BROOKHAVEN NATIONAL LABORATORY

Superconducting Magnet Division

Modular High Field Quadrupole Design for Electron-Ion Collider R. Gupta, M. Anerella, J. Cozzolino, B. Parker (BNL), S. Chouhan, S. Kahn, J. Kolonko, D. Larson, R. Scanlan, R. Weggel and E. Willen (PBL)

A Modular Quadrupole Design

- * A magnet design with simple flat racetrack coils
- ***** Achieves similarly high gradients as those achieved in cosine theta quadrupole designs
- ***** Modular design uses coil modules (cassettes) which allows rapid turn around and low cost R&D

Two Styles of Modular Design

Symmetric

<u>A</u>⁻■ <u>B</u>- <u>A</u>⁻

Simple

Most field comes from A⁺ (return A⁻) and B⁻(return B⁺). **B**⁺ and **A**⁻ make positive but only a small contribution. **NOTE:** The design needs about twice the conductor!

A Unique Feature of the Modular Design Different Apertures with the Same Coils

In a modular quadrupole design, R&D models of several high gradient EIC quadrupoles having different apertures can be demonstrated with the same racetrack coils by re-assembling them with different spacing providing a significant cost and schedule savings. This is not possible with the $\cos \theta$ designs.

Previous Racetrack Coil Quad Designs

Figure of merit: Highest gradient for the maximum field on the conductor

EIC High Gradient Quad Designs

	JLAB Requirements						
	Magnet	Magnetic	Distance	Good	New Inner	Outer	
pe	Strength	length	from the	field	Radius	radius (cm)	
FB3_US	-116	1	-7.70	3 cm	4	12	
FB2_US	149	1.5	-6.00	3 cm	4	12	
FB1_US	-141	1.2	-4.20	2 cm	3	10	
(FFB1	-88	1.2	7.60	4 cm	<mark>8.5</mark>	17.1	
FFB2	51	2.4	10.40	4 cm	12.6	24.7	
FFB3	-35	1.2	13.20	4 cm	14.8	26.7	

Panofsky Quadrupole

Superconducting quadrupole built with Nb₃Sn tapes (Sampson, 1967)

Project Considerations for the Cost of Magnet Development

- > Two major project costs for high field magnets:
- > Cost of material, plus cost of labor per magnet
- Cost of tooling, cost of engineering, and cost of R&D
- If the project needs only one or a few high performance magnets then (a) the cost of material is less important and (b) the cost of design, R&D and cost of tooling, etc. is more
- If there are a number of "one of a type" magnets, then a common tooling and a common R&D would reduce cost

Approach for Developing High Gradient Modular Quad for EIC

Primary goal:

Develop a modular quadrupole design for all high gradient Nb₃Sn quadrupoles in EIC that is simpler and flexible but as good as a typical cos θ design is **Key design considerations:**

For a few key IR magnets, the design should be efficient in creating field gradient; it need not be so efficient in minimizing the conductor usage **Racetrack coil magnets:**

It has been generally observed that the high field Nb₃Sn magnets made with the simple racetrack coils tend to perform better in the first model itself

Magnetic Designs RSYS=0 DMX =.105E-04 SMX =.105E-04 G=B(a,0)/ Cut in the iron for beam pipe Rel, field errors (units 10") 19. 18. 17. 16. G=B(a,0)/a

Contour plot of displacements from the Lorentz forces in the modular design D (simple style)

Blow up of the displacements (~10 µm) in the Nb₃Sn coils

Von Mises stress in the design D

Contour plot of displacements (~10 µm) in the symmetric design A

TABLE I										
Key Design parameters of Nb_3Sn Quadrupoles for the EIC IR										
	Q1PF	QFFB1_US	QFFB2_US	QFFB3_US						
EIC Design	BNL	JLab	JLab	JLab						
Aperture (mm)	96	60	80	80						
Field Gradient (T/m)	140	141	149	116						
Magnetic Length (m)	1.5	1.2	1.5	1.0						

TABLE III Modular Designs of 96 mm bore O1PF with a gradient of 140 T/M								
	Design A	Design B	Design C	Design D*				
Symmetric or Simpler	Symm	Symm	Symm	Simp				
Number of Layers	2	2	1	1				
Additional Pole block	Yes	No	No	No				
Number of turns	68	56	27	25				
Operating Current, A	12880	9,008	17,000	17,073				
% on the Loadline	60	62.7	88.2	87.1				
b ₆ @36 mm	-0.22	-1.15	0.02	-0.03				
b ₁₀ @36 mm	-0.95	-1.60	0.00	0.28				
b ₁₄ @36 mm	0.13	0.43	-0.36	-0.02				

*Design D only ($a_6 = -0.86$, $a_{10} = -0.15$ and $a_{14} = 0.03$).

SUMMARY

- > Demonstrated a good field quality in both "symmetric" and "simpler" modular quadrupole designs.
- > Demonstrated that the same racetrack coils can be used in the R&D models of Q1PF of eRHIC at BNL, and as well as several JLEIC quadrupoles (QFFB1_US, QFFB2_US and QFFB3_US) of JLab.
- > Mechanical design and assembly work still to be performed during the Phase I SBIR.
- > Proof-of-principle quadrupole for EIC based on the modular design will be built and tested during the Phase II SBIR, if funded.