

ENERGY

U.S. MAGNET DEVELOPMENT PROGRAM

20 T Bi2212/Nb₃Sn Hybrid Common Coil Design with 15% Margin Ramesh Gupta

November 2, 2021

- New hybrid designs for Bi2212 in series with Nb₃Sn having 15%
- > All design use the Nb₃Sn and Bi2212 Performance as of 9/29/2021
- > All designs are optimized for a good field quality
- Configurations for 4 to 6 layers of main coil (+pole coil)
- Space included for an intermediate mechanical structure for stress management (next step - optimize with proper analysis)

Science

DEPARTMENT OF

ENERGY

Performance Assumptions of Nb₃Sn & Bi2212

Design criteria for a 20 T hybrid magnet Reference J_o

Owtail A Doals: 20:1 5-2 Glass Braided Slaw $Nb_3Sn: J_0 = 900 \text{ A/mm}^2$ (12 T, 4.2 K) shaped whith full oftwo Assuming J_a = 1350 A/mm² (12 T, 4.2 K) and 0.67 ratio Thick Edge Expansed and not to scale. 276L Stainless Steel Core **Bi2212:** $J_0 = 500 \text{ A/mm}^2 (20 \text{ T})$ Assuming J_a = 740 A/mm² (20 T) and 0.67 ratio Ref Jo(12T,4K), A/mm2 T [K] 900 4.2 Based on RC5/6 J_a Su t [/] 0.2625 Scaling Factor 0.6673 Nb₃Sn Nb₃ Bc2 [T] 25.87188 **REBCO:** $J_{o} = 430-540 \text{ A/mm}^{2}$ (20 T) ٠ 182715.3 С Assuming J_a = 800 A/mm² (20 T) and 0.54-0.67 ratio Jc 5% degr. Je 5% deg., 1.1 Cu/non-Cu Depending of cable design: CORC/STAR wire in groove or Bp b Jc Jo(4.2K) multi-strand cable with CORC/STAR wires A/mm2 A/mm2 A/mm2 A/mm2 [T] So, in conclusions, a $J_e = 740 \text{ A/mm}^2$ and a $J_o = 500 \text{ A/mm}^2$ at 20 T seems a reasonable assumption for 12.0 0.46382 2981.158 2832.0998 1348.618959 900.00 Je/Jo=1.45 both Bi2212 and REBCO CORC/STAR B [T] l at 100% SSL JO Je **Bi2212 Bi2212** _ . . _ ---.... - ---736 508 20 370 ENERGY Office of Science 09/29/2021 P. Ferracin -- 20 T hybrid and comparative analysis

Conductor Used

HTS - Bi2212

U.S. DEPARTMENT OF Office of Science

🔀 🔚 mdp_oct-2021-Bi2212-i0.output 🗵 🔚 mdp_oct-2021-Bi2212-f40.output 💌	
NUMBER OF BLOCK	1
NUMBER OF CONDUCTORS	3
POSITIONING ANGLE (DEG)	214.4000
INCLINATION ANGLE (DEG)	-90.0000
CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)	-13900.0000
INNER RADIUS OF THE BLOCK (MM)	18.2000
CABLE HEIGHT (MM).(INSULATED)	18.6500
CABLE INNER WIDTH (MM).(INSULATED)	1.8200
CABLE OUTER WIDTH (MM).(INSULATED)	1.8200
CABLE HEIGHT (MM).(BARE)	18.3500
CABLE INNER WIDTH (MM).(BARE)	1.5200
CABLE OUTER WIDTH (MM).(BARE)	1.5200
RADIAL INSULATION THICKNESS (MM)	0.1500
AZIMUTHAL INSULATION THICKNESS (MM)	0.1500
NUMBER OF STRANDS	40
DIAMETER OF STRANDS (MM)	0.8000
CU/SC RATIO	3.0000
RESIDUAL RESISTIVITY RATIO	100.0000
TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K)	1.9000
LINEAR APPROXIMATION JC(20.0 T) (A/MM**2)	2944.000
LINEAR APPROXIMATION DJC/DB (A/MM**2 T)	64.000
CABLING ANGLE (DEG)	1.389
NUMBER OF DISCRETISATION POINTS AZIMUTHAL	2
NUMBER OF DISCRETISATION POINTS RADIAL	10
CONDUCTOR NAME	BI2212R

LTS - Nb₃Sn

	🔀 🔚 mdp_oct-2021-Bi2212-i0.output 🗵 🔚 mdp_oct-2021-Bi2212-f40.output 🛛	
1	NUMBER OF BLOCK	5
3	NUMBER OF CONDUCTORS	25
00	POSITIONING ANGLE (DEG)	105.1100
00	INCLINATION ANGLE (DEG)	0.0000
00	CURRENT IN EACH CONDUCTOR OF THE BLOCK (A)	-13900.0000
00	INNER RADIUS OF THE BLOCK (MM)	45.4000
00	CABLE HEIGHT (MM).(INSULATED)	13.6000
00	CABLE INNER WIDTH (MM).(INSULATED)	1.9000
00	CABLE OUTER WIDTH (MM).(INSULATED)	1.9000
00	CABLE HEIGHT (MM).(BARE)	13.3000
00	CABLE INNER WIDTH (MM).(BARE)	1.6000
00	CABLE OUTER WIDTH (MM).(BARE)	1.6000
00	RADIAL INSULATION THICKNESS (MM)	0.1500
00	AZIMUTHAL INSULATION THICKNESS (MM)	0.1500
40	NUMBER OF STRANDS	37
00	DIAMETER OF STRANDS (MM)	0.8000
00	CU/SC RATIO	1.0000
00	RESIDUAL RESISTIVITY RATIO	100.0000
00	TEMPERATURE AT WHICH JC AND DJC ARE GIVEN (K)	1.9000
00	LINEAR APPROXIMATION JC(16.0 T) (A/MM**2)	1928.000
00	LINEAR APPROXIMATION DJC/DB (A/MM**2 T)	371.000
89	CABLING ANGLE (DEG)	1.439
2	NUMBER OF DISCRETISATION POINTS AZIMUTHAL	2
10	NUMBER OF DISCRETISATION POINTS RADIAL	10
	CONDUCTOR NAME	MDPH2
-		-

Office of

Science

Mismatched Margins (new designs have matched margins – 15% over 20 T)

20T Bi2212/Nb₃Sn Hybrid Common Coil Design with 15% Margin -Ramesh Gupta, BNL

Science

50 mm, 20 T Bi2212/Nb₃Sn Common Coil

20T Bi2212/Nb₃Sn Hybrid Common Coil Design with 15% Margin -Ramesh Gupta, BNL

Configurations Examined for Nb₃Sn/Bi2212 Hybrids

Configuration of September 2021 (mismatched margins with new J₀)

ENERGY

New configurations (October 2021) with matched margins (Number of turns gets reduced, in some cases number of layers as well)

Configurations Examined for Nb₃Sn/Bi2212 Hybrids

New configurations (October 2021) with matched margins (Total number of turns gets reduced from 336, see also number of layers too)

review [/home/gupta/MDP/Oct2021/run2/mdp_oct-2021-Bi2212-i0.data]

Office of

Science

ENERGY

Total No. of turns: 272

ome/gupta/MDP/Oct2021/run2/mdp_oct-2021-Bi2212-f40.data] [/home/gupta/MDP/Oct2021/mdp_oct-2021-Bi2212-e50.da Total No. of turns: 262 Total No. of turns: 268

No. of turns of Bi2212 per aperture = 74 # of turns of Bi2212 per aperture = 80 # of turns of Bi2212 per aperture = 82 No. of turns of Nb₃Sn in 5 layers = 198 # of turns of Nb₃Sn in 4 layers = 188 # of turns of Nb₃Sn in 3 layers = 180

|B| (T)

0.118

Office of

Science

October 2021 Design #1 (6 layers in main coil)

20.22		Running ROXIE on file mdp_oct-2021-Bi2212-i0.data					
19.16 18.10	- 1 1 111 [1]	MAIN FIELD (T)	9,988791 19,9888				
17.05 15.99 14.93 13.87 12.81 11.75 10.70		NORMAL RELATIVE MULTIPOLES (1,D-4): b 1: 10000.00000 b 2: -0.00000 b 3: -0.00543 b 4: -0.00000 b 5: -0.02774 b 6: -0.00000 b 7: -0.13070 b 8: -0.00000 b 9: -1.40287 b10: -0.00000 b11: -0.41513 b12: 0.00000 b13: 0.01694 b14: 0.00000 b15: -0.00172 b16: -0.00000 b17: -0.01059 b18: -0.00000 b19: -0.00040 b20: 0.00000 b1					
9.642 8.584 7.526 6.468 5.410 4.351 3.293 2.235 1.177		SKEW RELATIVE MULTIPOLES (1.D-4): 0.00000 a 2: 0.00838 a 3: 0.00000 a 1: 0.001362 a 5: 0.00000 a 6: 0.03506 a 7: 0.00000 a 8: -0.75858 a 9: 0.00000 a10: -0.26750 a11: 0.00000 a12: 0.01863 a13: 0.00000 a14: -0.00453 a15: -0.00000 a16: -0.01161 a17: 0.00000 a18: 0.00013 a19: 0.00000 a20: 0.00099 a -0.00000					

Science

ENERGY

October 2021 Design #1 (margins for 6 layers in main coil)

New designs have matched margins – 15% over 20 T – in both Bi2212 and Nb₃Sn coils for the reference J_o

Science

October 2021 Design #2 (5 layers in main coil)

|B| (T)

I 🔚 mdp_oct-2021-Bi2212-i0.output 🖾 🔚 mdp_oct-2021-Bi2212-f40.output 🔀										
MAIN	FIELD (T)					20.171752				
MAGNE	ET STRENGTH (T	/ (m^ (n-	-1))	•••••		20.1718				
NORM	AL RELATIVE MU	LTIPOLE	ES (1.D-4):							
b 1:	10000.00000	b 2:	0.00000	b 3:	1.74349					
b 4:	-0.00000	b 5:	-0.14682	b 6:	-0.00000					
b 7:	-0.06433	b 8:	0.00000	b 9:	-1.35518					
b10:	0.00000	b11:	-0.33971	b12:	-0.00000					
b13:	0.01717	b14:	-0.00000	b15:	-0.00691					
b16:	-0.00000	b17:	-0.00836	b18:	-0.00000					
b19:	-0.00005	b20:	-0.00000	b						
			(A = 4)							
SKEW	RELATIVE MULT	IPOLES	(1.D-4):							
a 1:	0.00000	a 2:	0.51270	a 3:	-0.00000					
a 4:	-0.05237	a 5:	-0.00000	a 6:	0.09507					
a 7:	0.00000	a 8:	0.84674	a 9:	-0.00000					
a10:	0.25613	a11:	-0.00000	a12:	-0.00656					
a13:	0.00000	a14:	0.01272	a15:	0.00000					
a16:	0.01090	a17:	0.00000	a18:	0.00083					
a19:	-0.00000	a20:	0.00046	a						

Science

ENERGY

October 2021 Design #1 (margins for 5 layers in main coil)

New designs have matched margins – 15% over 20 T – in both Bi2212 and Nb₃Sn coils for the reference J_o

20T Bi2212/Nb₃Sn Hybrid Common Coil Design with 15% Margin -Ramesh Gupta, BNL

October 2021 Design #3 (4 layers in main coil)

|B| (T)

3 🔚 md	p_oct-2021-Bi2212-d0.	output 🗵	High mdp_oct-2021-Big	2212-e50.o	output 🔀	
MAGNE	T STRENGTH (T	/ (m^ (n-	-1))			20.0236
NORMA	L RELATIVE MU	LTIPOLE	ES (1.D-4):			
b 1:	10000.00000	b 2:	0.00000	b 3:	0.03617	
b 4:	-0.00000	b 5:	0.08401	b 6:	0.00000	
b 7:	0.39419	b 8:	-0.00000	b 9:	0.78556	
b10:	0.00000	b11:	-0.00864	b12:	-0.00000	
b13:	-0.08354	b14:	-0.00000	b15:	0.01549	
b16:	0.00000	b17:	0.00697	b18:	-0.00000	
b19:	0.00128	b20:	-0.00000	b		
SKEW	RELATIVE MULT	IPOLES	(1.D-4):			
a 1:	0.00000	a 2:	0.01594	a 3:	0.00000	
a 4:	0.09502	a 5:	0.00000	a 6:	0.05581	
a 7:	0.00000	a 8:	-0.50366	a 9:	-0.00000	
a10:	0.49972	a11:	0.00000	a12:	0.15736	
a13:	-0.00000	a14:	-0.04431	a15:	0.00000	
a16:	-0.00486	a17:	-0.00000	a18:	0.00185	
a19:	-0.00000	a20:	0.00141	a		

U.S. DEPARTMENT OF Office of Science

 \ominus \oplus

Lup)

Science

ENERGY

October 2021 Design #3 (margins for 4 layers in main coil)

New designs have matched margins – 15% over 20 T – in both Bi2212 and Nb₃Sn coils for the reference J_o

20T Bi2212/Nb₃Sn Hybrid Common Coil Design with 15% Margin -Ramesh Gupta, BNL

- Three hybrid configurations optimized for Bi2212 in series with Nb₃Sn having 15% margin for the reference J₀ (J_{overall})
- > They are ranging from 4 to 6 layers in main coil (+pole coil)
- > All designs are optimized for a good field quality as well
- Common coil design is well suited for the very high field hybrid dipoles and seems to be more efficient than other designs. They also seem to need lower number of layers and less conductor
- Space included for an intermediate mechanical structure for stress management (next step - optimize with proper analysis)

Click to edit Master title style

Old slides from the last presentation in September 2021

50 mm, 20 T Common Coil Bi2212/Nb₃Sn Hybrid Design DEVELOPMENT (Design Presented last time - September 2021)

Science

MDPCCCORC	Bi2212	(
Ins w	1.9	
Ins h	20.3	
Ins Area	38.570	
Current	12100	
Jo (A/mm^2)	313.72	
Bpeak (T)	20.458	A THE MAN
MDPH2	Nb₃Sn	
MDPH2 Ins w	Nb₃Sn 1.9	
MDPH2 Ins w Ins h	Nb₃Sn 1.9 13.6	
MDPH2 Ins w Ins h Ins Area	Nb ₃ Sn 1.9 13.6 25.840	
MDPH2 Ins w Ins h Ins Area Current	Nb₃Sn 1.9 13.6 25.840 12100	
MDPH2 Ins w Ins h Ins Area Current Jo (A/mm^2)	Nb ₃ Sn 1.9 13.6 25.840 12100 468.27	
MDPH2 Ins w Ins h Ins Area Current Jo (A/mm^2) Bpeak (T)	Nb₃Sn 1.9 13.6 25.840 12100 468.27 15.055	

20T Bi2212/Nb₃Sn Hybrid Common Coil Design with 15% Margin -Ramesh Gupta, BNL

Office of

Science

Field Quality in 20 T Common Coil Bi2212/Nb₃Sn Hybrid Design (last September 2021 design)

15.0000 REFERENCE RADIUS (mm) X-POSITION OF THE HARMONIC COIL (mm) 0.0000 169.0000 Y-POSITION OF THE HARMONIC COIL (mm) MEASUREMENT TYPE ALL FIELD CONTRIBUTIONS 0.2696E-03 ERROR OF HARMONIC ANALYSIS OF Br SUM (Br(p) - SUM (An cos(np) + Bn sin(np))

MAIN FIELD (T)

20.025677

All harmonics $< 10^{-4}$ (normal and skew)

NORMA	L RELATIVE MUI	LTIPOLES	(1.D-4):			SKEW	RELATIVE MULT	IPOLES	(1.D-4):		
b 1:	10000.00000	b 2:	0.00000	b 3:	0.00275	a 1:	0.00000	a 2:	-0.00613	a 3:	-0.00000
b 4:	0.00000	b 5:	0.00067	b 6:	-0.00000	a 4:	0.00048	a 5:	0.00000	a 6:	0.00101
b 7:	0.00388	b 8:	0.00000	b 9:	-0.78484	a 7:	-0.00000	a 8:	0.28080	a 9:	0.00000
b10:	0.00000	b11:	-0.33370	b12:	-0.00000	a10:	0.14694	a11:	0.00000	a12:	0.00855
b13:	-0.01708	b14:	0.00000	b15:	0.00605	a13:	0.00000	a14:	-0.00321	a15:	-0.00000
b16:	0.00000	b17:	-0.00669	b18:	0.00000	a16:	0.00545	a17:	-0.00000	a18:	0.00152

20T Bi2212/Nb₃Sn Hybrid Common Coil Design with 15% Margin -Ramesh Gupta, BNL

Splices in Common Coil Design (between two single layer coil)

In common coil design, splice (even between two types of coils), can be easily made in the middle of the coil where the field is very low

Bi2212

ENERGY

Perpendicular Nb-Ti splice in the low field region of BNL common coil dipole DCC017

11/2/2021

U.S. MAGNET DEVELOPMET Lorentz Forces @20 T in Bi2212/Nb₃Sn Hybrid

A Few Possible Layout of Away Pole Coils **Clearing Bore (others shown elsewhere)**

Office of

Science

Key Benefits of the Common Coil Design for HTS/LTS High Field Hybrid Dipoles

 Natural segmentation between HTS and LTS (and different cables)
 Easier tuning between HTS & LTS
 Coil layers move as a module

- without causing strain at ends (BNL common coil had 200 µm)
- Intermediate space for stress
 management structure. It can be
 easily adjusted, even at the late
 stage of the magnet construction

2/Nb₃Sn Hybrid Common Coil Design with 15% Margin -Ramesh Gupta, BNL 11/2/2021