Superconducting Magnets for Future Colliders and Storage Rings

Ramesh Gupta
Superconducting Magnet Division
Brookhaven National Laboratory
Upton, NY 11973 USA
Our initiatives for future machines:

• A new magnet design for VLHC
 — with a possible application to a future RHIC upgrade

• Alternate designs for muon collider and storage ring magnets

• A cost effective magnet R&D program for developing innovative concepts and technologies in a systematic way

Not elaborated in this talk: Magnet work based on matured technologies (where most of our resources go)
The charge from VLHC Steering Committee:

... explore and develop innovative concepts that will result in significant cost reductions.
VLHC can be built with the present technology.

But the cost may be too high.

To change the cost substantially, we have to do things differently.

- Superconducting dipoles are the cost and technology driver and require a large lead time for magnet R&D.
- Their cost is significant (~1/4 of the total machine cost).
- Critically examine all major components and sub-systems. See if some of them can be eliminated. Alternate “magnet system design” can be springboard for bringing additional savings in the overall machine cost.
Present Magnet Design and Technology

Superconducting Magnet Division

- All magnets use Nb-Ti Superconductor
- All designs use cosine theta coil geometry
- The technology has been in use for decades.
- The cost is unlikely to reduce significantly.

RHIC magnet production sets new standards based on cost and performance (field quality and quench performance).

Figure 4.9: The Tevatron 'warm-iron' dipole (Tollestrup 1979).

Ramesh Gupta, BNL AP Seminar, March 23, 2000
• HTS in accelerator magnets: An exciting possibility, BNL is leading this initiative

• Applications: vlhc & muon colliders/storage rings

• May allow higher fields, higher operating temperature, higher heat loads and less stringent operating conditions

• However, the conventional magnet designs are not well suited for them (HTS is too brittle for them)
Superconducting Magnet Division

- **Simple 2-d geometry** with large bend radius (no complex 3-d ends)
- **Conductor friendly** (suitable for brittle materials - most are - Nb_3_Sn, HTS tapes and HTS cables)
- **Compact** (compared to single aperture LBL’s D20 magnet, half the yoke size for two apertures)
- **Block design** (for large Lorentz forces at high fields)
- **Efficient and methodical R&D** due to simple & modular design
- **Minimum requirements** on big expensive tooling and labor
- **Lower cost magnets** expected

Main Coils of the *Common Coil Design*
Field Lines at 15 T in a Common Coil Magnet Design

Aperture #1

Aperture #2

Place of maximum iron saturation
A good idea never dies; it gets re-invented in one or other form.

Danby: A person ahead of his time.

Common coil design is similar to double dipole design, except that at no place cable bends in a tight radius. A “conductor friendly” geometry is important since all high field superconductors (HTS, Nb$_3$Sn, etc.) are brittle.

Other features of common coil design: modularity, and easy-to-fabricate structure, etc.
R&D Magnet Design

A ~15 T Field Quality Magnetic Design

15 T is based on the best available Nb₃Sn conductor available today:

\[J_c = 2200 \, \text{A/mm}^2 \] (12T, 4.3K).

Goal: \(J_c = 3000 \, \text{A/mm}^2 \).

RHIC: 3.5 T
SSC: 6.6 T
LHC 8.4 T
(forces go as \(B^2 \))
Field Quality in a 15 T Common Coil Design

Typical Requirements:
~ part in 10^4, we have part in 10^5

Low saturation induced harmonics till 15 T with a single power supply.

As good field quality as in present day magnets (geometric, saturation & end harmonics).

Ramesh Gupta, BNL AP Seminar, March 23, 2000
A 4-in-1 magnet for a 2-in-1 machine

- **Superconductor**
 - Inject here at low field and accelerate to medium field
 - Transfer here at medium field and accelerate to high field
 - Good at high field (1.5-15T)
 - Good at low field (0.1-1.5T)

- **Iron yoke**
 - Compact size

- **Conductor dominated aperture**
 - Address AP issues. Compare notes with the studies on the Low Field Option.

- **Iron dominated aperture**

Superconducting Magnet Division

A Common Coil Magnet System for VLHC

May eliminate the need of a High Energy Booster (HEB)

Ramesh Gupta, BNL AP Seminar, March 23, 2000
In the proposed system, the High Energy Booster (HEB) - the entire machine complex - will not be needed. Significant saving in the cost of construction and operation.

- Many consider that HEB, in some ways was quite challenging machine: superconductor (2.5 µ instead of 6 µ filaments), bipolar magnets, etc.
SSC: 20+20 TeV; VLHC: 50+50 TeV

(1990 Estimates in US$)

This table has been used to obtain rough estimates in 1990 US$ in deriving cost savings from various proposals

<table>
<thead>
<tr>
<th>Project Component</th>
<th>Costs in $M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Accelerator Systems</td>
<td>1322</td>
</tr>
<tr>
<td>1.1.1 Management and Support</td>
<td>37</td>
</tr>
<tr>
<td>1.1.2 Linac</td>
<td>45</td>
</tr>
<tr>
<td>1.1.3 LEB</td>
<td>52</td>
</tr>
<tr>
<td>1.1.4 MEB</td>
<td>137</td>
</tr>
<tr>
<td>1.1.5 HEB</td>
<td>190</td>
</tr>
<tr>
<td>1.1.6 Collider</td>
<td>777</td>
</tr>
<tr>
<td>1.1.7 Test Beams</td>
<td>14</td>
</tr>
<tr>
<td>1.1.8 Global Systems</td>
<td>70</td>
</tr>
<tr>
<td>1.2 Magnet Systems</td>
<td>2326</td>
</tr>
<tr>
<td>1.2.1 Management and Support</td>
<td>33</td>
</tr>
<tr>
<td>1.2.2 HEB Magnet Production</td>
<td>209</td>
</tr>
<tr>
<td>1.2.3 Collider Magnet Production</td>
<td>2037</td>
</tr>
<tr>
<td>1.2.4 SSCL Test Facilities</td>
<td>47</td>
</tr>
<tr>
<td>2.0 Conventional construction</td>
<td>1285</td>
</tr>
<tr>
<td>2.1 Accelerator Facilities</td>
<td>777</td>
</tr>
<tr>
<td>2.2 Experimental Areas</td>
<td>155</td>
</tr>
<tr>
<td>2.3 Site and Infrastructure</td>
<td>135</td>
</tr>
<tr>
<td>2.4 Campus</td>
<td>67</td>
</tr>
<tr>
<td>2.5 Design & Construction Mgmt.</td>
<td>151</td>
</tr>
<tr>
<td>3.0 Project Management & Support</td>
<td>59</td>
</tr>
<tr>
<td>Contingency</td>
<td>921</td>
</tr>
<tr>
<td>Construction Project Subtotal</td>
<td>5913</td>
</tr>
<tr>
<td>4.0 R&D and Pre-Operations</td>
<td>1082</td>
</tr>
<tr>
<td>5.0 Experimental Systems</td>
<td>842</td>
</tr>
<tr>
<td>R&D, Pre-Operations and Expt'l Systems Subtotal</td>
<td>1942</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>7837</td>
</tr>
</tbody>
</table>
Common Coil Magnet System
(Estimated cost savings by eliminating HEB)

SSC: 20+20 TeV; VLHC: 50+50 TeV

Based on 1990 cost in US$

2 TeV HEB Cost in SSC (derived):
$700-800$ million

Estimated for 5 TeV (5-50 TeV vlhc):
\sim1,500 million (in 1990 US$)

A part of this saving (say \sim20-30%) may be used towards two extra apertures, etc. in main tunnel. Estimated savings \sim 1 billion.

Cost Distribution of Major Systems
(Reference SSC Cost: 1990 US $7,837$ million)

- **Main Collider**: 56.7%
- **Other Accl. & Facilities**: 23.3%
- **Experiments**: 10.7%
- **HEB**: 9.3%

(Derived based on certain assumptions)

Cost savings in equivalent 20xx $\$?$

Ramesh Gupta, BNL AP Seminar, March 23, 2000
Nb\(_3\)Sn superconductor, with the technology under use now, is expected to generate persistent current-induced harmonics which are a factor of 10-100 worse than those measured in Nb-Ti magnets.

In addition, a snap-back problem is observed when the acceleration starts (ramp-up) after injection at steady state (constant field).

Measured sextupole harmonic in a Nb-Ti magnet

Measured sextupole harmonic in a Nb\(_3\)Sn magnet

The iron dominated aperture in a common coil magnet system overcomes the major problem associated with magnets using Nb3Sn superconductor.
Advantages of Common Coil Magnet System with 4 Apertures (2-in-1 Accelerator)

- **Large Dynamic Range**

 ~150 instead of usual 8-20.

 May eliminate the need of the second largest ring. Significant saving in the cost of VLHC accelerator complex.

- **Good Field Quality**

 (throughout)

 Low Field: Iron Dominated

 High Field: Conductor Dominated.

 Good field quality from injection to highest field with a single power supply.

- **Compact Magnet System**

 As compared to single aperture D20, 4 apertures in less than half the yoke.

- **Possible Reduction in High Field Aperture**

 Beam is transferred, not injected

 - *no wait, no snap-back.*

 Minimum field seen by high field aperture is ~1.5 T and not ~0.5 T.

 The basic machine criteria are changed! Can high field aperture be reduced?

 Reduction in high field aperture => reduction in conductor & magnet cost.
Main magnet aperture has an appreciable impact on the machine cost. The minimum requirements are governed by the following two issues:

Magnet Technology Issues

The conventional cosine theta magnets are hard to build below certain aperture as the bend radius and the end geometry would limit the magnet performance. In the common coil design, the magnet aperture and magnet ends are completely de-coupled. The situation is even better than that in the conventional block designs as not only that the ends are 2-d but the bend radius is much larger, as it is determined by the spacing between the two apertures rather than the aperture itself. This means that the magnet technology will not limit the dipole aperture.

Accelerator Physics Issues

The proposed common coil system should have a favorable impact. The aperture is generally decided by the injection conditions. In the proposed system, the beam is transferred (not injected) in a single turn, on the fly, and the transfer takes place at a higher field. The magnets continue to ramp-up during beam transfer and thus the “snap-back” problem is bypassed. There is a significant difference at the injection from the conventional injection case. This and other progress in the field (feed-back system, etc.) should encourage us to re-visit the aperture issue.
In a conventional superconducting magnet design, the right side of the coil return on the left side. In a common coil magnet, coil from one aperture return to the other aperture instead.

- A combined magnet design is possible as the coils on the right and left sides are different.
- Therefore, combined function magnets are possible for both low and high field apertures.
- Note: Only the layouts of the higher energy and lower energy machines are same. The “Lattice” of the two rings could be different.
A Combined Function Magnet Option

(Estimated cost savings for VLHC)

SSC Project Cost Distribution
(Reference SSC Cost: 1990 US $7,837 million)

- Main Dipoles: 82%
- Main Quadrupoles: 10%
- Other Magnets: 8%

Collider Ring Magnet Cost Distribution

- Main Dipoles: 82%
- Main Quadrupoles: 10%
- Other Magnets: 8%

AP Challenge:
Retaining the benefits of the Synchrotron Damping in the High Field Magnet vlhc option.

SSC (20 TeV) Main Quads: ~$200 million; VLHC (50 TeV) Main Quads: ~$400 million (x2 not 2.5).
Additional savings from tunnel, interconnect, etc.
Estimated potential savings: ~$0.3-0.5 billion (1990 US$).

Total: $2,037 million

Cost savings in equivalent 20xx $?
Reduce steps and bring more automation in magnet manufacturing

Current procedure: make cable from Nb-Ti wires => insulate cable => wind coils from cable => cure coils => make collared coil assembly

Possible procedure: Cabling to coil module, all in one automated step - insulate the cable as it comes out of cabling machine and wind it directly on to a bobbin (module)
A multi-pronged approach:

- Lower cost magnets expected from a simpler geometry.
- Possibilities of applying new construction techniques in reducing magnet manufacturing costs.
- Possibilities of reducing aperture due to more favorable injection scenario in the proposed common coil magnet system design.
- Possibility of removing the high energy booster (the second largest machine) in the proposed system.
- Possibility of removing main quadrupoles (the second most expansive magnet order) in the proposed combined function magnet design.

Need to examine the viability of these proposals further; need to continue the process of exploring more new ideas and re-examine old ones (they may be attractive now due to advances in technology, etc.); need to keep focus on the bigger picture...

VLHC cost reduction may also come from other advances: cheaper tunneling, development in superconductor technology, etc.
The first common coil magnet was built and tested at LBL

A 6 T magnet using low grade (free) Nb₃Sn

RD2

1. The magnet reached plateau performance right away (plateau seems to be on the cable short sample, not wire short sample).
2. Didn’t degrade for a low horizontal pre-load (must for this design).
3. Didn’t degrade for a low vertical pre-load (highly desirable).
4. Didn’t degrade for a bigger hole (real magnets).
Now under construction at LBL:

~14 T common coil design with the best available Nb$_3$Sn conductor today.

The magnet reached the short sample field (~12.3 T) with only a few quenches.

Bss ~12.3 T

The first step towards high field common coil magnet: test outer coils with minimum gap.

Ramesh Gupta, BNL AP Seminar, March 23, 2000
Charge:
Build and Test a common coil magnet with NbTi

Purpose:
Validate “Common Coil Design” and provide a simple and efficient background field test facility for HTS coils

Resources:
None (almost)
Superconducting Magnet Division

Charge:

Continue Innovative Magnet Research

Design Field: 12.5 T

Conductor: Nb$_3$Sn (HTS in future magnets)

Technology: React and Wind

Challenges:

High Field: A Good Engineering Design is Critical

Resources: Limited

Strengths:

Demonstrated skills in designing and building cost effective high quality magnets

History in carrying out innovative magnet research that defines the field

The Team:

M. Anerella

J. Cozzolino

J. Escallier

G. Ganetis

A. Ghosh

R. Gupta

M. Harrison

G. Morgan

B. Parker

W. Sampson

P. Wanderer
Summary of Common Coil Magnet Work at Various National Labs

Common Coil Magnet Design at Fermilab

BNL
- **Invented it.**
 - Phase 1: Built and commissioned NbTi magnet with Nb$_3$Sn insert coils. Built and tested HTS insert coil in low field common coil mode. HTS coils are now ready to go as a part of a hybrid design with common coil magnet as a background field test facility.
 - Phase 2: High Field ~12.5 T, “React and Wind”, Nb$_3$Sn dipole, R&D Magnet Factory, HTS insert coils.

LBL
- **Got maximum support for building it.**
 - Next step ~14 T magnet with third coil.

FNAL
- Design and support work for an initial ~11 T magnet.
URHIC

Heavy Ions: 500 GeV + 500 GeV (1 TeV center of mass)
Protons: 1.25 TeV + 1.25 TeV (2.5 TeV center of mass)

<table>
<thead>
<tr>
<th>RHIC</th>
<th>URHIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GeV/u)</td>
<td>100 GeV + 100 GeV</td>
</tr>
<tr>
<td>Injector</td>
<td>AGS</td>
</tr>
<tr>
<td>Lattice</td>
<td>Separated Function</td>
</tr>
<tr>
<td>Dipole Fill Factor</td>
<td>~65% (+quad)</td>
</tr>
<tr>
<td>Dipole Design</td>
<td>Cosine Theta</td>
</tr>
<tr>
<td>Operating Field</td>
<td>3.5 T</td>
</tr>
</tbody>
</table>

Physics Potential?
A Conceptual Design

With Nb-Ti, Bo ~ 5 T
muon beam (circulating)

B_y = +5 T
electrons (trapped)

B_y = -1 T B_y = 0

In neutrino storage ring ~10%
energy deposition may be acceptable

Superconducting Magnet Division

Mike Harrison

Muon Beam
Superconducting Magnet Division

Possible Extension of Neutrino Storage Ring Dipole for Higher Energy Muon Collider Storage Ring

Nb$_3$Sn Version, $B_o \sim 8-9 \ T$
(for higher energy ring)

Another Possibility
HTS - higher field, higher temperature

Challenge:
- A higher field magnet is required for higher luminosity.
- A much lower energy deposition will be tolerated.

Possible scenarios for manipulating energy deposition:
- Make reverse field much higher that 1 T with additional coils to trap higher energy electrons
- Extend positive field region much further out by adding conventional coils on one side.

This will make decay particles hit metal further out and away from superconducting coils.
- Field on midplane is above 13 Tesla
- Superconductor is currently available Nb₃Sn---could also use HTS material
- Coils made as “react-and-wind”
- The cable needs to be optimized: larger diameter with smaller strands is probably better
- The Lorentz forces are contained in the individual blocks and do not pile up on the midplane as in conventional cos Θ magnets
- High gradient quadrupoles can be made with a similar design
Muon Collider Racetrack Dipole Design
(15 T, Nb$_3$Sn and 10$^{-5}$ Field Quality)

Hadron collider configuration

Racetrack coils clear the bore in this design

Powering differently changes common coil design test to muon collider design test

Eliminating these coils makes a design which clears the bore tube

React and Wind Technology

Note: A high stress test is created here

Tungsten & bore tube

Iron yoke with field lines (only half model is displayed)
Multi aperture dipole (Morgan, Kahn, et al.)

High gradient quadrupoles

High field racetrack coil Nb₃Sn quadrupoles for muon collider (didn’t look much advantageous over cosine theta at that time)
Cable testing for LHC magnets: Arup Ghosh

Insertion region magnets based on RHIC coils: Erich Willen

Table 1 Dipole magnets to be built by Brookhaven for the LHC. The coil aperture is 80 mm. The overall length of the magnets is approximately 10 meters.

<table>
<thead>
<tr>
<th>Name</th>
<th>Style</th>
<th>Number (Spares)</th>
<th>Aperture Separation (cold), mm</th>
<th>Operating Temperature, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Single Aperture</td>
<td>4(1)</td>
<td>---</td>
<td>1.9</td>
</tr>
<tr>
<td>D2</td>
<td>2-in-1</td>
<td>8(1)</td>
<td>188</td>
<td>4.5</td>
</tr>
<tr>
<td>D3a</td>
<td>Dual 1-in-1</td>
<td>2(1)</td>
<td>420</td>
<td>4.5</td>
</tr>
<tr>
<td>D3b</td>
<td>Dual 1-in-1</td>
<td>2(1)</td>
<td>382</td>
<td>4.5</td>
</tr>
<tr>
<td>D4a</td>
<td>2-in-1</td>
<td>2(1)</td>
<td>232</td>
<td>1.9</td>
</tr>
<tr>
<td>D4b</td>
<td>2-in-1</td>
<td>2(1)</td>
<td>194</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Table 2 Position parameters and fields required in the magnets at injection energy, nominal energy, and 8% above nominal energy. The numbers listed for the bend center-to-center distance and the deflection are those specified in Version 6.1 of the LHC lattice. The magnetic length of the magnets is 9.45 m.

<table>
<thead>
<tr>
<th>Magnet</th>
<th>IR Location</th>
<th>Bend Center-to-Center Distance, m</th>
<th>Deflection, m</th>
<th>Field (T) for E (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1/D2</td>
<td>1 & 5</td>
<td>87.424</td>
<td>0.097</td>
<td>0.176 2.742 2.954</td>
</tr>
<tr>
<td>D1/D2</td>
<td>2 & 8</td>
<td>63.116</td>
<td>0.097</td>
<td>0.244 3.797 4.091</td>
</tr>
<tr>
<td>D3/D4</td>
<td>4 left</td>
<td>41.766</td>
<td>0.097</td>
<td>0.215 3.343 3.602</td>
</tr>
<tr>
<td>D3/D4</td>
<td>4 right</td>
<td>40.884</td>
<td>0.113</td>
<td>0.220 3.415 3.679</td>
</tr>
</tbody>
</table>

Note: Above figures don’t include all magnets that are being contributed by BNL.
Oblate yoke (instead of conventional circular), allowed us to use LHC cryostat, post, etc. (significant saving in engineering design)

LHC magnets use RHIC coils. They use SS collars instead of phenolic spacers. Other design changes as well.

The first model magnet has been recently tested. It reaches the design field.
HERA Upgrades Magnets at BNL

- Magnets go inside HERA experimental detectors.
- Multilayer coils with dipole, quadrupole, skew quadrupole, skew dipole and sextupole windings.
- For GG, a short tapered magnet, we achieved 5×10^{-5} field uniformity out to 75% coil radius!
The Basic Guiding Principles for An Innovative R&D Program

Remember the next machine is 10+ years away

In addition to maintaining the expertise we have acquired, this is also a unique time to explore:

- Explore alternate concepts and technologies
- Explore new conductors (HTS) for high fields
- Use the “Magnet R&D Factory” approach:
 - faster turn-around is important to try ideas outside the “comfort zone”
A Modular Design for a New and Low-cost Magnet R&D Approach

Not only that we must learn how to make magnets cheaper, we must also learn (due to limited funding), how to do magnet research cheaper which will lead to eventually making the magnets cheaper.

- Replaceable coil module.
- Change cable width or type.
- Combined function magnets.
- Vary magnet aperture for higher fields.
- Study support structure.

 # Traditionally such changes required building a new magnet.
 # One can also can test modules off-line.

This is the time to explore and carry out an aggressive R&D program. Once the machine is funded, we are unlikely to take chances. The above facility allows that.
For high field magnets, we are interested in the “Low Temperature”, performance of “High Temperature Superconductors”.

At very high fields, HTS have a better performance.
High Field Magnets and High Temperature Superconductors (HTS)

Advancing Critical Currents in Superconductors

Critical Current Density, A/mm²

10,000

1,000

100

0

5

10

15

20

25

1.8 K

Nd-Ti-Ta

111

2212

HTS

2223

2212

Nd₂Al

Nd₅Sn

Nb₃Sn

But what really matters is the engineering current density (Jₑ)!

For high field magnets, we are interested in the “Low Temperature”, characteristic of “High Temperature Superconductors”.

Ramesh Gupta, BNL AP Seminar, March 23, 2000
Advantages of HTS

A significant efforts by Sampson & Ghosh at BNL on HTS cables (tapes), coils and magnets

Advantage of HTS: A slow transition to non-superconducting stage.
If there is a degradation or if the operating conditions become such that a part of the magnet can no longer remain in an ideal superconducting stage, then there is only a modest temperature rise locally. If the local temperature rise can be tolerated and if the heat can be removed, the magnet will continue to operate in a superconducting stage.

This is in contrast to a sharp transition to “normal zone” in conventional low temperature superconductors where the whole magnet must be switched to normal stage for protection.

This implies a more relax design and operating conditions for a magnet built with HTS.

The cost and performance issues still remain.
HTS have made significant progress, enough to make R&D magnets

- To be shown that it’s practical for large production (cost & technology)
- It takes long time to do magnet R&D (many technical questions remain)
- Start magnet R&D now, so that if the cost situation improves and if it can be made technologically feasible, we can use it in the next machine

*KAmp Rutherford cable: LBL-industry collaboration

Improvements in HTS Performance

ASC Short Rolled Multifilament (Bi,Pb)-2223/Ag

- **ASC BSCCO 2223**

Jc (A/cm², 77K, 0T)

<table>
<thead>
<tr>
<th>Year</th>
<th>B(T)</th>
<th>Jc (A/cm², 77K, 0T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>1991</td>
<td>2</td>
<td>16000</td>
</tr>
<tr>
<td>1992</td>
<td>3</td>
<td>24000</td>
</tr>
<tr>
<td>1993</td>
<td>4</td>
<td>32000</td>
</tr>
<tr>
<td>1994</td>
<td>5</td>
<td>40000</td>
</tr>
<tr>
<td>1995</td>
<td>6</td>
<td>48000</td>
</tr>
<tr>
<td>1996</td>
<td>7</td>
<td>56000</td>
</tr>
<tr>
<td>1997</td>
<td>8</td>
<td>64000</td>
</tr>
<tr>
<td>1998</td>
<td>9</td>
<td>72000</td>
</tr>
<tr>
<td>1999</td>
<td>10</td>
<td>80000</td>
</tr>
</tbody>
</table>

Ramesh Gupta, BNL AP Seminar, March 23, 2000
HTS in a Hybrid Magnet

- Perfect for R&D magnets now. HTS is subjected to the similar forces that would be present in an all HTS magnet. Therefore, several technical issues will be addressed.

- Also a good design for specialty magnets where the performance, not the cost is an issue. Also future possibilities for main dipoles.

- Field in outer layers is ~2/3 of that in the 1st layer. Use HTS in the 1st layer (high field region) and LTS in the other layers (low field regions).
Hybrid Common Coil Magnet at BNL

Superconducting Magnet Division

MAIN COIL

INSERT COIL

Ramesh Gupta, BNL AP Seminar, March 23, 2000
Initial R&D For Phase II
Common Coil Magnet Program

- Make several 10-turn coils (mini-coils) in their own modular structure.
- Test a pair of these mini-coils in a common coil geometry with a simple and compact external structure that can be directly put in a helium vessel for a faster turn-around.
- A pair of 10-turn coils made from the cable obtained from Berkeley gives ~8 T field for a minimum spacing.
- This “Magnet R&D Factory Approach” would provide us guidance in dealing with various issues related to this design and technology in a time and cost effective manner and encourage innovative magnet R&D.

This also becomes a magnet R&D test factory.

Ramesh Gupta, BNL AP Seminar, March 23, 2000
A Modular Design approach allows a dynamic R&D that was not possible before.

An important part of this high field magnet research is the coil module -- be it conductor manufacturing, coil manufacturing, insulation, stress management, or whatever.

The best is to test these concepts in a “magnet like” situation to avoid surprises/unknowns.

The critical module has a relatively moderate price tag. This allows different ideas, innovative R&D by small labs (or big labs) and industries.

Make this module anywhere and test it in the BNL common coil magnet facility. The forces, etc. are similar to that as in a future all HTS magnet.

Use the positive results in the next magnet.
A few examples of systematic studies in a modular approach

- Different technologies
 - Wind & React Vs. React & Wind
- Different conductors
 - Nb$_3$Al, HTS, etc.
- Different insulation
- Different geometry's
 - Tape, cable
- Stress management/High stress configuration
- Coil winding and Splicing

... and a variety of other things that are not included (especially those that are not included)

* A Dynamic Program with fast turn-around time for exploring new frontiers/ideas *
• An exciting program for developing innovative magnet designs and technologies

 » This is the need of the hour (year) to bring a large reduction in cost

• A new magnet system design for a possible lower cost VLHC and RHIC upgrade (URHIC)

• A conductor friendly approach for using “brittle” conductors (HTS, Nb₃Sn, etc.) in a competitive way