Design, Construction and Test of the HTS Quad for FRIB

R. Gupta, M. Anerella, J. Cozzolino, W. Sampson, Peter Wanderer, BNL, NY USA A Zeller, FRIB, MI, USA

FACILITY FOR RARE ISOTOPE BEAMS

a passion for discovery

- Motivation for HTS magnets in FRIB
 - HTS is now the baseline design for some critical magnets
- First Generation Design
 - 30 K operation
- Second Generation Design
 - 50 K operation and higher gradient
- Summary and future outlook

- Facility for Rare Isotope Beams (FRIB) will create rare isotopes for research in intensities not available anywhere today.
- It will be located at MSU in Michigan, USA
- To create intense rare isotopes, 400 kW beam hits the production target.
- Quadrupoles in Fragment Separator will be exposed to unprecedented level of radiation and heat loads
- BNL Magnet Division has designed, developed, built and tested High Temperature Superconducting (HTS) quadrupole for FRIB that provides a unique solution for these magnets

Large Radiation and Heat Loads

Magnets in FRIB Fragment Separator Region

Copper or NbTi Magnets don't satisfy the requirements

ASC2012 October 10, 2012

HTS Quad for FRIB

for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Magnet Division

Benefits of HTS Magnets

HTS magnets in Fragment Separator region over Low Temperature NbTi Superconducting magnets provide:

Technical Benefits:

HTS provides large temperature margin – HTS can tolerate a large local and global increase in temperature, so are resistant to beam-induced heating

Economic Benefits:

Removing large heat loads at higher temperature (40-50 K) rather than at ~4 K is over an order of magnitude more efficient.

Operational Benefits:

> In HTS magnets, the temperature need not be controlled precisely. This makes magnet operation more robust, particularly in light of large heat loads.

HTS Quad is now the baseline design in the fragment separator of FRIB

First Generation Design

- Short model built with ~5 km of ~4 mm wide first generation (1G) HTS tape from ASC
- ~30 K Operation, 10 T/m, 290 mm aperture

ASC2012 October 10, 2012

HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

HTS Quad Structures

Warm Iron Design to Reduce Heat Load

Mirror warm iron

ASC2012 October 10, 2012

HTS Quad for FRIB

FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division First Generation HTS Quad Test (operation over a large temperature range)

ASC2012 October 10, 2012

HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Magnet operated in a stable fashion with large heat loads (25 W, 5kW/m³) at the design temperature (~30 K) at 140 A (design current is 125 A).

Second Generation Design

- 20 K higher operating temp (50 K instead of 30 K) and 50% higher gradient (15 T/m instead of 10 T/m)
- Full size model built with 12 mm wide 2G tape from two vendors (SuperPower and ASC)

>~9 km equivalent of 4 mm tape

Magnetic Design

Uses 12 mm tape rather than 4 mm tape

Benefits of 12 mm Tape:

- Minimizes the number of coils and joints
- Current is higher (inductance is lower)
- Relative impact of local weak micro-spot less

ASC2012 Oc

October 10, 2012

HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Cryo-mechanical Structure

R&D Magnet in cryo-stat

(allows independent testing of four HTS coils)

Cut-away isometric view of the assembled magnet

(compact cryo design allowed larger space for coils and reduction in pole radius)

ASC2012 October 10, 2012

HTS Quad for FRIB

B Ramesh Gupta , ..., BNL, Al Zeller, FRIB

Winding of Second Generation HTS Racetrack Coil for FRIB

Superconducting Magnet Division

ASC2012 October 10, 2012

HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Coils Made with ASC HTS

Superconducting Magnet Division

One coil was wound without any splice

~210 m (~125 turns), 12 mm double HTS tape per coil.

ASC2012 October 10, 2012

HTS Quad for FRIB

Ramesh Gupta, ..., BNL, Al Zeller, FRIB

FRIB Coil Made With SuperPower Tape

SuperPower coil uses ~330 m 2G tape (~213 turns) per coil.

Fully wound coil with SuperPower tape with one splice

ASC2012 October 10, 2012

HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Superconducting

Magnet Division

Coils Assembled in Quadrupole Support Structure

ASC2012 Oc

October 10, 2012

HTS Quad for FRIB Ra

TRIB Ramesh Gupta , ..., BNL, Al Zeller, FRIB

Yoke Iron for FRIB Quad

ASC2012 October 10, 2012

HTS Quad for FRIB

FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

SuperPower

ASC

ASC2012 Octo

October 10, 2012

HTS Quad for FRIB

IB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Superconducting

Magnet Division

Completed 2G HTS Quad for FRIB

ASC2012 October 10, 2012

12 HTS Quad for FRIB

RIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Aperture of 2G HTS Quad for FRIB

Superconducting Magnet Division

ASC2012

October 10, 2012

HTS Quad for FRIB

FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

HTS Quad in Unique Cryostat

Superconducting Magnet Division

ASC2012 October

October 10, 2012

HTS Quad for FRIB

RIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

77 K Test Results of an Individual Coil

NATIONAL LABORATORY

DOKHAVEN

Measurement in liquid nitrogen (~77 K) of critical current in FRIB coil (large, outer, 126 turns made with ~210 meter tape from American Superconductor Corporation). The critical current in coil with 0.1 μ V/cm definition (total coil voltage 2100 mV) is 193.4 A.

ASC2012 October 10, 2012

HTS Quad for FRIB Ramesh Gupta , ..., BNL, Al Zeller, FRIB

Performance of SuperPower Coils (four of eight coils powered)

Four ASC coils were not powered

Field on SuperPower coils at 100 A

Internal splice on wrong tape side shows higher resistance. This is not an operational issue as the heat generated is negligible as compared to the energy deposition.

ASC2012

Performance of ASC Coils (four coils of eight powered)

ASC2012 0

October 10, 2012

HTS Quad for FRIB

RIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

77 K Test in Quadrupole Mode (all eight coils powered)

Currents used in quadrupole mode test at 77 K

SP	ASC
40	69.3
50	86.7
60	104

Field with ASC coils at 200A and SuperPower coils at 115.5 A

Design: SuperPower coils ~172 A and ASC coils ~300 A (at 40-50 K).

- Coils reached over 1/3 of the design current at 77 K itself.
- > Extrapolation to 40-50 K indicates a significant margin (next slides).

Actual 40 K test is expected in a few months.

ASC2012 October 10, 2012 HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

BROOKHAVEN NATIONAL LABORATORY Superconducting

Magnet Division

Impact of Irradiation on 2G HTS

• The maximum radiation dose was 3.4 X 10¹⁷ protons/sec (100 μ A.hr) with an energy of 142 MeV. Displacement per atom (dpa) per proton is ~9.6 X 10⁻²⁰. (Al Zeller)

• This gives ~0.033 dpa at 100 μ A.hr for the maximum dose.

It appears that YBCO is at least as much radiation tolerant as Nb₃Sn is (Al Zeller, MSU).

SuperPower and ASC samples show very similar radiation damage at 77 K, self field

ASC2012 October 10, 2012

012 HTS Q

HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

- We plan to start the test of second generation HTS quadrupole at lower temperature (38 K 50 K) during this calendar year
- We are also developing dipole and corrector magnets for the fragment separator region using HTS technology
- Some of the HTS development work for other magnets is also being carried out and/or proposed to be carried out through independent funding sources (e.g., SBIR with Muons, Inc.)

- HTS offers a unique magnet solution for challenging fragment separator environment of FRIB.
- It will face unprecedented level of energy and radiation loads.
- Test results for both first generation design and second generation design meet or exceed the expectations so far.
- HTS quad is now the baseline design for the quadrupoles in the fragment separator region.
- FRIB could be the 1st major accelerator with HTS magnets playing a crucial role.

Backup Slides

ASC2012 October 10, 2012 HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Magnet Division

Quench Protection in FRIB HTS Quad

- Quench protection of HTS coils (particularly at 4 K where current densities are high) is considered a major challenge in light of low quench velocities
- To overcome these challenge, an advanced quench protection system with fast electronics and low noise has been developed.
- Modern data acquisition and processing system is also developed.
- This system has been successfully tested for a number of HTS coils.
- As such quench protection in HTS magnets for FRIB is much less of an issue as compared to that in other HTS magnets. This is because of the fact that operating current is much lower at 40-50 K (instead of 4 K), and therefore, the current densities in copper (hence temperature rise) is much lower.

ASC2012 October 10, 2012

HTS Quad for FRIB

Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Superconducting

Quench Protection Studies in FRIB 2G HTS Coils

• Experimental studies were performed as a function of temperature to see what happens when coil go normal (due to quench, thermal runaway, etc).

Coils with very high current density in copper at quench survived: ~1500 A/mm²(ASC); ~3000 A/mm²(SuperPower)

FRIB design is more conservative (low risk, large margin for real machine): Current density in Cu is much lower: ~300 A/mm² (ASC) or ~700 A/mm² (SP)

ASC2012 October 10, 2012 HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Design Parameters of 1st Generation HTS R&D Quadrupole for FRIB/RIA

Superconducting Magnet Division

Parameter	Value
Aperture	290 mm
Design Gradient	10 T/m
Magnetic Length	425 mm (1 meter full length)
Coil Width	500 mm
Coil Length	300 mm (1125 mm full length)
Coil Cross-section	62 mm X 62 mm (nominal)
Number of Layers	12 per coil
Number of Turns per Coil	175 (nominal)
Conductor (Bi-2223) Size	4.2 mm X 0.3 mm
Stainless Steel Insulation Size	4.4 mm X 0.038 mm
Yoke Cross-section	1.3 meter X 1.3 meter
Minimum Bend Radius for HTS	50. 8 mm
Design Current	160 A (125 A full length)
Operating Temperature	30 K (nominal)
Design Heat Load on HTS coils	5 kW/m^3

ASC2012 October 10, 2012

esigi V • ener Parameter econd

Parameter	Value	
Pole Radius	110 mm	
Design Gradient	15 T/m	
Magnetic Length	600 mm	
Coil Overall Length	680 mm	
Yoke Length	~550 mm	
Yoke Outer Diameter	720 mm	
Overall Magnet Length(incl. cryo)	~880 mm	
Number of Layers	2 per coil	
Coil Width (for each layer)	12.5 mm	
Coil Height (small, large)	26 mm, 39 mm	
Number of Turns (nominal)	110, 165	
Conductor (2G) width, SuperPower	$12.1 \text{ mm} \pm 0.1 \text{ mm}$	
Conductor thickness, SuperPower	$0.1 \text{ mm} \pm 0.015 \text{ mm}$	
Cu stabilizer thickness SuperPower	~0.04 mm	
Conductor (2G) width, ASC	$12.1 \text{ mm} \pm 0.2 \text{ mm}$	
Conductor (2G) thickness, ASC	$0.28 \text{ mm} \pm 0.02 \text{ mm}$	
Cu stabilizer thickness ASC	~0.1 mm	
Stainless Steel Insulation Size	12.4 mm X 0.025 mm	
Field parallel @design (maximum)	~1.9 T	
Field perpendicular @design (max)	~1.6 T	
Minimum I _c @2T, 40 K (spec)	400 A (in any direction)	
Minimum I _c @2T, 50 K (expected)	280 A (in any direction)	
Nominal Operating Current	~280 A	
Stored Energy	37 kJ	
Inductance	~1 Henry	
Operating Temperature	50 K (nominal)	
Design Heat Load on HTS coils	5 kW/m ³	

ASC2012

HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

LN₂ (77 K) Test of Coils Made with ASC 1st Generation HTS

Each single coil uses ~200 meter of tape

12 coils with HTS tape in year #2

Note: A uniformity in performance of a large number of HTS coils. It shows that the HTS coil technology has matured !

Coils in FRIB Quad Structure @77 K (made with 2G HTS from SuperPower and ASC)

ASC2012 October 10, 2012

KH/K/FN

NATIONAL LABORATORY

Superconducting Magnet Division

HTS Quad for FRIB Ran

FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Radiation Damage Studies at BLIP

Superconducting Magnet Division

Figure 2. The BLIP facility.

Beam Tunnel Wing Wall

Figure 3. BLIP Beam Tunnel and Target Schematic

From a BNL Report (11/14/01)

The Brookhaven Linac Isotope Producer (BLIP) consists of a linear accelerator, beam line and target area to deliver protons up to 200 MeV energy and 145 µA intensity for isotope production. It generally operates parasitically with the BNL high energy and nuclear physics programs.

ASC2012 October 10, 2012 HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Key Steps in Radiation Damage Experiment

Superconducting Magnet Division

142 MeV, 100 μA protons

Ramesh Gupta, ..., BNL, Al Zeller, FRIB

ASC2012

October 10, 2012 HTS Quad for FRIB

KHKVEN **Relative Change in Ic due to Irradiation** NATIONAL LABORATORY of SuperPower and ASC Samples

similar radiation damage at 77 K, self field

ASC2012

Superconducting **Magnet Division**

Change in Critical Temperature (T_c) of YBCO Due to Large Irradiation

$I_{\rm c}$ (1µV/cm) as a function of temperature

Radiation Damage from 142 MeV protons in SP & ASC Samples (measurements at @77K in 1 T Applied Field)

ROOKHÆVEN

NATIONAL LABORATORY

Superconducting Magnet Division

- While the SuperPower and ASC samples showed a similar radiation damage pattern in the absence of field, there is a significant difference in the presence of field (particularly with respect to the field angle).
- HTS from both vendors, however, show enhancement to limited damage during the first 10 years of FRIB operation (good news)!!!

ASC2012

October 10, 2012

Energy Deposition Experiments

Superconducting Magnet Division

• Energy deposition experiments were carried out at different operating temperature.

•The amount of energy deposited on the HTS coils is controlled by the current in heaters placed between the two coils.

Magnet Division

Energy Deposition Experiment During Cool-down at a Constant Helium Flow-rate

Heaters between HTS coils were turned on while the magnet was cooling with a constant helium flow rate of 135 standard cubic feet (SCF)

Note: HTS coil remained superconducting during these tests when operated somewhat below the critical surface.

ASC2012 October 10, 2012

HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB

Cryo-cooler based HTS Magnets (an alternate option for FRIB and elsewhere)

Cryo-cooler based HTS magnet option offers an alternative to Helium based cryo-system.

- Coils reached <40 K overnight with cryocoolers
- 25 W heat load at 50 K can be removed by a number of cryo-coolers

October 10, 2012

ASC2012

HTS Quad for FRIB Ramesh Gupta, ..., BNL, Al Zeller, FRIB