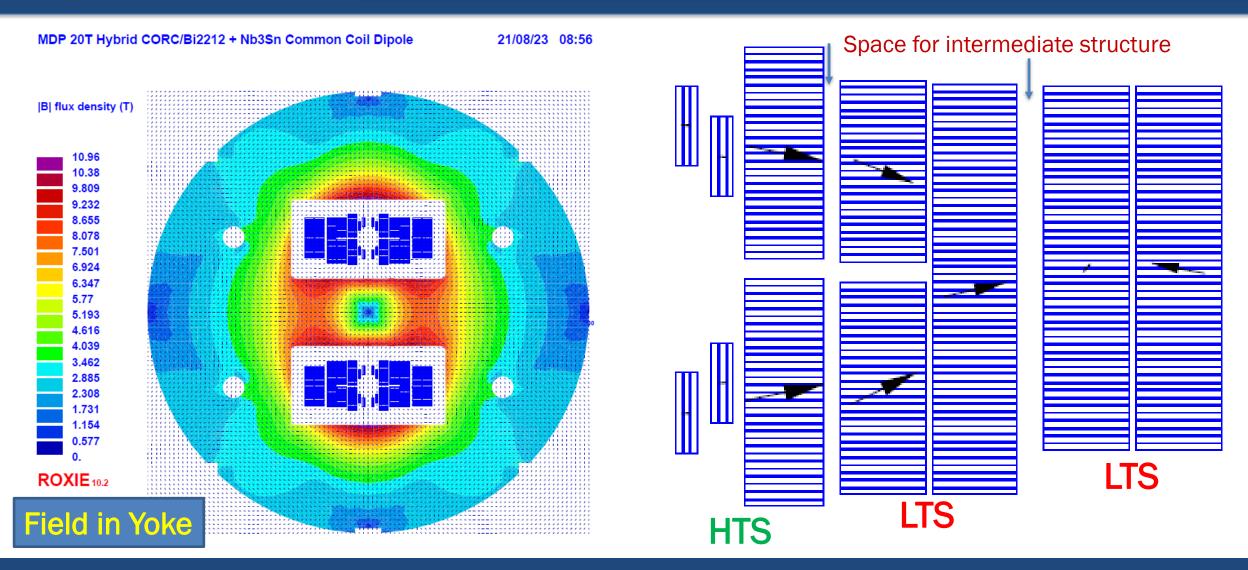


20 T HTS/LTS Hybrid Common Coil Design

Ramesh Gupta

August 24, 2021

Content


A reasonably evolved HTS/LTS Hybrid Common Coil Design

- Optimized for a good field quality
- Provides desired margin even at 4 K in both HTS and Nb₃Sn
- Space for managed structure included
 - To be verified by the actual mechanical analysis
 - A conceptual structure for CORC shown; other possibilities
- Common coil design allows higher J_e or J_o CORC
- Same magnetic design is used for both CORC and Bi2212

50 mm, 20 T Common Coil Hybrid Design

Field Quality in 20 T Common Coil Hybrid Design

0.00000

-0.00354

HARMONIC AN MAIN HARMON REFERENCE F X-POSITION Y-POSITION	IC ADIUS (r OF THE I	nm) HARMONIC (COIL	(mm)			15.0 0.0	0000		
MEASUREMENT ERROR OF HA	TYPE	ANALYSIS (of Br		ALL E	TIELD CONT	RIBUTI	ONS		rmonics :10 ⁻⁴
MAIN FIELD MAGNET STRE	NGTH (T	/ (m^ (n-1))				20.0	975		stly 10 ⁻⁵ *
b 4: 0.000 b 7: -0.125	00 b 2: 00 b 5: 59 b 8:	0.00000 0.00866	b 3: b 6: b 9:		a 1: a 4:	0.00000	a 2: a 5: a 8:	0.01 -0.00 -0.18	.125 a 3)000 a 6)568 a 9	

a13:

a16:

-0.09200 b14:

0.00000 b17:

0.00000

0.00085 b18:

b15:

b13:

b16:

a14:

a17:

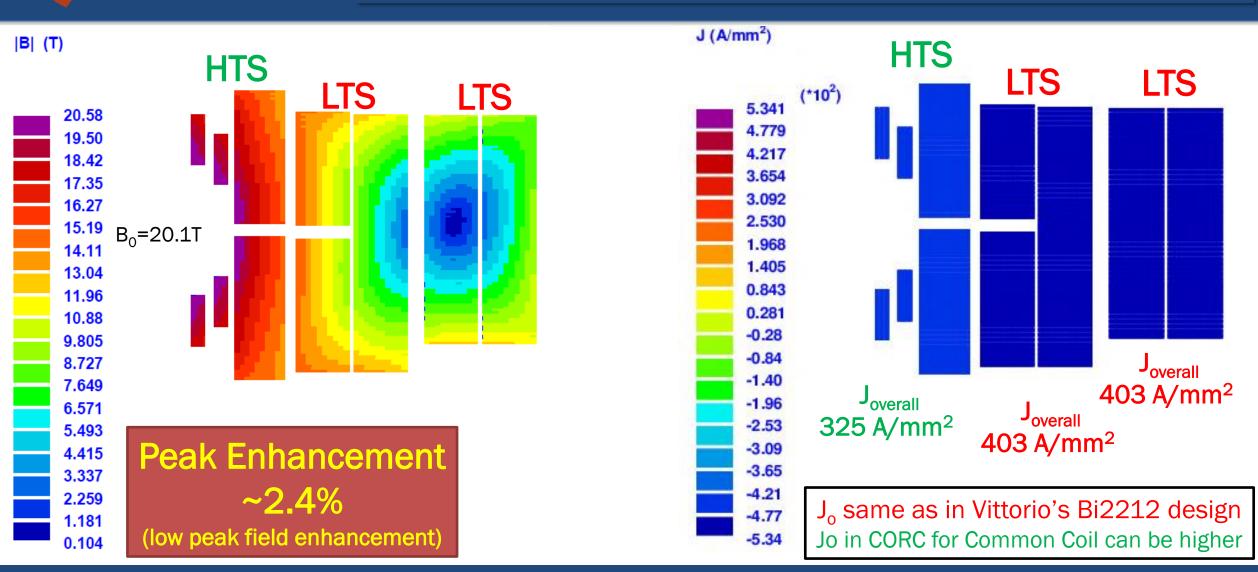
0.02355

-0.00000

a15:

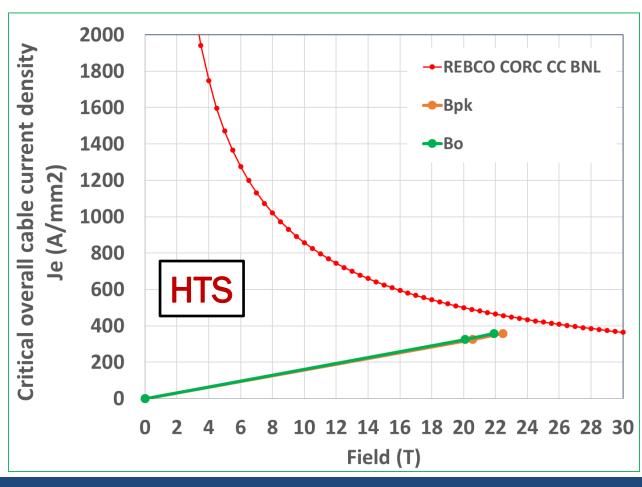
a18:

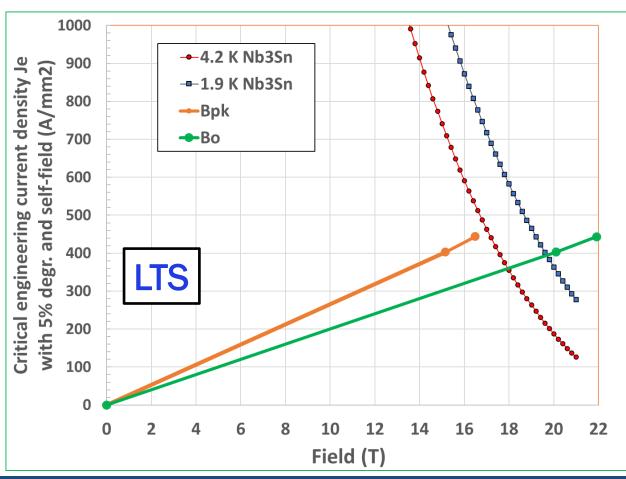
-0.00000


-0.00405

0.01722

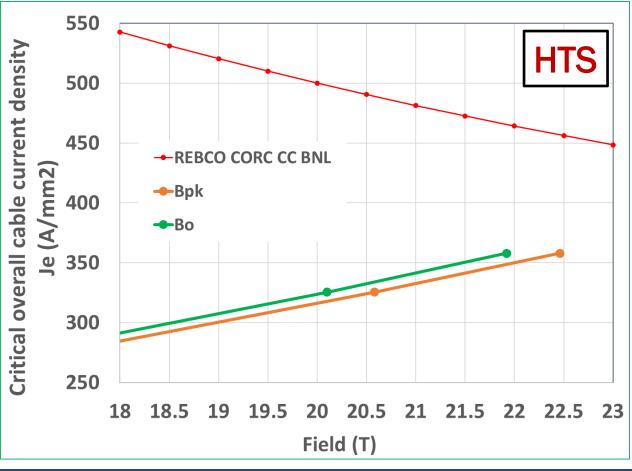
-0.00000

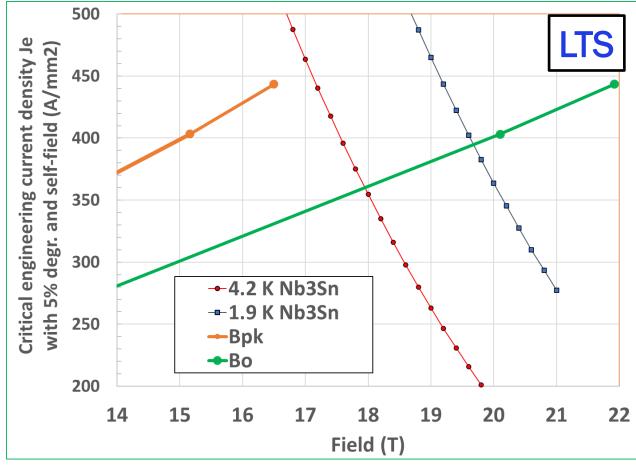

50 mm, 20 T Common Coil Hybrid Design



Margins in 20 T Hybrid Common Coil Design

> Enough margin at 4.2 K as well

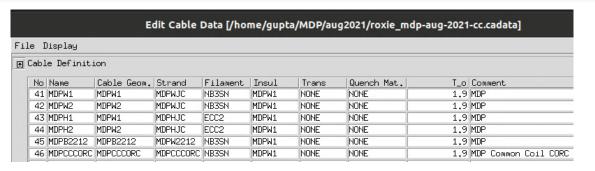




Margins in 20 T Hybrid Common Coil Design

Enough margin at 4.2 K as well

Conductor Used (1)


HTS (Bi2212 or CORC)

N	b ₃ Sn
	3

NUMBER OF BLOCK	1	NUMBER OF BLOCK	5
NUMBER OF CONDUCTORS	3	NUMBER OF CONDUCTORS	28
POSITIONING ANGLE (DEG)	214.4000	POSITIONING ANGLE (DEG)	110.0000
INCLINATION ANGLE (DEG)	-90.0000	INCLINATION ANGLE (DEG)	0.0000
CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)	-12500.0000	CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)	-16500.0000
INNER RADIUS OF THE BLOCK (MM)	18.1636	INNER RADIUS OF THE BLOCK (MM)	48.9020
CABLE HEIGHT (MM).(INSULATED)	20.2594	CABLE HEIGHT (MM).(INSULATED)	21.5867
CABLE INNER WIDTH (MM).(INSULATED)	1.8962	CABLE INNER WIDTH (MM).(INSULATED)	1.8962
CABLE OUTER WIDTH (MM).(INSULATED)	1.8962	CABLE OUTER WIDTH (MM).(INSULATED)	1.8962
CABLE HEIGHT (MM).(BARE)	19.9600	CABLE HEIGHT (MM).(BARE)	21.2873
CABLE INNER WIDTH (MM).(BARE)	1.5968	CABLE INNER WIDTH (MM).(BARE)	1.5968
CABLE OUTER WIDTH (MM).(BARE)	1.5968	CABLE OUTER WIDTH (MM).(BARE)	1.5968
RADIAL INSULATION THICKNESS (MM)	0.1497	RADIAL INSULATION THICKNESS (MM)	0.1497
AZIMUTHAL INSULATION THICKNESS (MM)	0.1497	AZIMUTHAL INSULATION THICKNESS (MM)	0.1497
NUMBER OF STRANDS	50	NUMBER OF STRANDS	55
DIAMETER OF STRANDS (MM)	0.8000	DIAMETER OF STRANDS (MM)	0.8000
CU/SC RATIO	3.0000	CU/SC RATIO	1.0000
RESIDUAL RESISTIVITY RATIO	100.0000	RESIDUAL RESISTIVITY RATIO	100.0000
TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K)	1.9000	TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K)	1.9000
LINEAR APPROXIMATION JC(20.0 T) (A/MM**2)	2944.000	LINEAR APPROXIMATION JC(16.0 T) (A/MM**2)	1928.000
LINEAR APPROXIMATION DJC/DB (A/MM**2 T)	64.000	LINEAR APPROXIMATION DJC/DB (A/MM**2 T)	371.000
CABLING ANGLE (DEG)	1.373	CABLING ANGLE (DEG)	1.361
NUMBER OF DISCRETISATION POINTS AZIMUTHAL	2	NUMBER OF DISCRETISATION POINTS AZIMUTHAL	2
NUMBER OF DISCRETISATION POINTS RADIAL	10	NUMBER OF DISCRETISATION POINTS RADIAL	10
CONDUCTOR NAME	MDPB2212	CONDUCTOR NAME	MDPH1

Conductor Used (2)

Edit Cable Data [/home/gupta/MDP/aug2021/roxie_mdp-aug-2021-cc.cadata]

File Display	d
--------------	---

Transient

I Quench Material Properties

⚠ Cable Geometry

No	Name	height	width_i	width_o	ns	transp.	degrd	Comment
42	MDPW1	21,33	1.6	1.6	55	100	0	MDP NB3SN
43	MDPW2	13,3	1.6	1.6	37	100	0	IMDP NB3SN
44	MDPB2212	20	1.6	1.6	50	100	0	MDP Bi2212
45	MDPCCCORC	20	1,6	1,6	50	100	0	MDP Common Coil CORC

File Display

....

T Filament

⊞ Strand

_									
	No	Name	diam.	cu/sc	RRR	Tref	Bref	Jc@BrTr	dJc/dB
	20	MDPWJC	0.8	1	100	1.9	16	1928	371
	21	MDPHJC	0.8	1	100	1.9	16	1928	371
	22	MDP2JC	1.1	1	100	1.9	16	1928	371
	23	MDPW2212	0.8	3	100	1.9	20	2944	64
	23	MDPCCCORC	0.8	3	100	1,9	20	2944	64

Edit Cable Data [/home/gupta/MDP/aug2021/roxie_mdp-aug-2021-cc.cadata] File Display (#) 00 TEC **⊞** Filament No Name fildiao fildiai Jc-Fit Comment 4 NBTIO 6 0 FIT1 NBTI OUTER CABLES 5 NB3SN 22 12 FIT1 NB2SN TWENTE 6 NBTIS 0 FIT1 NBTI SIEMAT(ALSTOM) 7 NBTIG O GSIFIT NBTI GSI001 8 SIS3NBTI 3.5 O SISFIT NBTI SIS300 50 0 NBALK1 Nb3Al tes 9 NB3AL O FIT1 ITER RF 10 NB3SNI 10 11 EUNB3SN 30 O EUFIT1 EUROCIRCOIL NB3SN 50 O ECCB2 NB3SN FCC 2300 A/mm^2 12 ECC2

				Edit Ca	able Data [/ˈl	nome/gupta/M	1DP/aug2021/	roxie_mdp-au	g-2021-cc.cac	iata]		🗴
le Display												Help
Insulation												[2
Jc-Fit												
No Name T	Гуре	Jcref	Tc0	alpha	beta	gamma	CO	Bc20	N/a	N/a	N/a	N/a Comment
1 FIT1 1		3E+09	9,2	0.57	þ.9	2,32	27.04	14.5	0	0	0	O MB FILAMENT TYPE
2 TES1 1		3E+09	9,2	0.57	0.9	2,32	27,04	14.5	0	0	0	O FILAMENT TEST TYPE alph
3 GSIFIT 1	. •	3E+09	9,2	0.7	1,57	1	25	14.5	0	0	0	O APPROXIMATE THE WILSON
4 SISFIT 1		3E+09	9.33517	0,68	0.8477	2,23234	25	14.5	0	0	0	0 Glyn MQYT5 FIT at 4.5K
5 NBALK1 5	· •	1,4E+10	36.2	17,8	0	0	0	0	0	0	0	0 Jc fit of Nb3Al K1 at 4
6 EUFIT1 5		4.75E+10	28.9	18	0	0	0	0	0	0	0	O EUROCOIL NB3SN FIT1
7 ECCB2 1	.1 🔻	2.67845E+11	29,38	16	0,96	1,52	0.5	2	0	0	0	0 1350 A/MM^2 AT 16 T 4.2

Radial	Azimut	Comment
0.15	0.15	MDP insulation
0,15	0,15	EUROCIRCOIL INS
	0.15	0.15 0.15

CORC in Common Coil

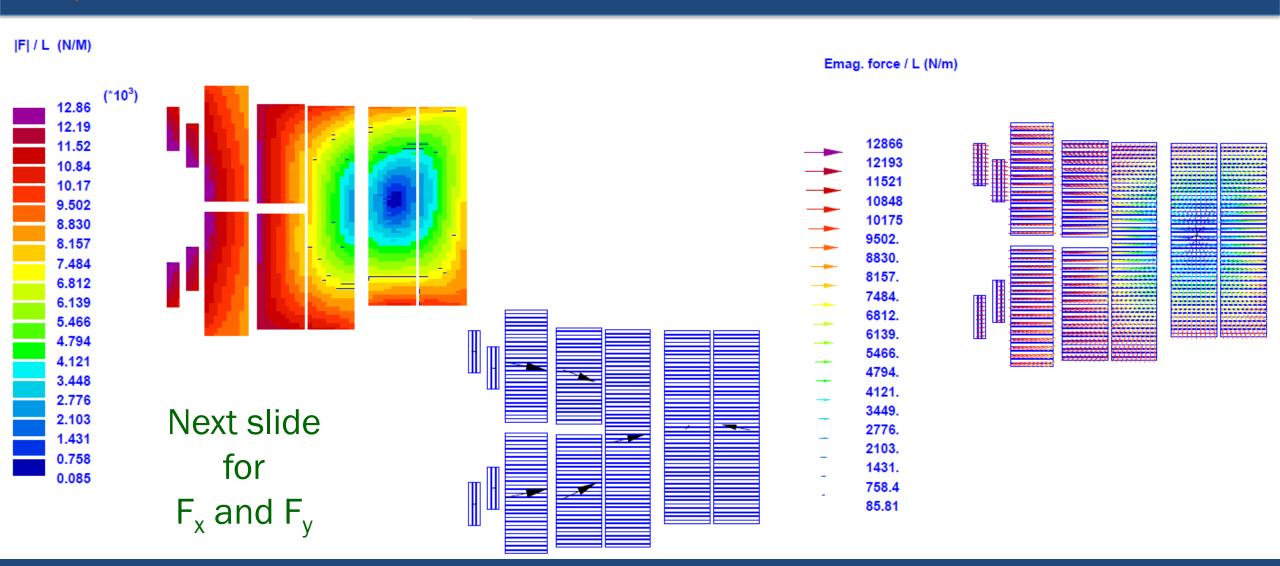
➤ STTR with ACT anticipated a future common coil CORC with an engineering current density of 600 A/mm²

Checked with Danko – still possible

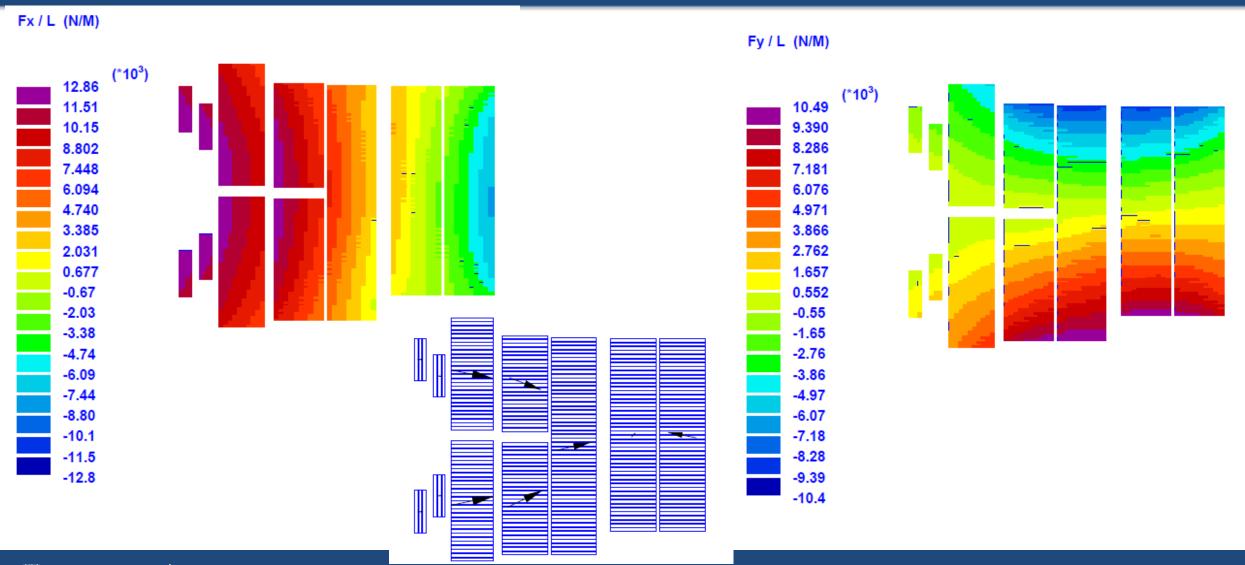
Overall Current density with structure:

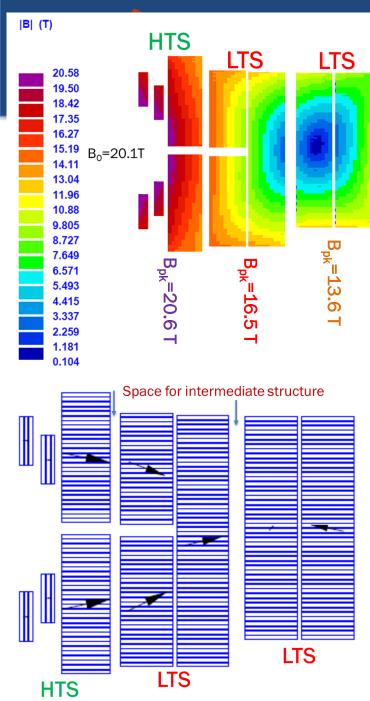
- Area for 6 mm wire: $pi*6*6/4 = 28.3 \text{ mm}^2$
- Area for 6.5mm X 8mm rectangle = 52 mm²

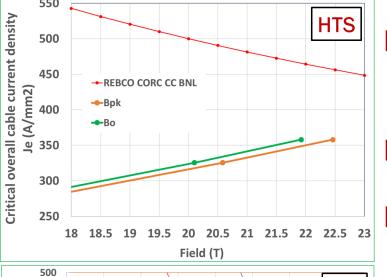
$$J_0$$
 for Je = 600 A/mm2:

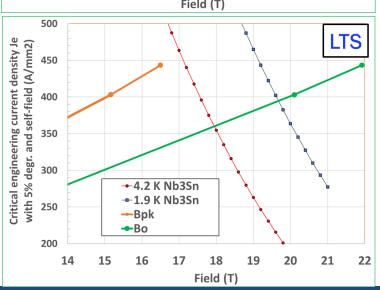

- \Box J₀ =600*28.3 /52 = 326 A/mm²
- > Similar to Bi2212; but with a structure

Accumulated Lorentz forces can be managed in a structure

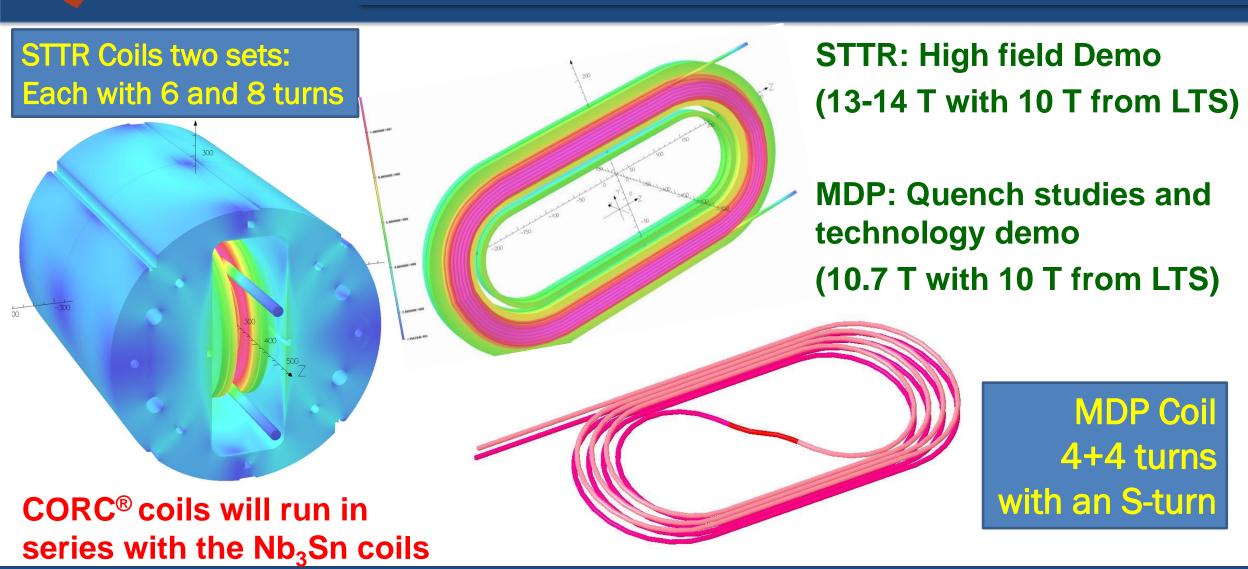



Lorentz Forces at the Design Field (2)




Lorentz Forces at the Design Field (1)

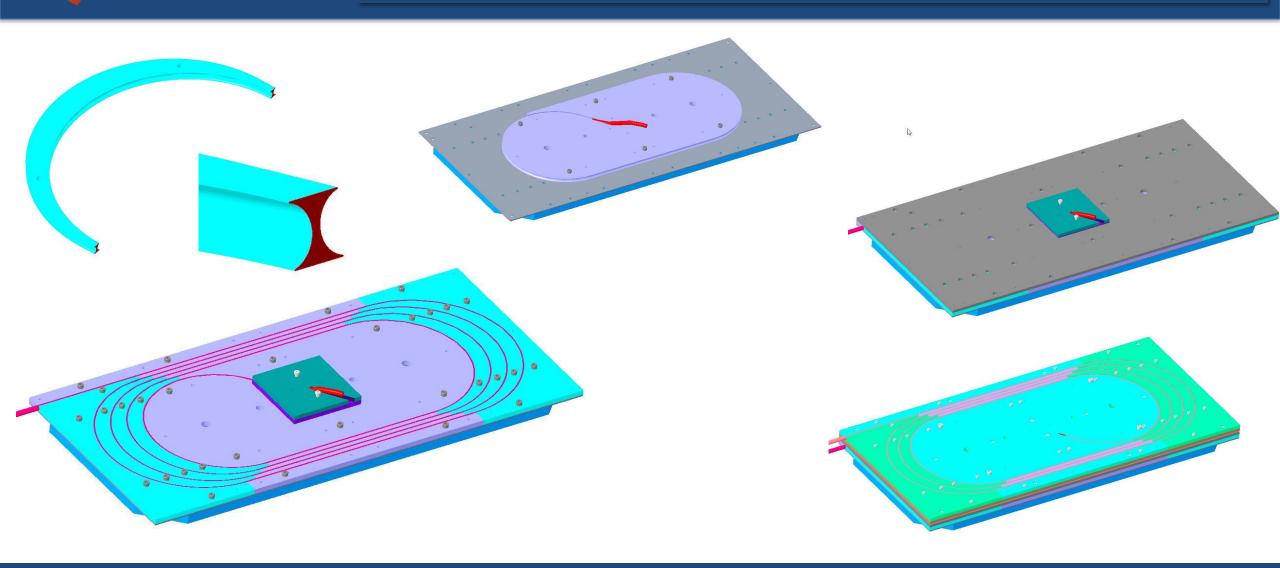
Key Benefits of the Common Coil Design for HTS/LTS High Field Hybrid Dipoles



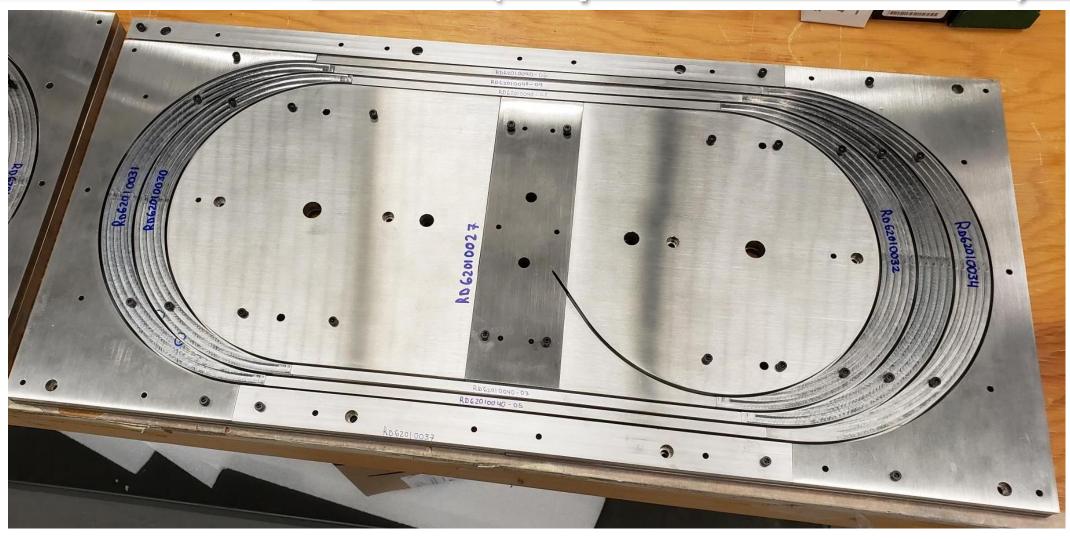
- □ Natural segmentation betweenHTS and LTS (and different cables)
- ☐ Easier tuning between HTS & LTS
- Coil layers move as a module without causing strain at ends (BNL common coil had 200 μm)
- ☐ Intermediate space for stress management structure. It can be easily adjusted, even at the late stage of the magnet construction

CORC Coil Programs with the Common Coil Dipole

CORC Coil Package (MDP)


- Overall thickness 30.3 mm
- Outer plates 2 mm
- Coil spacers 7 mm
- Inner plates 5 mm
- Gap between layers 2.3 mm

- Each layer held together with flat head screws
- Assembly held with shoulder screws to allow separation of layers.



Coil & Structure Parts, as Designed

Parts, as Made or Delivered (all parts in hand now)

Summary and Discussion

Observations on the HTS/LTS hybrid common coil design presented today:

- The design provides the desired margin for both HTS and Nb₃Sn, even at 4 K
- Same magnetic design is used for both CORC and Bi2212
 - > Common coil design allows higher J_e or higher J_o for CORC
- The design is reasonably well optimized for a good field quality
- We, however, should be able to optimize the conductor usage as LTS coils still have room. As such the common coil design is well suited for hybrid designs.
- Space for the managed structure is included and more/less can be adjusted, as needed
 - Next Step mechanical analysis and structure design
 - Expect that the magnetic and mechanical design to be iterated together
- Stress management should be relatively easier and effective in the common coil design
- All files (ROXIE, EXCEL, etc.) are available for sharing

