

U.S. MAGNET DEVELOPMENT PROGRAM

20 T HTS/LTS Hybrid Common Coil Design

Ramesh Gupta

September 29, 2021

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

- > Hybrid designs for (a) Bi2212 and (b) CORC in series with Nb_3Sn
- Optimized for a good field quality
- > 4.2K and 1.9 K design options
- HTS/LTS splice considerations
- > Mechanical structure considerations
- Issues/benefits specific to common coil

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

Science

50 mm, 20 T Bi2212/Nb₃Sn Common Coil

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

Field Quality in 20 T Common Coil Bi2212/Nb₃Sn Hybrid Design

REFERENCE RADIUS (mm)15.0000X-POSITION OF THE HARMONIC COIL (mm)0.0000Y-POSITION OF THE HARMONIC COIL (mm)169.0000MEASUREMENT TYPE169.0000MEASUREMENT TYPE0.2696E-03ERROR OF HARMONIC ANALYSIS OF Br0.2696E-03SUM (Br(p) - SUM (An cos(np) + Bn sin(np))

20.025677

All harmonics <10⁻⁴ (normal and skew)

NODMA		TTTDOTES	$(1 D_{-}1)$.			CVEW		TDOTES	(1 D 4).		
NORMA.	L KELAIIVE MO	PITEOPPO	(1.D-4).			SKEW	RELATIVE MOLI	TEOPPO	(1.D-4).		
b 1:	10000.00000	b 2:	0.00000	b 3:	0.00275	a 1:	0.00000	a 2:	-0.00613	a 3:	-0.00000
b 4:	0.00000	b 5:	0.00067	b 6:	-0.00000	a 4:	0.00048	a 5:	0.00000	a 6:	0.00101
b 7:	0.00388	b 8:	0.00000	b 9:	-0.78484	a 7:	-0.00000	a 8:	0.28080	a 9:	0.00000
b10:	0.00000	b11:	-0.33370	b12:	-0.00000	a10:	0.14694	a11:	0.00000	a12:	0.00855
b13:	-0.01708	b14:	0.00000	b15:	0.00605	a13:	0.00000	a14:	-0.00321	a15:	-0.00000
b16:	0.00000	b17:	-0.00669	b18:	0.00000	a16:	0.00545	a17:	-0.00000	a18:	0.00152

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

U.S. MAGNET DEVELOPMENT PROGRAM 50 mm, 20 T Common Coil Bi2212/Nb₃Sn Hybrid Design

Science

MDPCCCORC	BI2212	•
Ins w	1.9	
Ins h	20.3	
Ins Area	38.570	
Current	12100	
Jo (A/mm^2)	313.72	
Bpeak (T)	20.458	
		_
MDPH2	Nb₃Sn	
MDPH2 Ins w	Nb₃Sn 1.9	
MDPH2 Ins w Ins h	Nb₃Sn 1.9 13.6	
MDPH2 Ins w Ins h Ins Area	Nb₃Sn 1.9 13.6 25.840	
MDPH2 Ins w Ins h Ins Area Current	Nb₃Sn 1.9 13.6 25.840 12100	
MDPH2 Ins w Ins h Ins Area Current Jo (A/mm^2)	Nb₃Sn 1.9 13.6 25.840 12100 468.27	

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

Splices in Common Coil Design (between two single layer coil)

In common coil design, splice (even between two types of coils), can be easily made in the middle of the coil where the field is very low

ENERGY

Perpendicular Nb-Ti splice in the low field region of BNL common coil dipole DCC017

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

Conductor Used

HTS (Bi2212)

NUMBER OF BLOCK	
NUMBER OF CONDUCTORS	
POSITIONING ANGLE (DEG)	214.400
INCLINATION ANGLE (DEG)	-90.000
CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)	-12100.000
INNER RADIUS OF THE BLOCK (MM)	18.200
CABLE HEIGHT (MM).(INSULATED)	20.300
CABLE INNER WIDTH (MM).(INSULATED)	1.900
CABLE OUTER WIDTH (MM).(INSULATED)	1.900
CABLE HEIGHT (MM).(BARE)	20.000
CABLE INNER WIDTH (MM).(BARE)	1.600
CABLE OUTER WIDTH (MM).(BARE)	1.600
RADIAL INSULATION THICKNESS (MM)	0.150
AZIMUTHAL INSULATION THICKNESS (MM)	0.150
NUMBER OF STRANDS	5
DIAMETER OF STRANDS (MM)	0.800
CU/SC RATIO	3.000
RESIDUAL RESISTIVITY RATIO	100.000
TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K)	1.900
LINEAR APPROXIMATION JC(20.0 T) (A/MM**2)	2944.00
LINEAR APPROXIMATION DJC/DB (A/MM**2 T)	64.00
CABLING ANGLE (DEG)	1.37
NUMBER OF DISCRETISATION POINTS AZIMUTHAL	
NUMBER OF DISCRETISATION POINTS RADIAL	1
CONDUCTOR NAME	MDPB2212

Nb₃Sn

1	NUMBER OF BLOCK	5
3	NUMBER OF CONDUCTORS	30
000	POSITIONING ANGLE (DEG)	110.0000
000	INCLINATION ANGLE (DEG)	0.0000
000	CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)	-12100.0000
000	INNER RADIUS OF THE BLOCK (MM)	46.3000
000	CABLE HEIGHT (MM).(INSULATED)	13.6000
000	CABLE INNER WIDTH (MM).(INSULATED)	1.9000
000	CABLE OUTER WIDTH (MM).(INSULATED)	1.9000
000	CABLE HEIGHT (MM).(BARE)	13.3000
000	CABLE INNER WIDTH (MM).(BARE)	1.6000
500	CABLE OUTER WIDTH (MM).(BARE)	1.6000
500	RADIAL INSULATION THICKNESS (MM)	0.1500
50	AZIMUTHAL INSULATION THICKNESS (MM)	0.1500
00	NUMBER OF STRANDS	37
00	DIAMETER OF STRANDS (MM)	0.8000
000	CU/SC RATIO	1.0000
00	RESIDUAL RESISTIVITY RATIO	100.0000
000	TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K)	1.9000
000	LINEAR APPROXIMATION JC(16.0 T) (A/MM**2)	1928.000
273	LINEAR APPROXIMATION DJC/DB (A/MM**2 T)	371.000
2	CABLING ANGLE (DEG)	1.439
10	NUMBER OF DISCRETISATION POINTS AZIMUTHAL	2
2	NUMBER OF DISCRETISATION POINTS RADIAL	10
	CONDUCTOR NAME	MDPH2

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

Enough (10%) margin at 4.2 K in Nb₃Sn as well

U.S. DEPARTMENT OF **ENERGY** Office of Science

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

U.S. MAGNET DEVELOPMET Lorentz Forces @20 T in Bi2212/Nb₃Sn Hybrid

-Ramesh Gupta, BNL

Click to edit Master title style

4.2 K and 1.9 K Hybrid Designs with CORC/Nb₃Sn (ReBCO Coils)

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

CORC in Common Coil

> Common coil design allows higher Je CORC due to large bend radii

STTR with ACT anticipated a future common coil CORC with an engineering current density of 600 A/mm²

800 A/mm² possible (STAR – Selva)
 Designs based on 600 A/mm² only

Overall Current density with structure:
Area for 6 mm wire: pi*6*6/4 = 28.3 mm²
Area for 6.5mm X 8mm rectangle = 52 mm²

 J_{o} for Je = 600 A/mm2:

Office of

- \Box J_o =600*28.3/52 = 326 A/mm²
- > Similar to Bi2212; but with a structure

Accumulated Lorentz forces can be managed in a structure

-Ramesh Gupta, BNL

U.S. MAGNI DEVELOPMI PROGRAM CORC 1.9 K (2 layers) and 4.2 K (3 layers) Designs (in series with Nb₃Sn; spaces for structure)

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

50 mm, 20 T Common Coil CORC/Nb₃Sn Hybrid Design

Designs limited by Nb₃Sn

Field on the Conductor 3-layer CORC. 4.2 K Design (10% Margin)

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

Field Quality in 20 T Common Coil CORC/Nb₃Sn Hybrid Design

2-layer ReBCO; 1.9 K

HARMO	NIC ANALYSIS	NUMBER .				1			
MAIN HARMONIC									
REFERENCE RADIUS (mm) 15.0000									
X-POSITION OF THE HARMONIC COIL (mm) 0.0000									
Y-POSITION OF THE HARMONIC COIL (mm) 169.0000									
MEASUREMENT TYPE ALL FIELD CONTRIBUTIONS									
ERROR	ERROR OF HARMONIC ANALYSIS OF Br 0.2671E-03								
SUM (Br(p) - SUM (An cos(n	p) + Bn sin	(np))					
MAIN	FIELD (T)					.009287			
MAGNE	T STRENGTH (T	'∕(m^(n-1))			20.0093			
NORMAL RELATIVE MULTIPOLES (1.D-4):									
b 1:	10000.00000	b 2:	-0.00000	b 3:	-0.00157				
b 4:	-0.00000	b 5:	0.00046	b 6:	-0.00000				
b 7:	-0.01379	b 8:	-0.00000	b 9:	-0.22156				
b10:	0.00000	b11:	-0.49290	b12:	-0.00000	A 11			
b13:	-0.01713	b14:	0.00000	b15:	0.00929				
b16:	-0.00000	b17:	-0.00697	b18:	0.00000	harmonio			
b19:	-0.00160	b20:	0.00000	b		narmonic			
awaw		TRATES (1 5 4) -			< 10-4			
SKEW	RELATIVE MULT	TPOLES (1.D-4):	- 2-	0.00000				
a I:	-0.00000	a 2:	-0.00529	a 3:	-0.00000				
a 4:	-0.00138	a 5:	0.00000	a 6:	-0.00951				
a /:	-0.00000	a 8:	0.24968	a 9:	-0.00000				
a10:	0.36533	all:	-0.00000	a12:	0.02140				
a13:	-0.00000	a14:	-0.00234	a15:	-0.00000				
a16:	0.01042	a17:	0.00000	a18:	0.00292				
a19:	0.00000	a20:	0.00042	a					
	S. DEPARTMENT OF	Office of							
		Science	4		TC/I TC Uybr	id Common			

3-layer ReBCO; 4.2 K

HARMON MAIN H REFERE X-POSI Y-POSI MEASUR ERROR	IC ANALYSIS IARMONIC ENCE RADIUS (TION OF THE TION OF THE EMENT TYPE . OF HARMONIC	NUMBER mm) HARMON HARMON ANALYS	IC COIL (mm) IC COIL (mm) IS OF Br	A	LL FIELD CONT	1 15.0000 0.0000 169.0000 TRIBUTIONS 0.2730E-03
SUM (B MAIN F MAGNET	sr(p) - SUM (TELD (T) STRENGTH (T	An cos / (m^ (n	(np) + Bn sin 1))	(np))		19.997422 19.9974
NORMAL b 1: b 4: b 7: b10: b13: b16: b19:	RELATIVE MU 10000.00000 -0.00000 -0.01270 -0.00000 -0.00775 -0.00000 -0.00109	LTIPOL b 2: b 5: b 8: b11: b14: b17: b20:	ES (1.D-4): 0.00000 -0.00477 0.00000 -0.44273 -0.00000 -0.00815 -0.00000	b 3: b 6: b 9: b12: b15: b18: b	0.00080 0.00000 -0.53135 0.00000 -0.00185 0.00000	
SKEW R a 1: a 4: a 7: a10: a13: a16: a19:	ELATIVE MULT -0.00000 0.00190 0.00000 0.09500 -0.00000 0.00343 -0.00000	IPOLES a 2: a 5: a 8: a11: a14: a17: a20:	(1.D-4): 0.00063 0.00000 0.15699 0.00000 0.00281 -0.00000 0.00059	a 3: a 6: a 9: a12: a15: a18: a	-0.00000 0.01017 -0.00000 0.00766 -0.00000 0.00112	

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

U.S. MAGNET DEVELOPMENT PROGRAM Lorentz Forces in 50 mm, 20 T Common Coil CORC/Nb₃Sn Hybrid Design

Lorentz Forces in 3-layer CORC. 4.2 K Design

-Ramesh Gupta, BNL

A Few Possible Layout of Away Pole Coils Clearing Bore (others shown elsewhere)

20T HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL

Key Benefits of the Common Coil Design for HTS/LTS High Field Hybrid Dipoles

 Natural segmentation between HTS and LTS (and different cables)
 Easier tuning between HTS & LTS

- Coil layers move as a module without causing strain at ends (BNL common coil had 200 μm)
- Intermediate space for stress
 management structure. It can be easily adjusted, even at the late stage of the magnet construction

201 HTS/LTS Hybrid Common Coil Design

-Ramesh Gupta, BNL