
Overview of
Magnetic Measurement 

Techniques
Animesh Jain

Brookhaven National Laboratory
Upton, New York 11973-5000, USA

US Particle Accelerator School on Superconducting Accelerator Magnets
Santa Barbara, California, June 23-27, 2003



USPAS, Santa Barbara, June 23-27, 2003 Animesh Jain, BNL2

Outline
• Nuclear Magnetic Resonance (NMR)/

Electron Paramagnetic Resonance (EPR)
• Hall Probes
• Magnetoresistors
• Fluxgate Magnetometers
• Flux Measurements with Pick Up Coils
• Magnetic Alignment – center and direction
• Summary
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NMR/EPR Principle
• A particle with a spin and a magnetic 

moment precesses around an applied field.
• The quantum energy levels are split into 

several discrete levels, depending on the
spin of the particle.

• The energy gap between these levels is 
proportional to the applied field.

• A resonant absorption of RF energy occurs 
at a frequency corresponding to energy gap.
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NMR/EPR Principle
I = Spin
γ = Gyromagnetic ratio

M = Magnetic Moment
= γ.h.I

Energy = B.M
Spin component along the 
field direction can take 
integral values from –I to 
+I. ⇒ Energy gap = γ.h.B

Frequency = γ.B

B

M

Magnetic
Moment

Applied
Field

Precession
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Gyromagnetic Ratio

Particle γ (MHz/T) Application

e– 28026.5 0.5 to 3.2 mT
1H 42.576396 0.04 to 2 T
2H 6.53569 2 T to 14 T

3He 32.4336 Cryogenic
27Al 11.0942 Cryogenic
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NMR Magnetometer
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Locking RF to NMR Resonance

B0

B0+∆B(t)

B0

B0+∆B(t)

NMR Signal
with

f and B0
mismatched

NMR Signal
with

f and B0
matched

Error

Resonance occurs 
at non-zero value 
of modulating 
signal.

NMR signals 
arrive at uneven 
intervals.

Resonance occurs 
at Zero value of 
modulating signal.

NMR signals 
arrive at even 
intervals.
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Requirements for NMR
NMR can provide measurement of magnetic 
field with absolute accuracy of 0.1 ppm. 
However, certain requirements must be met:

• Field must be stable (< 1% per second).
• Field must be homogeneous (< 0.1% per cm):

– The signal deteriorates; difficult to lock
– Probe positioning accuracy becomes critical.
One may locally compensate for the gradient using 
small gradient coils, to make measurements in 
inhomogeneous fields.
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The Hall Effect
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Charge carriers 
experience a Lorentz 
force in the presence 
of a magnetic field.

This produces a steady 
state voltage in  a 
direction perpendicular 
to the current and 
field.

G = Geometric factor 

RH = Hall Coefficient

θ⋅⋅⋅= cosHall BIRGV H



USPAS, Santa Barbara, June 23-27, 2003 Animesh Jain, BNL10

The Planar Hall Effect

B B||

I

VPlanar

+
ψ

Cu
rre

nt

If the field has a 
component in the plane 
defined by current flow 
and voltage contacts, 
then a signal is 
produced given by:

Important for 
mapping of 3-D fields.

)2sin(2
||Planar ψ⋅∝ BIV

The Planar Hall Effect can be minimized by a suitable choice of 
geometry ⇒ sin(2ψ) = 0.
In practice, the response of a Hall probe to the field direction is 
considerably more complex, requiring elaborate calibration.
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Compensating Planar Hall Effect
- 2 Matched Hall probes
- I directions as shown
- Major component = By

is in the plane of the
Hall probes.

Sum of Planar Hall Voltages 
is proportional to:
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ψ+°=ψ=
ψ+ψ

Based on:
R. Prigl, IMMW-11, BNL.
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Hall Measurement Specifications

• Typical Range: < 1 mT to 30 T

• Typical Accuracy ~ 0.01% to 0.1%

• Typical dimensions ~ mm

• Frequency response:  DC to ~ 20 kHz
(~ a few Hz for fully compensated signal)

• Time Stability:  ±0.1% per year
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Hall Measurement Advantages
• Simple, inexpensive devices, commercially 

available.
• Small probe size makes it suitable for a 

large variety of applications.
• Can measure all components of field.
• Particularly suited for complex geometries, 

such as detector magnets.
• Can be used for fast measurements.
• Can be used at low temperatures.
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Hall Measurement Disadvantages
• Non-linear device, requires elaborate 

calibration of sensitivity for each probe.
• Sensitive to temperature: Calibrate as a 

function of temperature; Keep temperature 
stable;  Design compensated probes.

• Long term calibration drift.
• Planar Hall effect can pose a problem for 

mapping 3-D fields. Special geometries are 
needed for measuring minor components.
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Magneto-Resistors
B

I

V
NiSb Precipitates

InSb Slab

Field bends 
the current 
path, thus 
altering the 
resistance.
Hall voltage 
tends to 
reduce this 
effect.

NiSb precipitates “arrest” the build-up of charge on the 
sides; Non-linear device; Insensitive to polarity; Large 
temperature dependence; Modest sensitivity.
Based on:  L. Bottura, Field Measurement Methods, CERN School on 
Superconductivity, Erice, May 8-17, 2002.



USPAS, Santa Barbara, June 23-27, 2003 Animesh Jain, BNL16

Fluxgate Magnetometers
B

excitation
coil

bias 
coil

detection 
coil

+Bexcitation

-Bexcitation

B

excitation
coil

bias 
coil

detection 
coil

+Bexcitation

-Bexcitation

Courtesy:  L. Bottura, CERN.

Excitation Coil:
AC current drives 
a pair of 
ferromagnetic 
needles to 
saturation.
Detection Coil:
Detects Zero 
field condition.
Bias Coil:
Maintains a zero 
field condition.
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Fluxgate Principle: Zero Field
M
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Excitation 
Profile (H ) 
is symmetric

Based on:  L. Bottura, CAS on 
Superconductivity, Erice, 2002

Zero output in 
detection coil
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Excitation 
Profile (H ) is 
asymmetric Based on:  L. Bottura, CAS on 

Superconductivity, Erice, 2002

Output of 
detection coil

Fluxgate Principle: Non-Zero Field
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Fluxgate Characteristics
• Highly sensitive, linear, directional device.
• Typical field range ~ a few mT.

(Limited by capability of the bias coils)
• Bandwidth:  DC to ~ 1 kHz.
• Sensitivity: ~ 20 pT (~1 nT commercial).
• Accuracy: ~ 0.1%

(depends on calibration and stability)
• Used in navigation, geology, mapping of 

fringe fields, etc.
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excitation
coil

bias
coil

detection
coil

B

I

Current to be 
measured

Courtesy:
L. Bottura, CERN.

DC Current 
Transformer

Senses magnetic 
field produced by a 
current carrying 
conductor passing 
through a toroidal
core.
Used for accurate 
measurement of high 
currents
(~10-100 ppm typical)

DCCT: A Special Fluxgate
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Flux Measurements: Induction Law
Flux through a coil defined 
by the surface S is:

B

S
V(t)

Coil

∫ ⋅=Φ
S

d SB

If the flux linked varies 
with time, a loop voltage is 
induced, given by:









⋅−=

Φ
−= ∫

S

d
dt
d

dt
dtV SB)(

The time dependence may be caused 
by either a varying field or a varying 
surface area vector, or both.
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Flux Measurements
Time dependence of flux gives:

B

S
V(t)

Coil









⋅−=

Φ
−= ∫

S

d
dt
d

dt
dtV SB)(

The change in flux is given by:

⌡
⌠ ⋅−=Φ−Φ
end

start

t

t

startend dttV )(

and can be measured by 
integrating the voltage signal.

To know the flux at a given instant, one needs to know Φstart

⇒ (1)  Use Φstart = 0;   (2)  Flip Coil/Rotating coil: startend Φ=Φ m
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a
b

h

Point Coil 
Insensitive up to
4th order spatial 
harmonic with 
proper choice of 
height and radii.

Rc

X

Y

θ
π/m

θ'=θ+π/(2m)

Multipole Coil 
Sensitive to only odd 
multiples of a specified 
harmonic (Morgan Coils)

Flat Coil (Line or Area Coil) 
–Fixed coil; Varying field
–Flip Coil/Moving Coil; Static field
–Rotating Tangential/Radial

Common Coil Geometries
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Flux Measurements: Hardware

± 5 VVin(t) G 0-10 V

Counters

N

NrefVref
(+5 V)

Reference
frequency
fref = α fmax

VFC
10 V = fmax

Digital Integrator: 
Directly gives 
change in flux.
10-100 ppm
accuracy.

Digital Votmeter: 
Gives rate of change
of flux. Numerical 
Integration and/or 
well controlled coil 
movement is needed.
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Measurements with Pick up Coils
• Simple, passive, linear, drift-free devices.
• Require change in flux ⇒ ramp field with 

static coil, or move coil in a static field. Pay 
attention to ramping/moving details. 

• Measure flux, not field. ⇒ Calibration of 
geometry very important; limits accuracy.

• Field variations across the coil area must be 
accounted for ⇒ harmonic analysis.

• Field harmonics can be measured at ppm level.
• Field direction can be measured to ~ 50 µrad.
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Determination of Magnetic Center

MAGNET

To Integrator

X-Y Stage Wire

Stretched Wire Measurements
• Move a stretched wire in a magnet
• Measure change in flux for various 
types of motion.

• Use expected field symmetry to 
locate the magnetic center.

Colloidal Cell
• Place ferromagnetic 
fluid in the field

• Illuminate with 
polarized light

• Observe with 
crossed analyzer
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Rotating Coils
• Angular Encoder and 
Gravity Sensors

• Accuracy 50-100 µrad
• Frequent re-calibrations

EncoderEncoder

Gravity Gravity 
SensorsSensors

CoilCoil
Determination of Field Direction

LASER

BEAM
SPLITTER

MAGNETIC
NEEDLE

MIRROR

OPTICAL
FILTER

POSITION SENSITIVE DETECTOR

Mirror
& Needle

• For solenoids
• Resolution
~ 10 µrad

Based on: C. Crawford et al., FNAL and BINP, Proc. PAC'99, p. 3321-3
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Summary
• Numerous methods exist for measurement of 

magnetic fields. Only some of them are in common 
use for measuring accelerator magnets.

• NMR technique is the standard for absolute accuracy, 
but can not be used in all situations.

• Hall probes are very popular for point measurements, 
such as for field mapping of detector magnets.

• A variety of pick up coils are the most often used 
tools for characterizing field quality in accelerator 
magnets.

• Innovative techniques have been developed for 
alignment measurements to suit various applications.
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For More Information
• Knud Henrichsen’s bibliography:

http://mypage.bluewin.ch/hera/magnet

• CERN Accelerator Schools on Magnetic Measurements:
– March 16-20, 1992, Montreux (CERN 92-05, 15 Sep. 1992)
– April 11-17, 1997, Anacapri (CERN 98-05, 4 Aug. 1998)

• Proceedings of Magnet Measurement Workshops:
– IMMW-1 (1977) to IMMW12 (2001); IMMW13 (May 2003)

• Proceedings of Particle Accelerator Conferences:
– PAC (1965-2001); EPAC (1988-2002)

• Proceedings of Magnet Technology Conferences:
– MT-1 (1965) to MT-17 (2001).
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