

http://www.bnl.gov/magnets/staff/gupta/

High Field Magnet Potential of Bi-2212

Ramesh Gupta

- BNL Experience
- Issues with Bi-2212 magnets
- Future R&D Possibilities

2212 Workshop

National High Magnetic Field Laboratory Tallahassee FL 32310 November 6, 2006

High Field Magnet Potential of Bi-2212, Ramesh Gupta, 2212 Workshop at Tallahassee, Nov. 6, 2006

HTS Cables: A Remarkable Progress

Superconducting

Magnet Division

Above measurements are up to Year 2003. Short length indicated above, are now available in long length (~200 meter).

→ Modern HTS Cables Carry A Significant Current!

High Field Magnet Potential of Bi-2212, Ramesh Gupta, 2212 Workshop at Tallahassee , Nov. 6, 2006

HTS Coils and Magnets @ BNL

Superconducting

Magnet Division

TABLE II

Coils and Magnets Built at BNL with BSCCO 2212 Cable. I_c is the Measured Critical Current at 4.2 K in the Self-Field of the Coil. The Maximum Value of the self-Field is listed in the Last Column. Engineering Current Density at Self-Field and at 5 T is also given.

Coil /	Cable	Magnet	Ic	$J_{e}(sf)[J_{e}(5T)]$	Self-
Magnet	Description	Description	(A)	(A/mm^2)	field, T
CC006	0.81 mm wire,	2 HTS coils,	560	60	0.27
DCC004	18 strands	2 mm spacing		[31]	
CC007	0.81 mm wire,	Common coil	900	97	0.43
DCC004	18 strands	configuration		[54]	
CC010	0.81 mm wire,	2 HTS coils (mixed	94	91	0.023
DCC006	2 HTS, 16 Ag	strand)		[41]	
CC011	0.81 mm wire,	74 mm spacing	182	177	0.045
DCC006	2 HTS, 16 Ag	Common coil		[80]	
CC012	0.81 mm wire,	Hybrid Design	1970	212	0.66
DCC008	18 strands	1 HTS, 2 Nb ₃ Sn		[129]	
CC023	1 mm wire,	Hybrid Design	3370	215	0.95
DCC012	20 strands	1 HTS, 4 Nb ₃ Sn		[143]	
CC026	0.81 mm wire,	Hybrid Common	4300	278	1.89
DCC014	30 strands	Coil Design		[219]	
CC027	0.81 mm wire,	2 HTS, 4 Nb ₃ Sn	4200	272	1.84
DCC014	30 strands	coils (total 6 coils)		[212]	

Five Accelerator Type R&D Magnets

HTS from Showa Cables made at LBL

Magnet Structures for Bi-2212

Superconducting

Magnet Division

High Field Magnet Potential of Bi-2212, Ramesh Gupta, 2212 Workshop at Tallahassee , Nov. 6, 2006

HTS in a Hybrid Magnet

- Perfect for R&D magnets now. HTS is subjected to similar forces that would be present in a future high performance all HTS magnets. Therefore, several technical issues will be addressed.
- Field in outer layers is ~2/3 of that of the 1st layer.
 Use HTS in the 1st layer (high field region) and
 LTS in the other layers (low field regions).

High Field Magnet Potential of Bi-2212, Ramesh Gupta, 2212 Workshop at Tallahassee , Nov. 6, 2006

2212 Rutherford Cable Carry A Significant Current in Magnet Coil

High Field Magnet Potential of Bi-2212, Ramesh Gupta, 2212 Workshop at Tallahassee , Nov. 6, 2006

Quench Protection in HTS Coils

Superconducting Magnet Division

- To learn, perhaps you have to burn ! And we certainly did that (see below).
- In magnet DCC014 one of the two HTS coils was damaged (burnt-out) during the test after two quenches. The quench protection (as used in LTS coils) was unable to protect the high performance HTS coil.
- Slow transition from superconducting to normal state. Low quench propagation velocities in HTS. 1 μ V/cm (industry definition of Ic) is too liberal (and too dangerous) to be used in operating a coil.
- Even 0.1 μ V/cm, may be too liberal. In fact LTS type thinking may not be appropriate at all for HTS magnet quench detection and protection.

Before Test

After Test

High Field Magnet Potential of Bi-2212, Ramesh Gupta, 2212 Workshop at Tallahassee , Nov. 6, 2006

Quench Detection and Protection in HTS magnets

- HTS is so different from LTS that LTS type of thinking and experience may not be appropriate at all for HTS.
- In addition, HTS offers different opportunities which were not attractive in LTS.
- HTS has a temperature margin much larger than LTS
- HTS magnet can easily tolerate 5-10 degree higher local temperature whereas LTS magnet does not.
- HTS magnet can keep operate at 5-10 degree higher temperature for a while (it is just a question of heat load) and then can actually recover.
- Quench propagation (in HTS thinking, whatever that is) is slow.
- Think in terms of "thermal runaway" and not in terms of "quench".
- Monitor temperature at several places. This may a better and more appropriate indicator for HTS.
- Monitor the increase in temperature and the change in slope (Temp vs. Time).
- People dealing with HTS in other applications have suggested that shut down the magnet if there is a change in slope. This may be at well below even 0.1 μ V/cm.
- In this scenario, it may be safe to shut down the magnet in the time available (think HTS). Or give it a chance to recover while operating at a lower current.

Some Major Features of BNL Nb₃Sn 10⁺ T React & Wind Common Coil Dipole

- We have recently a magnet that is unique for magnet R&D program.
- Large tall clear space (~240 mm) for testing coils in high background field
- Modular "common coil design" with racetrack coils having large bend radii

- Magnet tested @10.4 T (designed for over 12 T, field reduced due to certain choices)
- In a hybrid test, HTS coils will be at ~ 13 T.
- Ideal for testing various technical issues.
- Fast turn around. Magnet does not have to be dis-assembled for replacing one (or one set of) HTS coil(s) with another.
- Cost effective, rapid turn around structure.

High Field Magnet Potential of Bi-2212, Ramesh Gupta, 2212 Workshop at Tallahassee , Nov. 6, 2006