > Enough margin at 4.2 K as well (plots for Jo)



U.S. DEPARTMENT OF ENERGY Office of Science

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



# Conductor Used (1)

#### HTS (Bi2212 or CORC)

| NUMBER OF BLOCK                               | 1           |
|-----------------------------------------------|-------------|
| NUMBER OF CONDUCTORS                          | 2           |
| NORDER OF CONDUCTORS                          | 014 4000    |
| POSITIONING ANGLE (DEG)                       | 214.4000    |
| INCLINATION ANGLE (DEG)                       | -90.0000    |
| CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)    | -12500.0000 |
| INNER RADIUS OF THE BLOCK (MM)                | 18.1636     |
| CABLE HEIGHT (MM).(INSULATED)                 | 20.2594     |
| CABLE INNER WIDTH (MM). (INSULATED)           | 1.8962      |
| CABLE OUTER WIDTH (MM). (INSULATED)           | 1.8962      |
| CABLE HEIGHT (MM). (BARE)                     | 19.9600     |
| CABLE INNER WIDTH (MM). (BARE)                | 1.5968      |
| CABLE OUTER WIDTH (MM). (BARE)                | 1.5968      |
| RADIAL INSULATION THICKNESS (MM)              | 0.1497      |
| AZIMUTHAL INSULATION THICKNESS (MM)           | 0.1497      |
| NUMBER OF STRANDS                             | 50          |
| DIAMETER OF STRANDS (MM)                      | 0.8000      |
| CU/SC RATIO                                   | 3.0000      |
| RESIDUAL RESISTIVITY RATIO                    | 100.0000    |
| TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K) | 1.9000      |
| LINEAR APPROXIMATION JC(20.0 T) (A/MM**2)     | 2944.000    |
| LINEAR APPROXIMATION DJC/DB (A/MM**2 T)       | 64.000      |
| CABLING ANGLE (DEG)                           | 1.373       |
| NUMBER OF DISCRETISATION POINTS AZIMUTHAL     | 2           |
| NUMBER OF DISCRETISATION POINTS RADIAL        | 10          |
| CONDUCTOR NAME                                | MDPB2212    |

#### Nb<sub>3</sub>Sn

| NUMBER OF BLOCK                               | 5           |
|-----------------------------------------------|-------------|
| NUMBER OF CONDUCTORS                          | 28          |
| POSITIONING ANGLE (DEG)                       | 110.0000    |
| INCLINATION ANGLE (DEG)                       | 0.0000      |
| CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)    | -16500.0000 |
| INNER RADIUS OF THE BLOCK (MM)                | 48.9020     |
| CABLE HEIGHT (MM).(INSULATED)                 | 21.5867     |
| CABLE INNER WIDTH (MM).(INSULATED)            | 1.8962      |
| CABLE OUTER WIDTH (MM).(INSULATED)            | 1.8962      |
| CABLE HEIGHT (MM).(BARE)                      | 21.2873     |
| CABLE INNER WIDTH (MM).(BARE)                 | 1.5968      |
| CABLE OUTER WIDTH (MM).(BARE)                 | 1.5968      |
| RADIAL INSULATION THICKNESS (MM)              | 0.1497      |
| AZIMUTHAL INSULATION THICKNESS (MM)           | 0.1497      |
| NUMBER OF STRANDS                             | 55          |
| DIAMETER OF STRANDS (MM)                      | 0.8000      |
| CU/SC RATIO                                   | 1.0000      |
| RESIDUAL RESISTIVITY RATIO                    | 100.0000    |
| TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K) | 1.9000      |
| LINEAR APPROXIMATION JC(16.0 T) (A/MM**2)     | 1928.000    |
| LINEAR APPROXIMATION DJC/DB (A/MM**2 T)       | 371.000     |
| CABLING ANGLE (DEG)                           | 1.361       |
| NUMBER OF DISCRETISATION POINTS AZIMUTHAL     | 2           |
| NUMBER OF DISCRETISATION POINTS RADIAL        | 10          |
| CONDUCTOR NAME                                | MDPH1       |



20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



# Conductor Used (2)

#### Edit Cable Data [/home/gupta/MDP/aug2021/roxie\_mdp-aug-2021-cc.cadata]

| Fil | e I  | )isplay    |             |           |          |       |       |             |     |                      |
|-----|------|------------|-------------|-----------|----------|-------|-------|-------------|-----|----------------------|
| (†) | Cabl | e Definiti | ion         |           |          |       |       |             |     |                      |
|     | No   | Name       | Cable Geom. | Strand    | Filament | Insul | Trans | Quench Mat. | T_o | Comment              |
|     | 41   | MDPW1      | MDPW1       | MDPWJC    | NB3SN    | MDPW1 | NONE  | NONE        | 1,9 | MDP                  |
|     | 42   | MDPW2      | MDPW2       | MDPWJC    | NB3SN    | MDPW1 | NONE  | NONE        | 1,9 | MDP                  |
|     | 43   | MDPH1      | MDPW1       | MDPHJC    | ECC2     | MDPW1 | NONE  | NONE        | 1,9 | MDP                  |
|     | 44   | MDPH2      | MDPW2       | MDPHJC    | ECC2     | MDPW1 | NONE  | NONE        | 1.9 | MDP                  |
|     | 45   | MDPB2212   | MDPB2212    | MDPW2212  | NB3SN    | MDPW1 | NONE  | NONE        | 1,9 | MDP                  |
|     | 46   | MDPCCCORC  | MDPCCCORC   | MDPCCCORC | NB3SN    | MDPW1 | NONE  | NONE        | 1,9 | MDP Common Coil CORC |
|     |      |            |             |           |          |       |       |             |     |                      |

|                           | Edit Cable Data [/home/gupta/MDP/aug2021/roxie_mdp-aug-2021-cc.cadata] |
|---------------------------|------------------------------------------------------------------------|
| File Display              |                                                                        |
| 🗊 Transient               |                                                                        |
| 耳 Quench Material Propert | ies                                                                    |

🖪 Cable Geometry

| No | Name      | height | width_i | width_o | ns | transp. | degrd | Comment              |
|----|-----------|--------|---------|---------|----|---------|-------|----------------------|
| 42 | MDPW1     | 21,33  | 1.6     | 1.6     | 55 | 100     | 0     | MDP NB3SN            |
| 43 | MDPW2     | 13.3   | 1.6     | 1.6     | 37 | 100     | 0     | IMDP NB3SN           |
| 44 | MDPB2212  | 20     | 1.6     | 1.6     | 50 | 100     | 0     | MDP Bi2212           |
| 45 | MDPCCCORC | 20     | 1.6     | 1.6     | 50 | 100     | 0     | MDP Common Coil CORC |

| File       | e Display |  |  |
|------------|-----------|--|--|
| 1.0        |           |  |  |
| <b>Ţ</b> F | Filament  |  |  |

🖪 Strand

| No | Name      | diam. | cu/sc | RRR | Tref | Bref | Jc@BrTr | dJc/dB |
|----|-----------|-------|-------|-----|------|------|---------|--------|
| 20 | MDPWJC    | 0.8   | 1     | 100 | 1,9  | 16   | 1928    | 371    |
| 21 | MDPHJC    | 0.8   | 1     | 100 | 1,9  | 16   | 1928    | 371    |
| 22 | MDP2JC    | 1.1   | 1     | 100 | 1.9  | 16   | 1928    | 371    |
| 23 | MDPW2212  | 0.8   | 3     | 100 | 1,9  | 20   | 2944    | 64     |
| 23 | MDPCCCORC | 0.8   | 3     | 100 | 1,9  | 20   | 2944    | 64     |

#### Edit Cable Data [/home/gupta/MDP/aug2021/roxie\_mdp-aug-2021-cc.cadata]

File Display

#### f Filament

| No | Name     | fildiao | fildiai | Jc-Fit | Comment               | Ē |  |
|----|----------|---------|---------|--------|-----------------------|---|--|
| 4  | NBTIO    | 6       | 0       | FIT1   | NBTI OUTER CABLES     | 7 |  |
| 5  | NB3SN    | 22      | 12      | FIT1   | NB2SN TWENTE          |   |  |
| 6  | NBTIS    | 5       | 0       | FIT1   | NBTI SIEMAT(ALSTOM)   |   |  |
| 7  | NBTIG    | 6       | 0       | GSIFIT | NBTI GSI001           |   |  |
| 8  | SIS3NBTI | 3.5     | 0       | SISFIT | NBTI SIS300           |   |  |
| 9  | NB3AL    | 50      | 0       | NBALK1 | Nb3Al tes             |   |  |
| 10 | NB3SNI   | 10      | 0       | FIT1   | ITER RF               |   |  |
| 11 | EUNB3SN  | 30      | 0       | EUFIT1 | EUROCIRCOIL NB3SN     |   |  |
| 12 | ECC2     | 50      | 0       | ECCB2  | NB3SN FCC 2300 A/mm^2 |   |  |
| _  |          |         |         |        |                       |   |  |

| Edit Cable Data [/home/gupta/MDP/aug2021/roxie_mdp-aug-2021-cc.cadata] - |      |             |         |       |        |         |       |      |     | Q   |     |                           |
|--------------------------------------------------------------------------|------|-------------|---------|-------|--------|---------|-------|------|-----|-----|-----|---------------------------|
| le Display                                                               | ł    |             |         |       |        |         |       |      |     |     |     | Hel                       |
| Insulation                                                               |      |             |         |       |        |         |       |      |     |     |     |                           |
| Jc-Fit                                                                   |      |             |         |       |        |         |       |      |     |     |     |                           |
| No Name                                                                  | Туре | Jcref       | Tc0     | alpha | beta   | gamma   | CO    | Bc20 | N/a | N/a | N/a | N/a Comment               |
| 1 FIT1                                                                   | 1 🔻  | 3E+09       | 9,2     | 0.57  | p.9    | 2,32    | 27.04 | 14.5 | 0   | 0   | 0   | 0 MB FILAMENT TYPE        |
| 2 TES1                                                                   | 1 🔻  | 3E+09       | 9.2     | 0.57  | 0,9    | 2,32    | 27.04 | 14.5 | 0   | 0   | 0   | 0 FILAMENT TEST TYPE alp  |
| 3 GSIFI                                                                  | 1 🔻  | 3E+09       | 9,2     | 0.7   | 1,57   | 1       | 25    | 14.5 | 0   | 0   | 0   | O APPROXIMATE THE WILSON  |
| 4 SISFI                                                                  | 1 🔻  | 3E+09       | 9,33517 | 0,68  | 0,8477 | 2,23234 | 25    | 14.5 | 0   | 0   | 0   | 0 Glyn MQYT5 FIT at 4.5K  |
| 5 NBALK1                                                                 | 15 💌 | 1.4E+10     | 36.2    | 17.8  | 0      | 0       | 0     | 0    | 0   | 0   | 0   | 0 Jc fit of Nb3Al K1 at 4 |
| 6 EUFIT1                                                                 | 5 🔻  | 4.75E+10    | 28,9    | 18    | 0      | 0       | 0     | 0    | 0   | 0   | 0   | 0 EUROCOIL NB3SN FIT1     |
| 7 ECCB2                                                                  | 11 🔻 | 2,67845E+11 | 29,38   | 16    | 0,96   | 1.52    | 0.5   | 2    | 0   | 0   | 0   | 0 1350 A/MM^2 AT 16 T 4.2 |

|   | Insulation |        |        |                 |
|---|------------|--------|--------|-----------------|
| 1 | No Name    | Radial | Azimut | Comment         |
| l | 24 MDPW1   | 0.15   | 0.15   | MDP insulation  |
|   | 25 EUINS   | 0,15   | 0,15   | EUROCIRCOIL INS |



#### 20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



# **CORC in Common Coil**

- STTR with ACT anticipated a future common coil CORC with an engineering current density of 600 A/mm<sup>2</sup>
- Checked with Danko still possible
- Overall Current density with structure:
  Area for 6 mm wire: pi\*6\*6/4 = 28.3 mm<sup>2</sup>
- Area for 6.5mm X 8mm rectangle = 52 mm<sup>2</sup>
- $J_o$  for Je = 600 A/mm2:

Office of Science

- $\Box$  J<sub>o</sub> =600\*28.3/52 = 326 A/mm<sup>2</sup>
- > Similar to Bi2212; but with a structure

Accumulated Lorentz forces can be managed in a structure



20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



Science

## Lorentz Forces at the Design Field (1)



20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



#### Fx / L (N/M)



Fy / L (N/M)

**Click to edit Master title style** 

U.S. DEPARTMENT OF ENERGY Science

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



**Click to edit Master title style** 

# Design with Space for Structure (example CORC Coils)



20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

### **Designs Allowing Space for Stress Management**





**U.S. MAGNI** 

DEVELOPMI PROGRAM

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



## Lorentz Forces at the Quench Field (1)

MDP 22T Hybrid CORC/Bi2212 + Nb3Sn Common Coil Dipole

Emag. force / L (N/m)



20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



Fx / L (N/M)

## Lorentz Forces at the Quench Field (2)

MDP 22T Hybrid CORC/Bi2212 + Nb3Sn Common Coil Dipole

MDP 22T Hybrid CORC/Bi2212 + Nb3Sn Common Coil Dipole



#### Fy / L (N/M)



U.S. DEPARTMENT OF Office of Science

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



### >8% margin at 4.2 K, 18% at 1.8 K (plots for Jo), limited b y LTS



U.S. DEPARTMENT OF Office of Science

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



U.S. DEPARTMENT OF

Office of Science

#### >8% margin at 4.2 K, 18% at 1.8 K (plots for Jo), limited b y LTS



-Ramesh Gupta, BNL

#### U.S. MAGNET DEVELOPMENT New Design for CORC/Nb<sub>3</sub>Sn Common Coil PROGRAM

MAIN FIELD (T)

ALCOPT!

... 20.046534

| MODEL             | map_aug- | 2021-00-00 | C-JUS |                              |                                   |                               |                         |           |             |    |                   |               |                                 |                           |            |
|-------------------|----------|------------|-------|------------------------------|-----------------------------------|-------------------------------|-------------------------|-----------|-------------|----|-------------------|---------------|---------------------------------|---------------------------|------------|
| MDPCCCORC         | Bi2212   | CORC STTR  | mdp_a | ug-2021-CC-CORC-j0s.output 🛛 | mdp_aug-2021-CC-CORC-j0s.output 🔀 |                               |                         |           |             |    |                   |               |                                 |                           |            |
| Ins w             |          | 7.5        | 70    | NUMBER OF BLOCK .            |                                   |                               |                         |           | 1:47        |    |                   |               |                                 |                           | 1944 P     |
| Ins h             |          | 7.5        | 71    | NUMBER OF CONDUCT            | ORS                               | • • • • • • • • • • • • •     |                         |           | 2 48        | NU | MBER OF BLOCK .   |               | • • • • • • • • • • • • •       |                           | . 17       |
| Ins Area          |          | 56.250     | 73    | INCLINATION ANGLE            | (DEG)<br>(DEG)                    |                               |                         |           | 0.0000 50   | PC | DABER OF CONDUCT  | (DEG)         |                                 | · · · · · · · · · · · · · | . 110.0000 |
| Current           |          | 17500      | 74    | CURRENT IN EACH C            | CONDUCTOR C                       | OF THE BLOCK                  | K (A)                   | 1'        | 500.0000 51 | IN | NCLINATION ANGLE  | (DEG)         |                                 |                           | . 0.0000   |
| 10 ( 1 / 100 0 2) | -        | 211.1      | 75    | INNER RADIUS OF T            | THE BLOCK                         | (MM)                          |                         |           | 4.8000 52   | Ct | JRRENT IN EACH CO | ONDUCTOR OF T | HE BLOCK (A)                    | )                         | 17500.0000 |
| Jo (A/mm^2)       | -        | 511.1      | 76    | CABLE HEIGHT (MM)            | . (INSULATE                       | SD)                           |                         |           | 7.5000 53   | IN | NNER RADIUS OF TH | HE BLOCK (MM) |                                 |                           | . 55.0000  |
| Bpeak (T)         |          | 20.96      | 77    | CABLE INNER WIDTH            | I (MM).(INS                       | SULATED)                      |                         |           | 7.5000 54   | CZ | ABLE HEIGHT (MM)  | . (INSULATED) |                                 |                           | . 21.6300  |
|                   |          |            | 78    | CABLE OUTER WIDTH            | I (MM).(INS                       | SULATED)                      |                         |           | 7.5000 55   | CI | ABLE INNER WIDTH  | (MM). (INSULA | red)                            |                           | 1.9000     |
|                   |          | -          | _79   | CABLE HEIGHT (MM)            | .(BARE)                           | · · · · · · · · · · · · · · · |                         |           | 6.5000 56   | CI | ABLE OUTER WIDTH  | (MM). (INSULA | red)                            |                           | . 1.9000   |
| MDPH1             | Nb3Sn    |            | 8.0   | CABLE INNER WIDTH            | (MM). (BAF                        | RE)                           | • • • • • • • • • • • • |           | 6.5000 57   | CI | ABLE HEIGHT (MM)  | .(BARE)       | <mark>.</mark>                  |                           | . 21.3300  |
| Ins w             | 1.9      | )          | 81    | CABLE OUTER WIDTH            | (MM). (BAF                        | RE)                           | • • • • • • • • • • • • |           | 6.5000 58   | CI | ABLE INNER WIDTH  | (MM). (BARE)  | • • • • • • • • • • • • •       | • • • • • • • • • •       | . 1.6000   |
|                   | 21.02    |            | -82   | RADIAL INSULATION            | THICKNESS                         | 5 (MM)                        | • • • • • • • • • • • • |           | 0.5000 59   | CZ | ABLE OUTER WIDTH  | (MM). (BARE)  | · · · · · · · · · · · · · · ·   |                           | 1.6000     |
| ins n             | 21.65    |            | 83    | AZIMUTHAL INSULAT            | TION THICKN                       | NESS (MM)                     |                         |           | 0.5000 60   | RÆ | ADIAL INSULATION  | THICKNESS (M  | M)                              |                           | . 0.1500   |
| Ins Area          | 41.097   | 7          | 84    | NUMBER OF STRANDS            | (MM)                              | •••••••••••                   |                         |           | 5 61        | A2 | MARTINE INSULAT.  | ION THICKNESS | (MM)                            |                           | . 0.1500   |
| Current           | 17500    | )          | 86    | CU/SC RATIO                  | US (MM)                           |                               |                         | · · · · · | 3.0000 63   | DI | AMETER OF STRANDS | DS (MM)       | · · · · · · · · · · · · · · · · |                           | . 0.8000   |
| Jo (A/mm^2)       | 425.8    | 3          | 87    | RESIDUAL RESISTIV            | VITY RATIO.                       |                               |                         |           | 100.0000 64 | Ct | J/SC RATIO        |               |                                 |                           | . 1.0000   |
| D                 | 45.55    |            | 88    | TEMPERATURE AT WH            | IICH JC AND                       | DJC ARE G                     | IVEN (K)                |           | 1.9000 65   | RE | ESIDUAL RESISTIV  | ITY RATIO     | <mark>.</mark>                  |                           | . 100.0000 |
| вреак (1)         | 15.52    | 2          | 89    | LINEAR APPROXIMAT            | TION JC(20.                       | .0 T) (A/MM                   | **2)                    |           | 2944.000 66 | TE | EMPERATURE AT WH  | ICH JC AND DJ | C ARE GIVEN                     | (K)                       | . 1.9000   |
|                   |          |            | 90    | LINEAR APPROXIMAT            | ION DJC/DE                        | B (A/MM**2 5                  | T)                      |           | 64.000 67   | LI | INEAR APPROXIMAT  | ION JC(16.0 T | ) (A/MM**2).                    |                           | . 1928.000 |
|                   |          |            | 91    | CABLING ANGLE (DE            | G)                                |                               |                         |           | 0.994 68    | LI | INEAR APPROXIMAT  | ION DJC/DB (A | /MM**2 T)                       |                           | . 371.000  |
| 1.000 M           |          |            | 92    | NUMBER OF DISCRET            | ISATION PO                        | DINTS AZIMU                   | THAL                    |           | 2 69        | CZ | ABLING ANGLE (DE  | G)            |                                 |                           | . 1.361    |
| B0(T)             | 20.046   | 5          | 93    | NUMBER OF DISCRET            | ISATION PO                        | DINTS RADIAL                  | L                       |           | 10 70       | NU | JMBER OF DISCRET  | ISATION POINT | S AZIMUTHAL                     |                           | . 2        |
|                   |          |            | 94    | CONDUCTOR NAME               |                                   |                               |                         | N         | IDPCORC1 71 | NU | JMBER OF DISCRET  | ISATION POINT | S RADIAL                        |                           | . 10       |
|                   |          |            |       |                              |                                   |                               |                         |           | 72          | CC | ONDUCTOR NAME     |               |                                 |                           | . MDPH1    |
|                   |          |            |       | Xroxie [/home/gupta/MD       | P/Sep2021/m                       | ndo aug-2021                  | -CC-CORC-i0s            | datal     |             |    |                   |               |                                 |                           |            |



#### 20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



## Field Quality in 20 T CORC Common Coil Hybrid

| HARMONIC ANALYSIS NUMBER                   | 1     |
|--------------------------------------------|-------|
| MAIN HARMONIC                              | 1     |
| REFERENCE RADIUS (mm)                      | .0000 |
| X-POSITION OF THE HARMONIC COIL (mm)0      | .0000 |
| Y-POSITION OF THE HARMONIC COIL (mm) 169   | .0000 |
| MEASUREMENT TYPE ALL FIELD CONTRIBU        | TIONS |
| ERROR OF HARMONIC ANALYSIS OF Br           | 9E-03 |
| SUM (Br(p) - SUM (An cos(np) + Bn sin(np)) |       |

| MAIN FIELD (T)               | 20.046534 |
|------------------------------|-----------|
| MAGNET STRENGTH (T/(m^(n-1)) | 20.0465   |

| A | II harmonics<br><10 <sup>-4</sup> |
|---|-----------------------------------|
| * | Mostly 10 <sup>-5</sup> *         |

| NORMA | L RELATIVE MULT | TIPOLES | (1.D-4): |      |          |      | RELATIVE MULT | IPOLES | (1.D-4): |      |          |
|-------|-----------------|---------|----------|------|----------|------|---------------|--------|----------|------|----------|
| b 1:  | 10000.00000 }   | b 2:    | 0.00000  | b 3: | -0.00014 | a 1: | -0.00000      | a 2:   | 0.01028  | a 3: | 0.00000  |
| b 4:  | 0.00000 }       | b 5:    | -0.00361 | b 6: | -0.00000 | a 4: | 0.00234       | a 5:   | 0.00000  | a 6: | 0.02195  |
| b 7:  | -0.05091 }      | b 8:    | 0.00000  | b 9: | -0.45866 | a 7: | 0.00000       | a 8:   | 0.26544  | a 9: | -0.00000 |
| b10:  | 0.00000 }       | b11:    | -0.43506 | b12: | -0.00000 | a10: | 0.22283       | a11:   | 0.00000  | a12: | 0.01183  |
| b13:  | -0.00984 }      | b14:    | -0.00000 | b15: | 0.00047  | a13: | -0.00000      | a14:   | 0.00324  | a15: | -0.00000 |
| b16:  | 0.00000 }       | b17:    | -0.00743 | b18: | -0.00000 | a16: | 0.00720       | a17:   | 0.00000  | a18: | 0.00183  |
| b19:  | -0.00114        | b20:    | -0.00000 | b    |          | a19: | 0.00000       | a20:   | 0.00055  | a    |          |



#### 20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



## Key Benefits of the Common Coil Design for HTS/LTS High Field Hybrid Dipoles



 Natural segmentation between HTS and LTS (and different cables)
 Easier tuning between HTS & LTS
 Coil layers move as a module without causing strain at ends (BNL common coil had 200 μm)

Intermediate space for stress management structure. It can be easily adjusted, even at the late stage of the magnet construction

T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



#### **CORC Coil Programs with the Common Coil Dipole**



**ENERGY** Office of Science

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



# **CORC Coil Package (MDP)**

- Overall thickness 30.3 mm
- Outer plates 2 mm —
- Coil spacers 7 mm –
- Inner plates 5 mm –
- Gap between layers 2.3 mm

- Each layer held together with flat head screws
- Assembly held with shoulder screws to allow separation of layers.

U.S. DEPARTMENT OF ENERGY Science

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



## Coil & Structure Parts, as Designed





20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

# Parts, as Made or Delivered (all parts in hand now)





U.S. MAGNET DEVELOPMENT

PROGRAM

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL



Office of

# **Summary and Discussion**

#### **Observations on the HTS/LTS hybrid common coil design presented today:**

- The design provides the desired margin for both HTS and Nb<sub>3</sub>Sn, even at 4 K
- Same magnetic design is used for both CORC and Bi2212
  - > Common coil design allows higher  $J_e$  or higher  $J_o$  for CORC
- The design is reasonably well optimized for a good field quality
- We, however, should be able to optimize the conductor usage as LTS coils still have room. As such the common coil design is well suited for hybrid designs.
- Space for the managed structure is included and more/less can be adjusted, as needed
  - Next Step mechanical analysis and structure design
  - Expect that the magnetic and mechanical design to be iterated together
- Stress management should be relatively easier and effective in the common coil design
- All files (ROXIE, EXCEL, etc.) are available for sharing