

High Field Solenoid Magnets

Ramesh Gupta Brookhaven National Laboratory, NY, USA December 4, 2014

CAPP/IBS at KAIST

Center for Axion and Precision Physics Research

Korea Advanced Institute of Science and Technology

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December

December 4, 2014 1

Contents

- Introduction to high field solenoid
- Summary of HTS magnet program at BNL

– Design, construction and test results

• Collaborative work with SuNAM

- Conductor testing

Summary/Outlook for CAPP high field solenoid

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014 2

Motivation for High Field Solenoid (slides from Yannis Semertzidis)

What's there to improve over ADMX?

$$P = \left(\frac{\alpha g_{\gamma}}{\pi f_a}\right)^2 V B_0^2 \rho_a C m_a^{-1} Q_L$$

- B², energy density
- Q, resonator quality factor
- B-field/resonator volume V
- Ampl. noise/physical temperature, S/N

B-field possibilities

- Magnetic field B:
 - Develop 25T magnet.
 - 35T magnet based on high $T_{\rm c}$.

High Field Solenoid Magnets

Ramesh Gupta, BNL

21

(CAPP) Axion dark matter plan

- We have started an R&D program with BNL for new magnets: goal 25T; then 35T. Currently all axion experiments are using <10T.
- Based on high $\rm T_c$ cables (including SuNAM, a Korean high $\rm T_c$ cable company). ~5 year program.

CAPP/IBS at KAIST, Korea December 4, 2014 3

Phase space for Superconducting Magnets

Superconductor in magnets must remain in the captive volume of:

- Field
- Temperature
- Current (density)

Phase Diagram

Conventional superconductors (NbTi and Nb₃Sn) generally operate at 4 K and applications rely on liquid helium for cooling

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December 4, 2014

High Temperature Superconductors (HTS) are also High Field Superconductors (HFS)

Superconducting Magnet Division

High Field Solenoid Magnets

Ramesh Gupta, BNL

Superconducting

A 35 T Hybrid (HTS/LTS) Design

UNITS Lenath mm Maan Flux Т Density Magn Field Am⁻¹ Magn Scalar Pot Α Wb Magn Vector Pot m⁻¹ Elec Flux Density C m[™] Elec Field V m⁻¹ Conductivity S m⁻¹ Current Density Amm Power W Force Ν J Energy Mass kq PROBLEM DATA 3 conductors **Field Point Local** Coordinates Local = Global FIELD EVALUATIONS

Line LINE 101 Carte (nodal) x=0.0, y=0.0 to 100.0, z

Must use expensive HTS in inner → smaller volume, higher field Could use cheaper LTS in outer → larger volume, lower field

HTS is the driver; however, HTS/LTS hybrid may eventually be more realistic on cost consideration, if the operation can be at ~4K

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea Do

HTS Magnet Programs at BNL (1)

- BNL has been active in developing HTS technology for well over a decade.
- We have used all types of HTS
 - Bi2212 (tape and Rutherford cable)
 - **Bi2223**
 - $-MgB_2$
 - YBCO (Second Generation)
- We have used about 50 km of HTS (normalized to the standard 4 mm tape equivalent) for various programs.
- We have designed, built and tested a large number of HTS coils and magnets at a temperature range of ~4 K to ~80 K.

- HTS magnet R&D on a wide range of programs:
 - High B, low T (similar to what is needed at CAPP/IBS)
 - Medium B, medium T (similar to what is needed at RISP/IBS)
 - High T, low B (many applications, only with HTS)
- We also have major program on magnets with conventional Low Temperature Superconductors (LTS) – NbTi and Nb₃Sn
- These varieties of programs help each other in developing a wider perspective while optimizing designs and sharing resources

High Field HTS Solenoid Programs (1) BNL/PBL Collaboration for Muon Accelerator Program (MAP)

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014 9

Path to 30⁺ T Solenoid

Modular R&D approach consisting of three coils:

- 1. Design >12 T HTS; Demonstrated ~16 T
- 2. >10 T HTS solenoid; Demonstrated in ½ coil >6 T (>9 T peak)
- **3.** >8 T LTS; Demonstrated ~7 T in a separate BNL program

~25 mm PBL/BNL solenoid, 14 pancakes, 700 meters of HTS from SuperPower High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014 11

NbTi (or Nb3Sn) Outer Solenoid

Superconducting

Magnet Division

Parameters	Value		
Wire, bare	1.78 mm X 1.14 mm		
Wire, insulated	1.91 mm X 1.27 mm		
Wire I_c specification (4.2 K, 7 T)	>700 A		
Turn-to-turn spacing (axial)	1.98 mm		
Turn-to-turn spacing (radial)	1.42 mm		
Number of layers (main coil)	22 (11 double layers)		
Additional trim layers in ends	4 (2 double layer)		
Length of additional trim layers	173 mm on each end		
Coil inner diameter	200 mm		
Coil outer diameter	274 mm		
Coil length	2360 mm		
Yoke length	2450 mm		
Maximum design field	6 T		
Current for 6 T	~440 A		
Peak Field on the conductor @ 6 T	~6.5 T		
Computed Short Sample @4.2 K	~7.0 T		
Stored energy @ 6 T	~1.4 MJ		
Inductance	~14 Henry		
Yoke inner diameter	330 mm		
Yoke outer diameter	454 mm		
Operating field (on the axis)	1 T to 6 T		
Relative field errors on axis	<6 X 10 ⁻³		

Two NbTi solenoids were built and tested to 6.6 T for BNL/RHIC e-lens (test stopped 10% above design field)
Nb₃Sn will give higher field but require reaction facilities (ReBCO

December 4, 2014

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea

High Field HTS Solenoid Programs (2) Superconducting Magnetic Energy Storage (SMES)

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014 13

SMES Options with HTS

Superconducting Magnet Division

- High Temperature Option (~65 K): Saves on cryogenics (Field ~2.5 T)
- High Field (~25 T) Option: Saves on Conductor (Temperature ~4 K)

Previous attempts:

LTS: up to ~5 T

HTS: few Tesla (high temp. to save on cryo)

Our analysis on HTS option:

Presently conductor cost dominates the cryogenic cost by an order of magnitude

High field HTS could be game changer:

- ✓ Very high fields: 25-30 T (E α B²)
 - Only with HTS (<u>high risk, high reward</u>)

Also: A medium field and medium temperature option (a new record <u>12.5T@27K</u> demonstrated, thanks to arpa-e)

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea

orea December 4, 2014

The Basic Demo Module

Aggressive parameters:

Field: 25 T@4 K (more than ever) Bore: 100 mm (large) Hoop Stresses: 400 MPa (>2X) Conductor: ReBCO (evolving)

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December 4, 2014 15

Conductor - ReBCO Tape

HTS tape: angular dependence

Measurements at NHMFL (earlier sample)

12 mm wide ReBCO tape with high strength hastelloy substrate

High Field Solenoid Magnets

Ramesh Gupta, BNL

Large Scale SMES <u>Concept</u> (1)

Superconducting Magnet Division

- A torus would consist of a large number of solenoid module
- Field becomes parallel => less amount of conductor required

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea Decer

Large Scale SMES <u>Concept</u> (2)

Superconducting Magnet Division

GJ scale GRID storage system that can fit in a room!
➢ Moreover, a small B_⊥ (<0.5 T) for a large B_{//} (30 T) means a major reduction in conductor cost (~1/5 with an optimized HTS)

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014 18

Design of the Basic Module The High Field Solenoid

High Field Solenoid Magnets Rames

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December 4, 2014

19

Parameters of the SMES Solenoid

Superconducting Magnet Division_

Stored Energy	1.7	MJ	
Currrent	700	Amperes	
Inductance	7	Henry	
Maximum Field	25	Tesla	
Operating Temperature	4.2	Kelvin	
Overall Ramp Rate	1.2	Amp/sec	
Number of Inner Pancakes	28		
Number of Outer Pancakes	18		
Total Number of Pancakes	46		
Inner dia of Inner Pancake	102	mm	
Outer dia of Inner Pancake	194	mm	
Inner dia of Outer Pancake	223	mm	
Outer dia of Outer Pancake	303	mm	
Intermediate Support	13	mm	
Outer Support	7	mm	
Width of Double Pancake	26	mm	

Very Similar **Design and Technologies** that are needed for **CAPP/IBS** solenoid

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea

December 4, 2014

20

HTS Single Pancake

Superconducting Magnet Division

BROOKHAVEN NATIONAL LABORATORY

Outer: ~210 meter 12 mm tape (258 turns)

- High strength HTS tape, co-wound with SS tape (for insulation and added strength)
- Thickness of SS tape and copper on HTS adjusted to optimize the performance

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December 4, 2014 21

Superconducting

Two Pancakes Connected with Spiral Splice Joint

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014 22

Inner and Outer Coils Assembled

Superconducting Magnet Division

Inner Coil (102 mm id, 194 mm od) 28 pancakes

Outer Coil (223 mm id, 303 mm od) 18 pancakes

Total: 46 pancakes

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea Dec

Coils, Test Fixtures and Support Structure

Pancake coils: inner and outer 77 K Test Fixture for outer

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014 24

Inner and Outer Coils

Superconducting Magnet Division

Inner (in support tube) High Field Solenoid Magnets Ramesh Gupta, BNL

Outer (prior to support tube) CAPP/IBS at KAIST, Korea December 4, 2014

Final Assembly

Superconducting Magnet Division

Outer inserted over inner coil

High Field Solenoid Magnets

Ramesh Gupta, BNL

SMES coil in iron laminations CAPP/IBS at KAIST, Korea December 4, 2014 26

Superconducting

Magnet Division

Test Results

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December 4, 2014

27

Superconducting

77 K Test of a Series of Double Pancakes (inner)

High Field Solenoid Magnets

Ramesh Gupta, BNL

77 K Test of a Series of Double Pancakes (outer)

Two pancakes powered in series

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December 4, 2014

Double Pancake 77 K Test

Superconducting Magnet Division_

one pancake good and other **2** pancakes with very pancake defective **2** pancakes with similar different critical current critical currents 40000.0 25000 20000 35000.0 30000.0 20000 <u>ک</u> 25000.0 15000 20000.0 15000.0 Voltage (µV) SMES 206 voltage (μv) 12000 المالية 10000 10000 10000.0 defective SMES 219(T) 10000 5000.0 SMES 202(B) good SMES 204(T) 0.0 5000 0 20 40 60 80 100 SMES 203(B) 5000 Current (A) 0 80 100 120 60 140 20 40 0 20 40 60 80 100 Current(A) Current (A) ž 20000.00 (10-25) Note: Thorough 77 K test of each pancake (25-50) 15000.00 -(0-222.5) DPC 2003 10000.00 – Linear ((0-10)) was an important part of a series for QA 5000.00

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea

0.00

100

80

Current(A)

HTS SMES Coil High Field Tests

Superconducting

Magnet Division

31

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea De

High Field Solenoid Magnets

12 Pancake Coil Test

- Energy (~125 kJ) extracted and dumped in the external resistor.
- 77 K re-test (after quench) showed that the coil remained healthy.

33

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014

Preparation for the Final Test

Superconducting Magnet Division

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December 4, 2014

34

Superconducting

SMES Coil Run on 5/21/14

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea

December 4, 2014

35

BROOKHAVEN NATIONAL LABORATORY Superconducting

• The design goal was: 1.7 MJ at ~700 A with 25 T at 4 K.

Magnet Division

- We tested the unit at several temperatures between 20-80 K, including the 350 Amp (12.5 T) test at 27 K.
- During one such test, the system tripped due to a data entry error at ~165 A – well below the earlier magnet test current.
- This trip resulted in damage to a few current leads in the inner coil. It appears that there was arcing, perhaps during shut-off.
- Since the test was not limited by the field performance, the coil still has the potential to reach higher field after repair.

4 mm wide SuNAM- ReBCO Tape Critical Current Measurements at field and 4.2 K

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December 4, 2014

37

- Samples are mounted on ITER-type barrels for I_c measurements in // field. Typical length used 0.5 m
- Measurements in //-field at 4.2 K using either a 12 T or 16 T solenoid magnet to provide background field
- For H-parallel to ab-plane: using SS barrel holder V-tap separation of 47 mm total length 235 mm.
- H-perpendicular to ab-plane: using U shaped sample V-tap separation 10 mm; total length 30 mm

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014

Pictures of Conductor Test Station

Superconducting Magnet Division

High Field Solenoid Magnets

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea December 4, 2014

39

Pictures of Conductor Test Station

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014 40

Superconducting

Magnet Division

High Field Solenoid Magnets Ramesh Gupta, BNL CAPP/IBS at KAIST, Korea December 4, 2014 41

V-I curves for the sections at 77 K and at 11 T, 4.2 K (field parallel)

Ratio of Ic(11T, 4.2K) and Ic(77K, SF) for all the sections

I _c (11T,4.2 K) /	XZ	ZN	NP	PA	AY	XY
I _c (77K, SF)	3.79	4.06	3.95	3.98	3.88	3.91

The different sections look fairly uniform

nkh/kven

NATIONAL LABORATORY

Superconducting

Ramesh Gupta, BNL

CAPP/IBS at KAIST, Korea

December 4, 2014

42

Test Summary SuNAM Sample (field perpendicular)

High Field Solenoid Magnets

Ramesh Gupta, BNL

In-field performance of SuNAM HCN04200 (measured at Grenoble)

High Field Solenoid Magnets

Ramesh Gupta, BNL

Recent Results from SuNAM

- Recent results (21 T test) from SuNAM show that the conductor is good for high field solenoids
- They were able to overcome somewhat poor in-field performance by grading the coil with different width tapes used in the design
- However that significantly increased the amount of conductor required (700 meter in BNL 16 T magnet vs 11.4 km in 21 T)
- It is known that SuNAM produces one of the best conductor for 77 K, selffield application. The mechanical properties of the conductor are good for high field applications as well (with additional reinforcement by SS tapes as used in BNL designs). However, the lift factor for in-field 4K critical current performance significantly lags behind the competitor currently
- SuNAM continues to make remarkable progress and there is no reason why this (high field performance) would not improve over time
- For now, a smart mixture of SuNAM (most part) and SuperPower (some part) should be interesting

SUMMARY (1)

- Even though we didn't reach the aggressive design goal of 25 T,
 in a big aperture (~100 mm) superconducting magnet with large
 hoop stresses (~400 MPa) in the first attempt, we did learn
 several things in the process beside creating new records.
- This provided a significant experience in using a large amount of coated conductor (over 6 km of 12 mm wide tape) in a demanding 4K, high field and a high stress application.
- Demonstration of a 12.5 T SMES coil at 27 K is a promising application of the coated conductor. The earlier most ambitious proposal was for 11 T at 20 K by Chubu Electric and Furukawa.
- The experience and technologies developed should also be useful in other applications, such as in NMR, ADMX, accelerators, etc.

- By coincidence, the 100 mm, 25 T solenoid design (fully engineered, developed for a completely different project,) is directly applicable to CAPP
- If no changes in the design are made, the magnet can be built quickly
 - Change in length is allowed as that can be accomplished by stacking more or less number of pancakes
- SuNAM conductor could be used for most part except for the pancakes in the ends
- We are excited and ready to see our work being used in a real application at CAPP