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Introduction
• Any change in the field near a superconductor 

induces eddy currents. These eddy currents are 
of a persistent nature due to zero resistance in 
the superconductor. 

• Such eddy currents produce field distortions 
(harmonics) depending on several factors, such 
as superconductor properties, ramp direction, 
ramp rate, etc.

• An understanding of these effects is important in 
the measurements of superconducting magnets.
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Hysteresis in Harmonics
• The dependence of eddy currents on the ramp 

direction produces a hysteresis in the harmonics. 
• Generally, the eddy currents have symmetries 

similar to the main field harmonic.  Thus, only 
the allowed harmonics are commonly affected.

• For multilayer magnets with several multipoles, 
(e.g. corrector packages) the external field may 
have a symmetry different from the main field.  
In this case, hysteresis may be seen in some
unallowed harmonics also.
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Hysteresis in an Allowed Term
In a dipole 
magnet, a large 
negative
sextupole is 
produced at low 
fields on the UP 
ramp.  This 
changes to a 
large positive
sextupole on the 
DOWN ramp.-20
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Hysteresis in an Unallowed Term
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Cross section of a 
quadrupole magnet built 
at BNL for HERA, DESY. 
The magnet has 
concentric layers of 
normal and skew dipole, 
normal and skew
quadrupole and normal
sextupole,

Field seen by conductors 
in a given layer does not 
necessarily have the 
symmetry of that layer
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Hysteresis in an Unallowed Term
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Hysteresis in the
octupole term in the
quadrupole layer of 
a multi-layer magnet 
consisting of several 
concentric layers of 
normal and skew
multipole magnets.



USPAS, Santa Barbara, June 23-27, 2003 Animesh Jain, BNL7

Critical State Model
• The hysteresis in certain harmonics resulting 

from the ramp direction dependence of eddy 
currents can be understood qualitatively by a 
simple model known as the Critical State 
Model.

• In this model, it is assumed that eddy currents, 
with a density equal to the critical current 
density, Jc, are induced in the superconductor 
to counteract any change in the external field.



USPAS, Santa Barbara, June 23-27, 2003 Animesh Jain, BNL8

Superconductor in an External Field
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For low external 
fields (less than the 
Penetration Field), 
persistent currents 
are localized within 
a thickness, t, 
sufficient to shield 
the interior from 
the external field.
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Superconductor in an External Field

Bext

+Jc–Jc

Bext= Bp

By

x = +ax = –a

Xa

S
u
p
er

co
n
d
u
ct

o
r

in
 a

n
 e

x
te

rn
al

m
ag

n
et

ic
 f
ie

ld

Bp =µ
0
Jc a

Bext = Bp

At a certain field 
(the Penetration 
Field), persistent 
currents span the 
entire volume of the 
superconductor.

The field at the 
center is still zero.
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Superconductor in an External Field
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At external fields 
higher than the 
Penetration Field, 
persistent currents 
span the entire 
volume of the 
superconductor, but 
the interior is not 
completely shielded.
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Filament Magnetization: 1st Up Ramp
When the external field is 
increased from zero to a 
small value, Ba, shielding 
currents are set up such 
that the field inside is 
zero.  The boundary of 
shielding currents may be 
approximated by an ellipse.
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Magnetic Moment: 1st Up Ramp

dI= Jc dx.dy
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The persistent currents 
produce a magnetic moment. 
The Magnetization, or the 
magnetic moment per unit 
volume, can be calculated by 
integrating over elemental 
loops.
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Magnetization is proportional to the critical 
current density, and the filament diameter.
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Full Magnetization: Up Ramp
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At fields above the penetration field, the 
filament is fully magnetized.  In this simple 
model, the magnetization does not change as 
the field is increased further.
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Magnetization on the Down Ramp

When the field is reduced 
from the maximum field by 
an amount B0, new shielding 
currents are induced, which 
are opposite in sign to the 
earlier currents.

The geometry of the new 
shielding currents is such 
that a field of +B0 is 
produced inside the 
filament.

– Jc– Jc + Jc+ Jc
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Magnetization on the Down Ramp
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Full Magnetization: Down Ramp
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Starting from an
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with a magnetization 
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As the field is reduced from a certain maximum 
value, Bmax,  the superconducting filaments are fully 
magnetized again in the opposite direction. This 
happens at a field of Bmax – 2Bp.  This continues until 
the minimum field, Bmin, as long as the direction of 
field change is not reversed.
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Magnetization on the 2nd Up Ramp

– Jc– Jc + Jc+ Jc

If the field is increased 
again after reaching Bmin, 
new shielding currents are 
induced, which are opposite 
in sign to the earlier 
currents. 

If the applied field is
Bmin+B0, the geometry of 
the new shielding currents 
is such that a field of –B0
is produced inside the 
filament.
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Magnetization on the 2nd Up Ramp
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Magnetization Vs. Applied Field
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Spatial Variation of Magnetization
Even at the maximum 
field, some regions of 
coil may still be well 
below the 
penetration field.
Reversing current 
ramp direction can 
create a considerably 
complex shielding 
current pattern in 
such regions.

Regions of magnet coil with field less than 1 Tesla in a RHIC arc 
dipole at its maximum operating field of 3.45 T. Some regions in
the midplane turns can be below the penetration field.
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Calculating Harmonics from Persistent Currents
• Divide the entire magnet coil cross section into a 

suitable number of small segments. For example, each 
turn can be represented by N strands, uniformly 
distributed, where N is approximately equal to the 
actual number of strands in the cable.

• Calculate the local field (magnitude and direction) at 
each coil segment due to the transport current in the 
magnet.

• Calculate the critical current density, Jc, at each coil 
segment, based on experimental data and/or empirical 
parameterization. 
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Harmonics from Persistent Currents (Contd.)
• Calculate the magnetic moment of each segment, based 

on excitation history, copper to superconductor ratio, 
and filament diameter. The magnetization of each 
segment is also scaled by a factor , 
where Isegment is the transport current carried by the 
segment and             is the critical current for that 
segment. A simple model, such as one based on 
elliptical boundaries, can be used, although more 
complex algorithms have also been used.

• Calculate the harmonics produced at the center of the 
magnet by the magnetic moment of each segment.

( )segment
csegment II−1

segment
cI
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Field due to a Magnetic Moment
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Harmonics due to a Magnetic Moment
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Magnetic Moment in Iron Yoke
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Time Decay of Harmonics

While sitting at a constant 
field, e.g. at injection, the 
persistent current induced 
harmonics decay with time.

This effect has to be 
considered while measuring 
superconducting magnets.
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Time Decay of Harmonics
• Flux Creep: is caused by thermal activation and 

Lorentz forces due to transport current, effectively 
reducing Jc with time.  This is temperature 
dependent, and produces a logarithmic decay.

• Boundary Induced Coupling Currents: Different 
strands in a cable may carry different currents (e.g. 
due to spatial variations in time derivative of the 
field).  These coupling currents produce periodic 
axial variation of the field.  As the variations decay, 
regions which were at a higher field jump to the 
down ramp branch. Can vary magnet to magnet.
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Snapback of Harmonics

-23.5

-23.0

-22.5

-22.0

-21.5

-21.0

-20.5

-20.0

-19.5

-19.0

-18.5

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

Current (A)

Stop at 304 A & Ramp Again

Continuous Ramp at 1 A/s

Time decay
at 304 A

Snapback on
ramping again

at 1 A/s

N
or

m
al

 S
ex

tu
po

le
 (u

ni
ts

 a
t 2

5 
m

m
)

When the field is ramped 
up again, the decay is 
recovered very quickly, 
and the harmonics follow 
the usual current 
dependence.



USPAS, Santa Barbara, June 23-27, 2003 Animesh Jain, BNL29

Ramp Rate Effects
• The field quality is typically measured with 

rotating coils under DC excitation.
• If the magnet is being ramped at a high 

ramp rate, eddy currents can cause 
significant distortion of the field, and thus 
generate harmonics.

• The extent of distortion depends on the 
ramp rate and inter-strand resistance in 
multi-strand cables.
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Ramp rate dependence of the allowed 12-pole term 
measured in a 80 mm aperture quadrupole for RHIC.
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D1L103: Ramp Rate & Magnetization Effects

Ramp rate effects are best seen in 
the width of the hysteresis curve.
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Measurements of Dynamic Effects
• The harmonics decay rather rapidly in the 

beginning.
• The snapback occurs within a few seconds.
• The primary field is also changing with 

time, particularly when the current is 
continuously being ramped at a high rate.

• All these factors present unique challenges 
in the measurement of dynamic effects. The 
key measurement issue is time resolution.
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Techniques for “Fast” Measurements
• Rotate a harmonic coil as fast as practical to 

improve time resolution.  This allows 
measurements with ~ 1 s typical resolution.
(OK for time decay and snapback studies)

• The same technique can be used to measure 
harmonics during very slow current ramps. 

• The technique can be extended to somewhat 
higher ramp rates by refining the analysis.

• This method is impractical for very high ramp 
rates, or very short time scales.
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Techniques for “Fast” Measurements
• One could use non-rotating probes to overcome 

the time resolution problem.
• Without a rotating probe, one needs a multiple 

probe system to get harmonic information.
• A system of 3 Hall probes, for example, can 

measure the sextupole component. Similarly, 
NMR arrays have been built with many probes.

• Intercalibration of individual probes and non-
linear behavior are some of the problems that 
must be addressed in such techniques.
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A Harmonic Coil Array
(Under development at BNL)

16 Printed Circuit 
Windings, 10 layers

6 turns/layer

Nominally identical 
windings due to 
printed circuits

Non-rotating coil 
for very fast 
measurements of 
harmonics (~50 Hz) 
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Summary
• Persistent currents in superconductors produce 

history dependent harmonics.
• These harmonics decay with time, but also 

snapback as soon as the ramp is resumed.
• These dynamic effects demand particular care 

in the measurements of superconducting
magnets. Good time resolution is also required.

• Various techniques have been employed for 
dynamic measurements, but no single technique 
seems to be the “best”. (Promising R&D area.)
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