20 T HTS/LTS Hybrid Common Coil Design

Ramesh Gupta

August 24, 2021
A reasonably evolved HTS/LTS Hybrid Common Coil Design

• Optimized for a good field quality
• Provides desired margin even at 4 K in both HTS and Nb₃Sn
• Space for managed structure included
 • To be verified by the actual mechanical analysis
 • A conceptual structure for CORC shown; other possibilities
• Common coil design allows higher J_e or J_o CORC
• Same magnetic design is used for both CORC and Bi2212
Field Quality in 20 T Common Coil Hybrid Design

<table>
<thead>
<tr>
<th>Harmonic Analysis Number</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference RADIUS (mm)</td>
<td>15.0000</td>
</tr>
<tr>
<td>X-Position of the Harmonic Coil (mm)</td>
<td>0.0000</td>
</tr>
<tr>
<td>Y-Position of the Harmonic Coil (mm)</td>
<td>169.0000</td>
</tr>
<tr>
<td>Measurement Type</td>
<td>ALL FIELD CONTRIBUTIONS</td>
</tr>
<tr>
<td>Error of Harmonic Analysis of Br</td>
<td>0.2915E-03</td>
</tr>
<tr>
<td>Sum (Br(p) - Sum (An cos(np) + Bn sin(np)))</td>
<td></td>
</tr>
</tbody>
</table>

Main Field (T): 20.097535

Magnet Strength (T/(m^(n-1))): 20.0975

Normal Relative Multipoles (1.D-4):

<table>
<thead>
<tr>
<th>b 1:</th>
<th>10000.0000</th>
<th>b 2:</th>
<th>0.00000</th>
<th>b 3:</th>
<th>0.00886</th>
</tr>
</thead>
<tbody>
<tr>
<td>b 4:</td>
<td>0.00000</td>
<td>b 5:</td>
<td>0.00866</td>
<td>b 6:</td>
<td>-0.00000</td>
</tr>
<tr>
<td>b 7:</td>
<td>-0.12569</td>
<td>b 8:</td>
<td>0.00000</td>
<td>b 9:</td>
<td>-0.14757</td>
</tr>
<tr>
<td>b10:</td>
<td>0.00000</td>
<td>b11:</td>
<td>-0.25870</td>
<td>b12:</td>
<td>-0.00000</td>
</tr>
<tr>
<td>b13:</td>
<td>-0.09200</td>
<td>b14:</td>
<td>0.00000</td>
<td>b15:</td>
<td>0.01722</td>
</tr>
<tr>
<td>b16:</td>
<td>0.00000</td>
<td>b17:</td>
<td>0.00085</td>
<td>b18:</td>
<td>-0.00000</td>
</tr>
</tbody>
</table>

Skew Relative Multipoles (1.D-4):

<table>
<thead>
<tr>
<th>a 1:</th>
<th>0.00000</th>
<th>a 2:</th>
<th>0.01125</th>
<th>a 3:</th>
<th>0.00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 4:</td>
<td>0.02070</td>
<td>a 5:</td>
<td>-0.00000</td>
<td>a 6:</td>
<td>0.09133</td>
</tr>
<tr>
<td>a 7:</td>
<td>0.00000</td>
<td>a 8:</td>
<td>-0.18568</td>
<td>a 9:</td>
<td>-0.00000</td>
</tr>
<tr>
<td>a10:</td>
<td>-0.32507</td>
<td>a11:</td>
<td>-0.00000</td>
<td>a12:</td>
<td>-0.10123</td>
</tr>
<tr>
<td>a13:</td>
<td>0.00000</td>
<td>a14:</td>
<td>0.02355</td>
<td>a15:</td>
<td>-0.00000</td>
</tr>
<tr>
<td>a16:</td>
<td>-0.00354</td>
<td>a17:</td>
<td>-0.00000</td>
<td>a18:</td>
<td>-0.00405</td>
</tr>
</tbody>
</table>

- All harmonics <10^-4
- Mostly 10^-5
Peak Enhancement
~2.4%
(low peak field enhancement)

$B_0 = 20.1 T$

$J_{overall} = 325 \text{ A/mm}^2$

$J_{overall} = 403 \text{ A/mm}^2$

J_0 same as in Vittorio’s Bi2212 design

J_0 in CORC for Common Coil can be higher
Margins in 20 T Hybrid Common Coil Design

- Enough margin at 4.2 K as well
Margins in 20 T Hybrid Common Coil Design

➢ Enough margin at 4.2 K as well

![Graph showing critical overall cable current density (Je) vs. field (T) for HTS and LTS phases.](image)

- HTS:
 - REBCO CORC CC BNL
 - Bpk
 - Bo

- LTS:
 - 4.2 K Nb3Sn
 - 1.9 K Nb3Sn
 - Bpk
 - Bo

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL
August 24, 2021
Conductor Used (1)

HTS (Bi2212 or CORC)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF BLOCK</td>
<td>1</td>
</tr>
<tr>
<td>NUMBER OF CONDUCTORS</td>
<td>3</td>
</tr>
<tr>
<td>POSITIONING ANGLE (DEG)</td>
<td>214.4000</td>
</tr>
<tr>
<td>INCLINATION ANGLE (DEG)</td>
<td>90.0000</td>
</tr>
<tr>
<td>CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)</td>
<td>-12500.0000</td>
</tr>
<tr>
<td>INNER RADIUS OF THE BLOCK (MM)</td>
<td>18.1636</td>
</tr>
<tr>
<td>CABLE HEIGHT (MM) (INSULATED)</td>
<td>20.2594</td>
</tr>
<tr>
<td>CABLE INNER WIDTH (MM) (INSULATED)</td>
<td>1.8962</td>
</tr>
<tr>
<td>CABLE OUTER WIDTH (MM) (INSULATED)</td>
<td>1.8962</td>
</tr>
<tr>
<td>CABLE HEIGHT (MM) (BARE)</td>
<td>19.9600</td>
</tr>
<tr>
<td>CABLE INNER WIDTH (MM) (BARE)</td>
<td>1.5968</td>
</tr>
<tr>
<td>CABLE OUTER WIDTH (MM) (BARE)</td>
<td>1.5968</td>
</tr>
<tr>
<td>RADIAL INSULATION THICKNESS (MM)</td>
<td>0.1497</td>
</tr>
<tr>
<td>AZMITHAL INSULATION THICKNESS (MM)</td>
<td>0.1497</td>
</tr>
<tr>
<td>NUMBER OF STRANDS</td>
<td>50</td>
</tr>
<tr>
<td>DIAMETER OF STRANDS (MM)</td>
<td>0.8000</td>
</tr>
<tr>
<td>CU/SC RATIO</td>
<td>3.0000</td>
</tr>
<tr>
<td>RESIDUAL RESISTIVITY RATIO</td>
<td>100.0000</td>
</tr>
<tr>
<td>TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K)</td>
<td>1.9000</td>
</tr>
<tr>
<td>LINEAR APPROXIMATION JC(20.0 T) (A/MM²×2)</td>
<td>2944.000</td>
</tr>
<tr>
<td>LINEAR APPROXIMATION DJC/DB (A/MM²+2 T)</td>
<td>64.000</td>
</tr>
<tr>
<td>Cabling Angle (DEG)</td>
<td>1.373</td>
</tr>
<tr>
<td>NUMBER OF DISCRETISATION POINTS AZMITHAL</td>
<td>2</td>
</tr>
<tr>
<td>NUMBER OF DISCRETISATION POINTS RADIAL</td>
<td>10</td>
</tr>
<tr>
<td>CONDUCTOR NAME</td>
<td>MDPB2212</td>
</tr>
</tbody>
</table>

Nb₃Sn

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF BLOCK</td>
<td>5</td>
</tr>
<tr>
<td>NUMBER OF CONDUCTORS</td>
<td>28</td>
</tr>
<tr>
<td>POSITIONING ANGLE (DEG)</td>
<td>110.0000</td>
</tr>
<tr>
<td>INCLINATION ANGLE (DEG)</td>
<td>0.0000</td>
</tr>
<tr>
<td>CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)</td>
<td>-16500.0000</td>
</tr>
<tr>
<td>INNER RADIUS OF THE BLOCK (MM)</td>
<td>48.9020</td>
</tr>
<tr>
<td>CABLE HEIGHT (MM) (INSULATED)</td>
<td>21.5867</td>
</tr>
<tr>
<td>CABLE INNER WIDTH (MM) (INSULATED)</td>
<td>1.8962</td>
</tr>
<tr>
<td>CABLE OUTER WIDTH (MM) (INSULATED)</td>
<td>1.8962</td>
</tr>
<tr>
<td>CABLE HEIGHT (MM) (BARE)</td>
<td>21.2873</td>
</tr>
<tr>
<td>CABLE INNER WIDTH (MM) (BARE)</td>
<td>1.5968</td>
</tr>
<tr>
<td>CABLE OUTER WIDTH (MM) (BARE)</td>
<td>1.5968</td>
</tr>
<tr>
<td>RADIAL INSULATION THICKNESS (MM)</td>
<td>0.1497</td>
</tr>
<tr>
<td>AZMITHAL INSULATION THICKNESS (MM)</td>
<td>0.1497</td>
</tr>
<tr>
<td>NUMBER OF STRANDS</td>
<td>55</td>
</tr>
<tr>
<td>DIAMETER OF STRANDS (MM)</td>
<td>0.8000</td>
</tr>
<tr>
<td>CU/SC RATIO</td>
<td>1.0000</td>
</tr>
<tr>
<td>RESIDUAL RESISTIVITY RATIO</td>
<td>100.0000</td>
</tr>
<tr>
<td>TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K)</td>
<td>1.9000</td>
</tr>
<tr>
<td>LINEAR APPROXIMATION JC(16.0 T) (A/MM²×2)</td>
<td>1928.000</td>
</tr>
<tr>
<td>LINEAR APPROXIMATION DJC/DB (A/MM²+2 T)</td>
<td>371.000</td>
</tr>
<tr>
<td>Cabling Angle (DEG)</td>
<td>1.361</td>
</tr>
<tr>
<td>NUMBER OF DISCRETISATION POINTS AZMITHAL</td>
<td>2</td>
</tr>
<tr>
<td>NUMBER OF DISCRETISATION POINTS RADIAL</td>
<td>10</td>
</tr>
<tr>
<td>CONDUCTOR NAME</td>
<td>MDPH1</td>
</tr>
</tbody>
</table>
Conductor Used (2)

Cable Definition

<table>
<thead>
<tr>
<th>No</th>
<th>Cable Type</th>
<th>Diameter</th>
<th>Transition</th>
<th>Quench</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MDP1</td>
<td>55</td>
<td>none</td>
<td>1</td>
<td>MDF</td>
</tr>
<tr>
<td>2</td>
<td>MDP2</td>
<td>55</td>
<td>none</td>
<td>1.5</td>
<td>MDF</td>
</tr>
<tr>
<td>3</td>
<td>MDP3</td>
<td>55</td>
<td>none</td>
<td>1.5</td>
<td>MDF</td>
</tr>
<tr>
<td>4</td>
<td>MDP4</td>
<td>55</td>
<td>none</td>
<td>1.5</td>
<td>MDF</td>
</tr>
<tr>
<td>5</td>
<td>MDP5</td>
<td>55</td>
<td>none</td>
<td>1.5</td>
<td>MDF</td>
</tr>
<tr>
<td>6</td>
<td>MDP6</td>
<td>55</td>
<td>none</td>
<td>1.5</td>
<td>MDF</td>
</tr>
<tr>
<td>7</td>
<td>MDP7</td>
<td>55</td>
<td>none</td>
<td>1.5</td>
<td>MDF</td>
</tr>
</tbody>
</table>

Filament

<table>
<thead>
<tr>
<th>No</th>
<th>Height</th>
<th>Width</th>
<th>Thickness</th>
<th>ns</th>
<th>Trans.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>21.33</td>
<td>1.6</td>
<td>1.6</td>
<td>55</td>
<td>500</td>
</tr>
</tbody>
</table>

Quench Material Properties

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>dL/cm</th>
<th>cu/cm</th>
<th>RPF</th>
<th>Tref</th>
<th>Brief</th>
<th>jC/GB/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>MDP1</td>
<td>0.9</td>
<td>1</td>
<td>1.9</td>
<td>15</td>
<td>1908</td>
<td>321</td>
</tr>
<tr>
<td>10</td>
<td>MDP2</td>
<td>0.8</td>
<td>1</td>
<td>1.9</td>
<td>15</td>
<td>1908</td>
<td>571</td>
</tr>
<tr>
<td>11</td>
<td>MDP3</td>
<td>1.1</td>
<td>1</td>
<td>1.9</td>
<td>16</td>
<td>1908</td>
<td>571</td>
</tr>
<tr>
<td>12</td>
<td>MDP4</td>
<td>0.8</td>
<td>1</td>
<td>1.9</td>
<td>20</td>
<td>2944</td>
<td>641</td>
</tr>
<tr>
<td>13</td>
<td>MDP5</td>
<td>0.8</td>
<td>1</td>
<td>1.9</td>
<td>20</td>
<td>2944</td>
<td>641</td>
</tr>
</tbody>
</table>

Insulation

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Radial</th>
<th>Azimuth</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>MDP1</td>
<td>0.15</td>
<td>0.15</td>
<td>MDP insulation</td>
</tr>
<tr>
<td>25</td>
<td>EUINS</td>
<td>0.15</td>
<td>0.15</td>
<td>EUROECOCOIL INS</td>
</tr>
</tbody>
</table>
STTR with ACT anticipated a future common coil CORC with an engineering current density of 600 A/mm².

Checked with Danko – still possible.

Overall Current density with structure:
- Area for 6 mm wire: \(\pi \times 6 \times 6/4 = 28.3 \text{ mm}^2 \)
- Area for 6.5 mm x 8 mm rectangle = 52 mm²

\(J_o \) for \(J_e = 600 \text{ A/mm²} \):
- \(J_o = 600 \times 28.3 / 52 = 326 \text{ A/mm}^2 \)

Similar to Bi2212; but with a structure.

Accumulated Lorentz forces can be managed in a structure.
Lorentz Forces at the Design Field (2)

Next slide for F_x and F_y
Lorentz Forces at the Design Field (1)
Key Benefits of the Common Coil Design for HTS/LTS High Field Hybrid Dipoles

- Natural segmentation between HTS and LTS (and different cables)
- Easier tuning between HTS & LTS
- Coil layers move as a module without causing strain at ends (BNL common coil had 200 μm)
- Intermediate space for stress management structure. It can be easily adjusted, even at the late stage of the magnet construction
STTR Coils two sets:
Each with 6 and 8 turns

STTR: High field Demo
(13-14 T with 10 T from LTS)

MDP: Quench studies and technology demo
(10.7 T with 10 T from LTS)

CORC® coils will run in series with the Nb₃Sn coils

MDP Coil
4+4 turns with an S-turn
CORC Coil Package (MDP)

- Overall thickness – 30.3 mm
- Outer plates – 2 mm
- Coil spacers – 7 mm
- Inner plates – 5 mm
- Gap between layers – 2.3 mm

- Each layer held together with flat head screws
- Assembly held with shoulder screws to allow separation of layers.
Coil & Structure Parts, as Designed
Parts, as Made or Delivered
(all parts in hand now)
Summary and Discussion

Observations on the HTS/LTS hybrid common coil design presented today:

- The design provides the desired margin for both HTS and Nb$_3$Sn, even at 4 K
- Same magnetic design is used for both CORC and Bi2212
 - Common coil design allows higher J_e or higher J_o for CORC
- The design is reasonably well optimized for a good field quality
- We, however, should be able to optimize the conductor usage as LTS coils still have room. As such the common coil design is well suited for hybrid designs.
- Space for the managed structure is included and more/less can be adjusted, as needed
 - Next Step – mechanical analysis and structure design
 - Expect that the magnetic and mechanical design to be iterated together
- Stress management should be relatively easier and effective in the common coil design
- All files (ROXIE, EXCEL, etc.) are available for sharing