Harmonic Description of 2-Dimensional Fields

Animesh Jain Brookhaven National Laboratory Upton, New York 11973-5000, USA

US Particle Accelerator School on Superconducting Accelerator Magnets Santa Barbara, California, June 23-27, 2003

Fields in Free Space: Scalar Potential

- $\nabla . \mathbf{B}=0$ (Always true)
- In a region free of any currents or magnetic material, $\nabla \times \mathbf{B}=0$, and \mathbf{B} may be written as the gradient of a scalar potential, $\mathbf{B}=\nabla \Phi$
- The two equations above may be combined to obtain the Laplace's equation for the scalar potential, Φ_{m},

$$
\nabla^{2} \Phi_{m}=0
$$

2-D Fields in Free Space

 and

$$
\nabla^{2} \Phi_{m}=0
$$

- Most accelerator magnet apertures have a cylindrical symmetry, with a length much larger than the aperture. In such situations, the field away from the ends can be considered 2-dimensional, and the general solution can be expressed in a relatively simple harmonic series.

Commonly Used Coordinate System

Y-Axis (TOP)

> Users of magnetic measurements data may use a system oriented differently, often requiring suitable transformations of the measured harmonics.

View from the Lead End of the Magnet
$B_{y}(r, \theta)=B_{r} \sin \theta+B_{\theta} \cos \theta$

Solution in Cylindrical Coordinates

 For no z-dependence (2-D fields),$$
\nabla^{2} \Phi_{m}=\left(\frac{1}{r}\right) \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{m}}{\partial r}\right)+\left(\frac{1}{r^{2}}\right)\left(\frac{\partial^{2} \Phi_{m}}{\partial \theta^{2}}\right)=0
$$

writing $\Phi_{m}(r, \theta)=R(r) \Theta(\theta)$, and imposing the conditions

$$
\Theta(\theta+2 \pi)=\Theta(\theta) ; \quad R(r)=\text { finite at } r=0
$$

we can get the solution of the Laplace's equation in terms of a harmonic series.

2-D Fields: Harmonic Series

- Components of 2-D fields in cylindrical coordinates:

$$
\begin{aligned}
& B_{r}(r, \theta)=\sum_{n=1}^{\infty} C(n)\left(\frac{r}{R_{r e f}}\right)^{n-1} \sin \left[n\left(\theta-\alpha_{n}\right)\right] \\
& B_{\theta}(r, \theta)=\sum_{n=1}^{\infty} C(n)\left(\frac{r}{R_{r e f}}\right)^{n-1} \cos \left[n\left(\theta-\alpha_{n}\right)\right]
\end{aligned}
$$

- $C(n)=$ Amplitude,$\alpha_{n}=$ phase angle of the 2n-pole term in the expansion.
- $R_{r e f}=$ Reference radius, arbitrary, typically chosen \sim the region of interest. $C(n)$ scales as $R_{r e f}^{n-1}$

2-D Fields: Cartesian Components

- Cartesian components of \mathbf{B} may be written as:

$$
\begin{aligned}
& B_{x}(r, \theta)=\sum_{n=1}^{\infty} C(n)\left(\frac{r}{R_{r e f}}\right)^{n-1} \sin \left[(n-1) \theta-n \alpha_{n}\right] \\
& B_{y}(r, \theta)=\sum_{n=1}^{\infty} C(n)\left(\frac{r}{R_{r e f}}\right)^{n-1} \cos \left[(n-1) \theta-n \alpha_{n}\right]
\end{aligned}
$$

- A Complex field, $\boldsymbol{B}(\boldsymbol{z})=B_{y}+i B_{x}$, where $z=x+i y$, combines the 2 equations above:

$$
\boldsymbol{B}(\boldsymbol{z})=\sum_{n=1}^{\infty}\left[C(n) \exp \left(-i n \alpha_{n}\right)\right]\left(\frac{\boldsymbol{z}}{R_{\text {ref }}}\right)^{n-1}
$$

2-D Fields: Normal \& Skew Terms

$$
B(z)=B_{y}+i B_{z}=\sum_{n=1}^{n}\left[(\tau n) \exp \left(-i n \alpha_{n}\right)\right]\left(\frac{z}{R_{r y}}\right)^{n-1}
$$

Simple power series, valid within source-free zone.

Analytic Functions of a Complex Variable

Any function of the complex variable, \boldsymbol{z}, given by

$$
\boldsymbol{F}(\boldsymbol{z})=U(x, y)+i V(x, y)
$$

is an Analytic function of \boldsymbol{z}, if
$\left(\frac{\partial U}{\partial x}\right)=\left(\frac{\partial V}{\partial y}\right)$ and $\left(\frac{\partial U}{\partial y}\right)=-\left(\frac{\partial V}{\partial x}\right)$ Cauchy-Riemann

An analytic function can be expressed as a power series in \boldsymbol{z}. This series is valid within the circle of convergence, which extends to the nearest singularity. Analytic function does not depend on \boldsymbol{z}^{*}.

Analyticity of Complex Field

$$
\left(\frac{\partial U}{\partial x}\right)=\left(\frac{\partial V}{\partial y}\right) \text { and }\left(\frac{\partial U}{\partial y}\right)=-\left(\frac{\partial V}{\partial x}\right)
$$

Cauchy-Riemann Conditions.

Maxwell's equations in source free region:

$$
\nabla \cdot \boldsymbol{B}=0 \Rightarrow\left(\frac{\partial B_{y}}{\partial y}\right)=-\left(\frac{\partial B_{x}}{\partial x}\right) \quad(\nabla \times \boldsymbol{B})_{z}=0 \Rightarrow\left(\frac{\partial B_{y}}{\partial x}\right)=\left(\frac{\partial B_{x}}{\partial y}\right)
$$

Maxwell's equations $=$ Cauchy-Riemann conditions if we choose: $U(x, y)=B_{y}(x, y)$ and $V(x, y)=B_{x}(x, y)$ Thus, $\boldsymbol{B}(\boldsymbol{z})=B_{y}(x, y)+i B_{x}(x, y)$ is an analytic function of z. The analyticity is useful in dealing with 2-D problems in magnetostatics.

End Fields \& Short Magnets

- The field near the ends of a long magnet, or everywhere in a short magnet, has all three components. The simple 2-D expansion is not valid in these cases. However, if one considers only integrated values of field components, a similar 2-D expansion can be shown to be valid.
- For components of field at a point, a more complex expansion must be used.

Validity of 2-D Field Expansion

 Measuring coil

3-D Field Expansion

If the field harmonics vary along the axial direction, Z :

$$
\begin{aligned}
B_{r}(r, \theta, z) & =\sum_{n=1}^{\infty}\left[B_{n}(z)+\sum_{l=1}^{\infty} \frac{(-1)^{l}(n-1)!(2 l+n)}{2^{2 l} l!(l+n)!} B_{n}^{[2 l]} r^{2 l}\right]\left(\frac{r}{R_{r e f}}\right)^{n-1} \sin (n \theta) \\
& +\sum_{n=1}^{\infty}\left[A_{n}(z)+\sum_{l=1}^{\infty} \frac{(-1)^{l}(n-1)!(2 l+n)}{2^{2 l} l!(l+n)!} A_{n}^{[2]]} r^{2 l}\right]\left(\frac{r}{R_{r e f}}\right)^{n-1} \cos (n \theta) \\
\hline \hline B_{\theta}(r, \theta, z)= & \sum_{n=1}^{\infty}\left[B_{n}(z)+\sum_{l=1}^{\infty} \frac{(-1)^{l} n!}{2^{2 l} l!(l+n)!} B_{n}^{[2 l]} r^{2 l}\right]\left(\frac{r}{R_{r e f}}\right)^{n-1} \cos (n \theta) \\
& -\sum_{n=1}^{\infty}\left[A_{n}(z)+\sum_{l=1}^{\infty} \frac{(-1)^{2} n!}{2^{2 l} l!(l+n)!} A_{n}^{[2 l]} r^{2 l}\right]\left(\frac{r}{R_{r e f}}\right)^{n-1} \sin (n \theta)
\end{aligned}
$$

where the index [2l] denotes ($2 \ell)^{\text {th }}$ derivative with respect to z. If integral values are considered between Z_{1} and Z_{2} such that all derivatives are zero at the ends, then the above expression reduces to the 2-D expansion.

Interpretation of Harmonics

$$
\begin{aligned}
& B_{n+1}(\text { European })=B_{n}(\mathrm{US})=\left.\frac{R_{r e f}^{n}}{n!}\left(\frac{\partial^{n} B_{y}}{\partial x^{n}}\right)\right|_{x=0 ; y=0} \\
& A_{n+1}(\text { European })=A_{n}(\mathrm{US})=\frac{R_{r e f}^{n}}{n!}\left(\frac{\partial^{n} B_{x}}{\partial x^{n}}\right) \quad n \geq 0
\end{aligned}
$$

$$
B_{y}=\text { Constant } \Rightarrow \text { Dipole Only }
$$

$\left(d B_{y} / d x\right)=$ Constant \Rightarrow Dipole plus Quadrupole and so on ...

Examples of Harmonics

$B_{y}=B_{0}($ Constant $)$
Normal Dipole

$B_{y}=B_{0}+G \cdot x$
Normal Dipole $+$

$B_{y}=B_{0}+A \cdot x^{2}$
Normal Dipole $+$

Normal Quadrupole Normal Sextupole

Normalized Coefficients: Multipoles

- The coefficients B_{n} and A_{n} denote the absolute strength of the n-th harmonic, and are thus a function of the magnet excitation.
- The variation in the shape of the field as a function of excitation is best described using coefficients normalized by a suitable reference field, often chosen to be the amplitude of the most dominant term in the harmonic expansion. The normalized coefficients are also referred to as multipoles.

Normalized Coefficients: Multipoles

$$
\begin{aligned}
B_{y}+i B_{x} & =\sum_{n=n_{0}}^{\infty}\left[B_{n}+i A_{n}\right]\left(\frac{x+i y}{R_{\text {ref }}}\right)^{n-n_{0}} ; \begin{array}{l}
n_{0}=0: \text { US } \\
n_{0}=1: \text { European }
\end{array} \\
& =B_{r e f} \sum_{n=n_{0}}^{\infty}\left[b_{n}+i a_{n}\right]\left(\frac{x+i y}{R_{r e f}}\right)^{n-n_{0}} ; \text { where } \\
b_{n} & =B_{n} / B_{r e f} ; \quad a_{n}=A_{n} / B_{r e f}
\end{aligned}
$$

For a $2 m$-pole magnet, $B_{\text {ref }}=\left|B_{m}+i A_{m}\right|$
$\left(b_{n}, a_{n}\right)$ independent of current: LINEAR SYSTEM
$\left(b_{n}, a_{n}\right) \times 10^{4}=$ Normal \& Skew Multipoles in "UNITS"

Properties of Harmonics

- The Normal and Skew harmonics represent coefficients of expansion in a power series for the field components.
- The harmonics allow computation of field everywhere in the aperture (within a circle of convergence) using only a few numbers.
- These coefficients obviously depend on the choice of origin and orientation of the coordinate system. Measured harmonics, therefore, often need to be centered and rotated.

Field in a Non-circular Aperture

The 2-D field expansion in a harmonic series is valid only within the circle of convergence, which extends from the origin to the nearest current element or a magnetic material ("singularity").

For non-circular apertures, a single series expansion does not cover the entire "source-free region", even though the complex field $B_{y}+i B_{x}$ is an analytic function of $(x+i y)$ throughout the aperture. One can circumvent the problem by defining several series expansions, each centered at a different origin.

Field in a Non-circular Aperture

By having a significant overlap between the various circles of convergence, one can verify the integrity and accuracy of data by comparing results in the overlap regions.

The Vector Potential

Scalar potential approach does not provide a relationship between the currents and the field.
From Maxwell's equations:
$\nabla . \mathbf{B}=0 ; \quad \therefore \mathbf{B}=\nabla \times \mathbf{A} \quad \mathbf{A}$ is called the Vector Potential

$$
\nabla \times \mathbf{B}=\mu_{\mathbf{0}}(\nabla \times \mathbf{H})=\mu_{\mathbf{0}} \mathbf{J} \quad \text { In "free space", } \mathbf{B}=\mu_{0} \mathbf{H}
$$

$\nabla \times \mathbf{B}=\nabla \times(\nabla \times \mathbf{A})=\mu_{0}(\nabla \times \mathbf{H})=\mu_{0} \mathbf{J}$
$\nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J}$
Poisson's Equation

$$
\mathbf{A}(\mathbf{r})=\left(\frac{\mu_{0}}{4 \pi}\right) \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathrm{d} \mathbf{r}^{\prime}
$$

Summary

- The 2-D field, away from the ends, in the aperture of a typical accelerator magnet, can be described by a simple power series, valid within a circle extending to the nearest current source or magnetic material.
- A similar 2-D expansion is also valid for 3-D fields if one considers only integrated values of the field components such that there is no axial variation at the boundaries of the integration interval.

Summary (Contd.)

- The expansion coefficients may be interpreted as spatial derivatives of the field components.
- The expansion coefficients, or harmonics, depend on the choice of coordinate frame. This demands a careful description of the frame when quoting results of measurements. Similarly, users of the data also need to pay close attention to the coordinate definition.

Summary (Contd.)

- The complex field, $\boldsymbol{B}(\boldsymbol{z})=B_{y}+i B_{x}$, is an analytic function of the complex variable, \boldsymbol{z}.
- For non-circular apertures, one can describe the field in the entire aperture by defining several series expansions centered at different points in the aperture (analytic continuation).
- Scalar potential approach is unsuitable for establishing a relationship between the current and the field. A vector potential approach is more general.

