
Chapter 1.

REVIEWOFTHEFIELD

1.1. Introduction

High energy particle accelerators are now the primary means of discovering the basic

building blocks of matter and understanding the forces between them. In order to mini-

mize the cost of building these machines, superconducting magnets are used in essentially

all present day high energy proton and heavy ion colliders. The cost of superconducting

magnets is typically in the range of 20-30% of the total cost of building such machines. The

circulating particle beam goes through these magnets a large number of times (over hun-

dreds of millions). The luminosity performance and life time of the beam in these machines

depends signi�cantly on the �eld quality in these magnets. Therefore, even a small error

in the magnetic �eld shape may create a large cumulative e�ect in the beam trajectory to

throw the particles out of the magnet aperture. The superconducting accelerator magnets

must, therefore, be designed and constructed so that these errors are small. In this thesis

the research and development work will be described which has resulted in a signi�cant im-

provements in the �eld quality of the superconducting magnets for the Relativistic Heavy

Ion Collider (RHIC) [140]. The design and the �eld quality improvements in the prototype

of the main collider dipole magnet for the Superconducting Super Collider (SSC) [143] will

also be presented.

RHIC will accelerate and collide two counter rotating beams of heavy ions up to 100

GeV/u and protons up to 250 GeV. It is expected [112] that RHIC will create a hot, dense

quark-gluon plasma and the conditions which, according to the Big Bang theory, existed in

the early universe.
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1.2. Physics Potentials and Goals of RHIC

The physics potentials and goals of RHIC have been extensively discussed in a number

of places [11,112,125,136,153,173]. The following summary is based on these and some

other reports.

Two high energy heavy ion beams will collide at RHIC. This will create nuclear matter

whose temperature and density will be much higher than ever produced in a controlled

environment. The baryon density will be over ten times that in normal matter. Baryons

are strongly interacting particles which are made of 2 quarks (in mesons) or 3 quarks (in

hadrons). According to present theories, the total number of quarks is six, namely, up (u),

down (d), strange (s), charm (c), bottom (b) and top (t). The interaction between the quarks

is carried by gluons and the theory describing these interactions [145] is called Quantum

Chromodynamics (QCD). According to some calculations based on QCD, a quark-gluon

plasma (QGP) should be observed at RHIC. In a quark-gluon plasma, the usually con�ned

interacting quarks and gluons move around freely. Such conditions are predicted when the

baryon density is about ten times that in the normal conditions or when the temperature

is about 2� 1012 degree kelvin (� 150 MeV).

The protons and neutrons (of which stable nuclei are made) are dominantly made of

up and down quarks; contributions from gluons and quark-anti-quark pairs from the fermi

sea are also present. However, according to the theory strange quarks are much easier to

create in a quark-gluon plasma and the particles/resonances based on them are expected

to be made in abundance. In normal conditions the interaction between quarks is strong

and attractive. Moreover, the attractive force grows rapidly in strength as the separation

between the quarks increases. This leads to the con�nement theories according to which

it is impossible to observe a quark in a free state. However, in extreme thermodynamic

conditions of temperature and density, a phase transition is predicted. In this new ther-

modynamic phase of the quark gluon plasma (QGP), the conditions will be such that the

attractive forces which bind quark-anti-quark pairs in mesons and three quarks in hadrons

will be overcome. This will lead to a decon�ned state of high-energy-density matter (plas-

ma) where the quarks will move freely. The lifetime of this phase should be long enough

(� 10�22 sec) to be observed in RHIC experiments. The primary goals of RHIC experiments

[112] will be to con�rm these predictions and to study the properties of this new state of

matter. A detailed investigation of this state, the formation of it and the other states to

follow from it [153] will also be interesting. A phase diagram [112] of nuclear matter is
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Figure 1.2.1: Phase Diagram

shown in Fig. 1.2.1, where temperature is plotted vs. net baryon density for an extended

volume of nuclear matter in thermal equilibrium.

According to QCD theories, the lowest energy state is not the vacuum with no particles

(and hence no interaction) in it. The lowest energy state is actually the vacuum �lled with

quark-anti-quark pairs (fermi sea). The relative ratio (mix) of densities between various

type of quark-anti-quark pairs is determined by QCD. A preference of one type of mix

over another is attributed to the spontaneous breaking of chiral symmetry in the normal

phase. However, in the new thermodynamic phase of a quark gluon plasma chiral symmetry

is restored with no preference given to one mix of quark-anti-quark pairs over another.

Moreover, according to theories, a large number of otherwise rare strange quarks and strange

anti-quarks will be generated. These quarks will eventually decay but the process is slow

(on a nuclear time scale) and the secondary particles generated from them will signal the

existence of such a situation to RHIC detectors.
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It is expected that a quark-gluon plasma will be created in RHIC. This state has not

been created before in a laboratory environment and perhaps does not exist any where in

the world today. According to theories this state existed for only 5-10 microseconds after

the Big Bang and was crucial to determining the structure of the universe as we see today.

This state may give a new insight to our understanding of the world and may even create

phenomena which are not expected from the present theories. The use of large heavy ions

in colliders allows this state to persist for a relatively long time since the lifetime is expected

to be at least (or even much greater than) the radius of the nuclei divided by the velocity

of light. In this respect RHIC (Relativistic Heavy Ion Collider) is in a unique situation in

which the beam (heavy ions including gold with a radius of 7 fermi), the machine and the

detectors are all designed with this new phase in mind.

A number of detectors and experiments are designed to study the various aspects of the

quark-gluon plasma and other physics expected from RHIC. In addition to observing the

strongly interacting particles, the detectors will also use the leptons and photons to obtain

a signal from the quark gluon plasma. RHIC will also be studying spin physics based on

250 GeV on 250 GeV collisions between polarized protons. There are plans for installing

four detectors in four interaction regions. These detectors are STAR (Solenoidal Tracker

At RHIC) [146], PHENIX [134], PHOBOS [112] and BRAHMS (Broad Range Hadron

Measuring Spectrometer) [9].
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1.3. Overview of RHIC Machine

A major nuclear physics facility, the Relativistic Heavy Ion Collider (RHIC), is being

built at the Brookhaven National Laboratory. A brief description and its present status

is described in recent papers [84,85]. A complete description is given in the RHIC design

manual [140]. The following description of RHIC is primarily based on these reports.

RHIC will accelerate heavy ions (for example gold) to a nominal maximum energy of

100 GeV/u and protons to 250 GeV. A brief list of the major parameters [140] of the RHIC

machine is given in Table 1.3.1. RHIC has two rings with the orbit of the two counter

rotating beams switching alternatively between the inner and outer rings at the six beam

crossing points. The circumference of the machine will be 3.834 km and it has six interaction

regions for experiments where the beam can be collided head-on or at a small angle. Each

interaction region has a free space of �9 meter on the either side of the crossing point for

detectors before a magnet of the RHIC lattice appears. The design storage time for gold

ions at the maximum energy is 10 hours. The design luminosity for gold ions at the top

energy is 2�1026cm�2sec�1. The luminosity will be lower at lower energies and the storage

time may well be decreased.

The injection energy of beams to RHIC will be in the range of 10.8 GeV/u (for gold

ions) to 28.3 GeV (for protons). In order for this beam to reach RHIC a series of beam

transfer lines and existing accelerators will be used. The heavy ions will come from the

existing Tandem Van de Gra� which uses a pulsed sputter ion source. The gold beam

leaving the Tandem Van de Gra� facility will have a charge state of +14 and a kinetic

energy of 1 MeV/u. This beam will be transported through a long (�550 m) transfer line

and injected into the Booster. The Booster (circumference 201.781 m) will accelerate this

beam to 72 MeV/u energy after which the beam will pass through a stripping target for

removing more electrons from the nuclei. The gold ions having a charge state of +77 will be

selected for further transmission. This beam will be injected into the Alternating Gradient

Synchrotron (AGS, circumference 807.125 m) through a beam transport line. The AGS

will accelerate this beam to an energy of 10.8 GeV/u. The extracted beam from the AGS

will go through another target and the nuclei will be completely stripped of all electrons

to reach the �nal charge state of +79. The �nal beam transport line from AGS to RHIC

will split into two lines to inject beams into the two RHIC rings. The protons will come

from the existing linear accelerator (LINAC) facility. A 200 Mev polarized (low intensity)

or unpolarized (high intensity) H� beam will be injected into the Booster. The stripper
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Table 1.3.1: Major Parameters for RHIC

Kinetic Energy, Injection-Top (each beam), Au 10.8-100 GeV/u

protons 28.3-250 GeV

Luminosity, Au-Au at 100 GeV/u & 10 h av. �2�1026 cm�2 sec�1

No. of bunches/ring 60

No. of Au-ions/bunch 1�109
Storage time for Au at 
 > 30 �10 hours
Diamond length 180 mm rms

Circumference, 4-3/4 CAGS 3833.845 m

Beam separation in arcs 900 mm

Number of crossing points 6

Free space at crossing point �9 m
Beta at crossing, horizontal/vertical 10 m

low-beta insertion 1 m

Crossing angle, nominal (maximum) 0 (< 1.7) mrad

Betatron tune, horizontal/vertical 28.19/29.18

Transition Energy, 
T 22.89

Magnetic Rigidity, B� at injection 97.5 T�m
Magnetic Rigidity, B� at top energy 839.5 T�m
Bending radius, arc dipole 242.781 m

No. of dipoles (192/ring + 12 common) 396

No. of quadrupoles (276 arc + 216 insertion) 492

Dipole �eld at 100 GeV/u, Au 3.46 T

Arc dipole length, e�ective 9.45 m

Arc Dipole length, physical 9.73 m

Dipole current 5.1 kA

Arc quadrupole gradient �71 T/m
Arc quadrupole length, e�ective 1.11 m

Coil i.d. arc magnets 80 mm

Beam tube i.d. 69 mm

Operating temperature, Helium refrigerant < 4.6 K

Refrigeration capacity at 4 K 24.8 kW

Cooldown time, entire system �7 days
Vacuum, warm beam tube sections �7�10�10 mbar
Filling time (each ring) < 1 min

Injection kicker strength (95 nsec) �0.18 T�m
Beam stored energy �200 kJ
rf voltage, h=360 600 kV

rf voltage, h=2520 6 MV

Acceleration time � 1 min
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inside the Booster (to facilitate charge exchange injection) will convert H� ions to protons

which will then be accelerated to an energy of 1.5 GeV. From this point onward the beam

will follow the same path as described above for gold. The AGS will accelerate protons to

an energy of 28.3 GeV which will then be injected into two RHIC rings.

As per the present design, each RHIC ring will have 60 bunches injected in 20 cycles

with three bunches from the AGS in each cycle. It will take about 1 minute to �ll the

rings. The separation between bunches will be 64 m (or 213 nsec in time). The arc magnet

power supply will be ramped at a rate of 70 A/sec from a current of �0.57 kA (0.4 T)

at injection to a maximum current of � 5.1 kA (3.46 T) at the top energy. Therefore, it

takes about one minute to accelerate the beam from injection energy to top energy. At the

time of injection the radio-frequency (rf) system, which operates at �28.2 MHz will have a

voltage of approximately 200 kV. During acceleration this voltage will be adiabaticlly raised

to � 300 kV. The storage system uses a di�erent rf system, one that operates at 197 MHz

frequency.

The RHIC lattice is designed to be identical for the two counter rotating beam. It is

composed of six circular arcs and six straight sections. The lattice has three super periods

with each super period consisted of inner arc, insertion, outer arc and insertion. Each arc

consists of 11 FODO cells (22 dipoles, 11 focusing and 11 defocusing quadrupoles) and

each insertion has twelve dipoles and 18 quadrupoles. The nominal horizontal and vertical

operating tune of the machine are �H=28.19 and �V=29.18. The transition energy (
T ) is

22.89. During injection and acceleration the size of the beam at the crossing point will be

large (��=10). The beam size will be gradually reduced (��=1) for higher luminosity. At

injection the performance of the machine will be dominated by the �eld errors in the 80

mm aperture arc dipole magnets and at storage the luminosity performance of RHIC will

be dominated by the �eld errors in the 130 mm aperture insertion quadrupole magnets.
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1.4. Superconducting Magnets

In this section a brief description of the cosine theta superconducting magnets is given.

A more complete description can be found elsewhere [86,128,144,175,177,179]. Type II

superconductors, which allow penetration of magnetic �eld lines, are used in all supercon-

ducting magnets. They can retain their superconducting state up to a �eld of �20 tesla

and are being currently used in designing magnets in the range of 3 to 15 tesla. Type I

superconductors, which were discovered �rst and which completely exclude �eld lines, lose

superconductivity at a much lower �eld of 0.18 tesla or below and therefore are not suitable

for such applications. Despite the promising prospects of high temperature superconductors

[93] they are not yet suitable for accelerator magnets.

In superconducting magnets which are mostly intended for operation above 3 tesla max-

imum �eld, the �eld shape is primarily determined by the superconducting coils. Superfer-

ric magnets are a hybrid version of superconducting and iron dominated room temperature

magnets. In superferric magnets though, superconducting coils are used but the iron plays

an important role in shaping the �eld. The research work described here is limited to

superconducting magnets.

The two main design goals for superconducting magnets are to obtain (a) a good quench

performance (a quench implies the loss of superconductivity in the cable) and (b) a good �eld

quality. After an overall introduction to the magnet geometry, the superconducting cable,

the cryogenic system, the magnetic design, the mechanical design, the magnet construction

and the magnet measurements will be brie
y described.

1.4.1. Introduction to the Magnet Geometry

Superconducting accelerator magnets are basically long cylindrical magnets whose cross

section is mostly uniform along the length except at the two ends. The cross section of the

80 mm aperture RHIC arc dipole magnet inside the cryostat is shown in Fig. 1.4.1. The

overall size of superconducting magnets is usually much larger then the aperture required

for the particle beam. As compared to the 80 mm coil inner diameter and 69 mm beam

tube inner diameter, the outside diameter of the RHIC cryostat is 610 mm. Similarly, in the

SSC main dipole magnet design, for a coil aperture of 50 mm, the cryostat outside diameter

was 660 mm.
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Figure 1.4.1: A cross section of the 80 mm aperture RHIC arc dipole

magnet with the important magnetic, mechanical and cryogenic system

components marked. The cold mass is asymmetrically located inside the

cryostat. The cross section shown here is at the axial center.
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The superconducting coils are made of Nb-Ti superconductor con�gured in a \Ruther-

ford Type" [154,176] cable. The coils are kept below a temperature of 4.65 kelvin. The

cryogenic system is designed to minimize the heat leak to room temperature outside the

cryostat. The coils are kept under compression to minimize conductor motion under Lorentz

forces when the magnet is energized. In RHIC magnets the space between the supercon-

ducting coils and the yoke is �lled with RX630 phenolic spacers and in SSC magnets with

stainless steel collars. The purpose of the yoke is to provide magnetic shielding and addi-

tional �eld in the magnet aperture. The yoke has several features (see Fig. 1.4.1) to serve

a variety of purposes. These features include (a) loading 
ats to provide compression on

the coil through a heavy press (b) holes for helium 
ow, saturation control and yoke pins

(c) cutouts for electrical bus work, collaring keys, tabs which align the RX630 spacers to

de�ne the coil pole location and survey notches for aligning the magnet in the cryostat. A

stainless steel shell, which also provides radial pressure, is put outside the yoke for helium

containment.

The part of the magnet assembly described above (superconducting coils, iron yoke and

stainless steel) is called the \coldmass" which remains below 4.65 degree kelvin in RHIC

and SSC designs. The coldmass is put inside the cryostat which is a vacuum vessel. A

number of components between the coldmass and the cryostat are required for structural

and thermal purposes.

1.4.2. Superconducting Cable

In most magnet designs the superconducting wire is made of NbTi �laments embedded

in a copper matrix. NbTi has good mechanical properties (ductility) but is generally limited

to producing �7.5 tesla at 4.5 kelvin and �10.5 tesla at 1.8 kelvin. A higher �eld can be

reached with the more expensive Nb3Sn superconductor. However, Nb3Sn does not have

similarly good mechanical properties and therefore coil manufacturing becomes much more

complicated. The titanium in NbTi alloy is generally about 46% by weight. The measured

critical current density (the current density at which the wire looses its superconducting

properties) as a function of applied �eld at 4.2 K is shown in Fig. 1.4.2 (courtesy A. Ghosh)

for the NbTI wire used in RHIC corrector magnets. A similarB�J performance is obtained

in the superconducting cable used in the other types of RHIC magnets. In addition to

the superconductor, the cable contains copper to provide stability against quench and for
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Figure 1.4.2: The measured (courtesy A. Ghosh) critical current density

(Jc) at 4.2 K in the superconductor of the wire used in the RHIC corrector

magnets as a function of applied �eld (B).
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heat conduction. The amount of copper in the cable is usually more than the amount

of superconductor. The superconducting cable, used in RHIC magnets, has a copper to

superconductor ratio (by volume) of 3.0 in corrector magnets, of 2.5 in trim quadrupole

and sextupole magnets, of 2.2 in the 80 mm and 100 mm aperture magnets and 1.8 in the

130 mm aperture and 180 mm aperture insertion magnets. The cable used in the inner layer

of the SSC dipole had a copper to superconductor ratio of 1.3 and the one used in the outer

layer had a copper to superconductor ratio of 1.8. The �lament size in the superconducting

wire used in the RHIC and SSC dipole magnet design is 6 �m except for the wire used in

the RHIC corrector, sextupole and trim quadrupole magnets where it is 10 �m. There are

about 3500 �laments in each wire of the RHIC dipole cable. The wire (strand) diameter is

about 0.65 mm. The parameter list of the cable used in RHIC dipole magnet is given in

Table 1.4.1.

Table 1.4.1: Design speci�cations of the superconducting cable for the

80 mm aperture RHIC arc dipole and quadrupole magnets.

Cable parameters Value

Filament diameter 6.0 �m

Filament spacing >1.0 �m

Number of �laments per wire 3510 � 20

Copper to Superconductor Ratio (2.25�0.1):1

Strand (wire) diameter 0.648�0.003 mm

No. of strands in cable 30

Critical current in wire at 5 T, 4.2 K 264 A

Critical current in cable at 5 T, 4.2 K 7524 A

Cable width 9.73 � 0.03 mm

Cable mid-thickness 1.166�0.006 mm

Cable keystone angle 1.2�0.1 degree

Cable lay pitch 74 �5 mm
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\Rutherford" cable is used in most large scale production of accelerator magnets. This

type of cable is wide and 
at and is made of a number of wires (strands) twisted together

in a spiral shape. The cable is asymmetrically compressed across the 
at side with one

edge being thinner than the other. This provides a \keystone" angle in the cable which

helps the coils to conform to a circular geometry with each turn lying approximately on a

radius. In a fully keystoned cable, the ratio of thickness of the two edges of the cable is

the same as that between the coil inner radius and outer radius. The cable is electrically

insulated to deal with the high voltage (over 1 kV) that is created during a quench when

one turn is in the superconducting phase and the other in the normal. The RHIC design

uses all-Kapton (Kapton is a registered trademark of Dupont Corporation) insulation which

has good electrical break down, cryogenic and stability in ionizing radiation properties and

has good dimensional tolerance. Another type of insulation used on superconducting cables

is �berglass tape impregnated with B-stage epoxy.

The superconducting cable produced for the RHIC magnet program is the result of

signi�cant R&D and a close collaboration with industry. The standard deviation in the

variation in the cable thickness and other mechanical dimensions has been generally kept

to about the 5 �m level. This has been crucial to providing good �eld quality and proper

compression on the coils in the magnet. Moreover, the variation in the critical current

density is also kept to about 2% to minimize the variation in the �eld harmonics associated

with superconductor e�ects.

1.4.3. Cryogenic System

Cooling is provided by supercritical helium. A small radial gap between the beam tube

and the superconducting coil provides a space for helium 
ow which partly cools the coil

and removes the heat deposited during machine operation or instability in the magnet. The

major portion of the heat removal and helium 
ow takes place in the four helium holes

in the yoke. In order to reduce the heat load on the cryogenic system, the design of the

coldmass and cryostat is optimized to minimize heat leak. To deal with a large thermal

gradient between the low temperature in the superconducting coils and room temperature

outside the cryostat, either one or two staged thermal shields are used where the heat is

intercepted and removed. In the SSC dipole design two stage heat removal was planned

(a) at 20 kelvin by gaseous helium and (b) at 80 kelvin by liquid nitrogen. In the RHIC
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dipole design, heat leakage is removed at 55 kelvin. Since the radiation heat leak loss goes

as the di�erence between the fourth power of the two temperatures, only a small di�erence

is expected between the two and one shield cases. A blanket of thermal insulation is placed

just inside the vacuum vessel wall and between and interior to the shields.

The coldmass is put inside the vessel on a few support posts. The location of the

support posts is chosen to reduce sagging of the coldmass. To minimize the heat leak

through them, they are made as long as possible and to accommodate that larger length

without increasing the cryostat outer diameter, the coldmass is positioned above the center

of the cryostat (see Fig. 1.4.1). In both RHIC and SSC magnets the cryostat is made of

low carbon magnetic steel which reduces the exterior �eld. However, a systematic o�set

between the vertical center of the cryostat and the center of the coldmass creates a skew

quadrupole harmonic in the dipole at high �eld.

1.4.4. Mechanical Design

Good quench performance of the superconducting magnets is closely related to a good

mechanical design which minimizes the motion of the superconducting wires. The design

must be structurally sound to deal with the Lorentz forces when the magnet is energized,

the thermal forces during cool-down and the mechanical forces during transportation of the

magnet.

A large magnetic �eld in superconducting magnets generates a large Lorentz forces

on the superconducting coils which may cause a small amount of conductor motion. This

conductor motion generates heat which may start a quench in the magnet. The direction of

the Lorentz forces in the cross section of the magnet is such that compression of the coil from

the coil pole to the coil midplane is by the azimuthal component and compression outward

is by the radial component. To deal with this situation, the coils are pre-compressed with

a large mechanical compressive force which counters the Lorentz forces and thus minimizes

conductor movement. In the SSC magnets, this compression on the coil is provided by

stainless steel collars and in RHIC magnets by the yoke itself. In these designs, a signi�cant

part of the compression applied at room temperature is lost when the magnet is brought to

a lower temperature. This is because of a di�erence in the coe�cients of thermal expansion

of superconducting coils, stainless steel and the yoke iron. Therefore, in order to assure an

adequate compression when the magnet is cold, a much higher (a factor of two to three)
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compression is applied at room temperature. There are some alternate design concepts

which have been tested in some magnets, where this loss of compression is avoided [41,127].

Finally a stainless steel shell is welded on the yoke outer diameter to contain the helium.

This also provides a radial pressure on the coil-yoke assembly and in the RHIC-type design

the radial component of the Lorentz forces are �nally transmitted to it. To deal with the

outward axial component of the Lorentz forces, the ends are restrained and sometimes even

compressed (loaded) axially. A detailed description of the mechanical design and analysis

of the SSC magnets can be found elsewhere [44].

1.4.5. Magnetic Design

The main goal of the magnetic design is to optimize the geometry of the coil and

iron shape to produce a highly uniform �eld. In addition, it is bene�cial to minimize the

maximum�eld on the conductor (peak �eld) and tomaximize the transfer function (tesla per

ampere) to obtain a high quench �eld (computed from cable short sample measurements).

The design must also ful�ll all mechanical and cryogenic requirements and a magnet based

on this design should be as simple as possible to manufacture.

The coils are made of a number of turns of superconducting cable which are grouped

in several current blocks. A cosine theta current distribution produces an ideal dipole �eld.

Copper wedges are placed between the blocks of turns to approximate the cosine theta

current distribution. In designs which use partially keystoned cables, the wedges also serve

an important mechanical purpose in providing a proper arc shape to the current blocks

in the circular coil geometry. The size of the current blocks and the copper wedges are

parameters used to minimize the �eld harmonics and to maximize the quench �eld.

The iron yoke provides magnetic shielding. In addition, the magnetized yoke gives an

extra contribution to the central �eld which in most RHIC magnets is �50% of the coil

�eld. However, at high �eld, the magnetization in the iron yoke is not proportional to the

current in the coils, so the yoke geometry must be carefully designed to maintain a good

�eld quality at all �elds.

The coil end design is complicated. The cable must be bent carefully to bring it from

one side of the coil to the other side. Spacers are inserted between the blocks of turns in

the end not only to minimize the peak �eld and �eld harmonics but also for the mechanical

purpose of reducing the strain on the cable. In most RHIC magnet designs the ends are
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enclosed by the iron yoke laminations but in SSC and in most other magnet designs the

iron laminations are replaced by stainless steel laminations to minimize the peak �eld in

the ends.

The �eld errors in magnets are described in terms of �eld harmonics (see next section

Eq. (1:5:17)) which are also referred to as multipoles. The are generally divided in the

following three categories based on their sources :

1. Geometric multipoles

2. Persistent current multipoles

3. Saturation multipoles

The geometric multipoles are related to the magnet geometry. An error (or a departure)

from the ideal geometry would create harmonics other than those desired. The persistent

current multipoles are related to the persistent current in the superconductors. As the

�eld in magnet is changed, the persistent (shielding) currents are induced in a direction

to oppose the changing �eld [144]. Unlike in normal conductors, these currents persist

for a long time in superconductors and contribute signi�cantly to the �eld errors at low

�elds where their relative contribution is high. The saturation multipoles are related to the

saturation magnetization of iron at high �eld. A non-uniform �eld and hence a non-uniform

(as a function of azimuth) relative contribution of the iron distorts the �eld shape and �eld

errors are thereby introduced.

1.4.6. Magnet Construction

The construction of the superconducting magnets is a long and complex process which

requires a high level of engineering and quality control to assure consistently good quality

in large scale magnet production [6]. The magnet manufacturing tooling must itself be

carefully designed to realize the computed �eld quality and quench performance. Some of

the major steps of the manufacturing process are brie
y described here in the case of RHIC

arc dipole magnets.

The superconducting cable and the copper wedges are insulated with Kapton layers.

The magnet coils are wound on a precision convex surface with a winding machine feeding

the cable continuously. The copper wedges in the coil cross section and the wedge tips in the

coil ends are periodically inserted as required by the optimized design. The Kapton tape,

wound around the cable, is coated on one side with a dry adhesive which is activated (cured)
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by heat at a temperature of about 130 C while under compression. The coils are cured in a

curing �xture (mold) and the temperature and curing pressure described above may contain

several curing cycles with di�erent combinations of curing temperature and curing pressure.

Once cooled, the coil is �rmly �xed in the shape determined by the dimensions of the curing

mold.

The coils are installed in the iron yoke together with the RX630 phenolic spacers and

other parts. The following is the sequence of the steps required in this operation: (a) the

laminations for the lower yoke half are stacked (b) the RX630 spacers are put in place (c)

the lower coil is installed (d) the beam tube is inserted (e) the upper coil, pre-assembled

with the RX630 insulator, is put in place and (f) the laminations for the upper yoke half

are stacked on this assembly. The coil is compressed with a press applying pressure on

the yoke collar at the loading 
ats. The keys are inserted to retain this compression. The

stainless steel shell is welded with the required sagitta (axial curvature of the magnet) in

the coldmass. The stainless steel end plates are welded and coil end force is applied before

the electrical installation is completed. Then the coldmass is placed inside the cryostat on

the support posts. All cryogenic piping and heat shields are also installed.

1.4.7. Magnet Measurements

Apart from a variety of mechanical and electrical measurements at the various stages

of magnet construction, the two measurements which de�ne the �nal quality of magnets

for machine operation are (a) the quench performance and (b) the �eld harmonics. For

these measurements the magnets must be tested at cryogenic temperatures. It is, however,

expensive and time consuming to test each and every magnet cold (in the superconducting

phase). Therefore, in the RHIC magnet program only a part of the magnets are tested

cold before they are installed in the tunnel [170]. The selection of the magnets chosen for

cold testing is carefully made to minimize the risk of not testing all magnets cold. The

required maximum operating current for RHIC is about 5 kA and the design margin over

the machine requirements for most magnets for the computed quench current is over 30%.

The measured performance of the magnets tested cold show that most magnets require only

a few (2-5) quenches to reach the computed quench current [170].

Warmmagnetic measurements are performed on all magnets. At room temperature, the

current in the cable is carried by the copper intermixed with the superconductor. There is an
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expected systematic di�erence between warm and cold harmonics because of (a) a change

in the magnet geometry due to thermal contraction during cool-down (b) the persistent

current e�ects in the superconductor and (c) the saturation e�ects due to the non-linear

properties of the iron yoke. Based on those magnets that are tested both warm and cold,

a good warm-to-cold correlation in the �eld harmonics has been obtained [170]. This

correlation is used to estimate the �eld quality in those magnets that are not tested cold.

The magnetic measurements are carried out with an array of windings having a cer-

tain radius [175], mounted on a rotating cylinder which intercept the �eld in the magnet

aperture. The geometry of these coils is chosen so that the Fourier analysis of the voltage

induced in the various windings determine the �eld harmonics. The accuracy of the mea-

surements depends on the accuracy of the measuring coil geometry, the electronic signal

measurement and the analysis of the measured signal.

In the long curved RHIC magnets, the complete measurements are made in 10 steps

with a meter long measuring coil system which is referred to as a mole [49]. In addition,

the integral of the �eld along the axis is also measured with a long stationary coil. For a

more accurate measurement of the �eld strength at a point an NMR (Nuclear Magnetic

Resonance) probe is also used.

The measured �eld quality in 80 mm aperture RHIC arc dipoles is shown in Table 1.4.2

and Table 1.4.3. Measuring the �eld harmonics accurately and managing it in a large

number of magnets (1740 are required for RHIC) is a quite complex task.

The \Mean" of the distribution for the harmonic bn (which is also sometimes referred

to as the systematic value of bn) in N magnets is de�ned as follows :

< bn >=
1

N

NX
k=1

(bn)k; (1:4:1)

where (bn)k is the value of harmonic bn in the kth magnet. The \SIGMA" (�), also the

RMS (Root Mean Square) deviation from the \Mean" bn, is de�ned as follows :

� (bn) =

vuut 1

N

NX
k=1

[(bn)k� < bn >]
2
: (1:4:2)

The primary purpose of the harmonic measurements is to verify that the machine

requirements needed for beam stability and design beam life time in RHIC are satis�ed.

In addition, the �eld harmonics are also used as a tool to detect possible manufacturing

defects in the magnets or a drift in the mechanical dimensions of the components used in



REVIEW OF THE FIELD 19

the manufacturing process. Since the harmonics are the analysis of the �eld created by the

geometry of the coil and yoke, they are a re
ection of magnet geometry. The accuracy of

the magnetic measurements is su�cient to �nd a 100�m or less error in most of the critical

components used in manufacturing the magnets.
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Table 1.4.2: The measured integral transfer function (ITF) in tesla�m/kA,

body transfer function (SSTF) in tesla/kA and normal �eld harmonics (bn,
de�ned elsewhere) at 25 mm reference radius in the 9.45 m long 80 mm

aperture RHIC arc dipole magnets (data courtesy Jain and Wanderer).

The current at which measurements are made and the number of magnets

(shown in parenthesis) used in arriving at the statistics are shown here.

The 30 A measurements are made when the magnet is warm (room tem-

perature), in the non-superconducting state and the current is carried by

the copper in the cable. < bn > is the mean and �(bn) is the standard

deviation of harmonic bn in the number of magnets measured.

.

< bn > ��(bn) < bn > ��(bn) < bn > ��(bn) < bn > ��(bn)

30A(296) 660A(63) 1450A(61) 5000A(62)

ITF 6.6545� 0.0021 6.6698� 0.0027 6.6769� 0.0021 6.4180� 0.0024

SSTF 0.7042� 0.00021 0.7078� 0.0003 0.7080� 0.00028 0.6798� 0.00034

b1 0.25�0.37 0.08�0.28 0.04�0.27 0.10�0.28

b2 3.54�1.74 -0.17�2.22 2.18�1.77 0.83�1.76

b3 -0.03�0.10 0.00�0.08 0.00�0.08 0.01�0.08

b4 0.22�0.44 -0.33�0.57 -0.15�0.58 0.15�0.59

b5 0.01�0.03 0.00�0.03 0.00�0.03 -0.03�0.04

b6 0.12�0.11 -0.13�0.13 -0.02�0.14 1.19�0.14

b7 0.00�0.01 -0.01�0.01 -0.01�0.01 -0.01�0.01

b8 0.09�0.11 0.14�0.12 0.13�0.12 0.12�0.12

b9 0.00�0.01 0.02�0.02 0.02�0.02 0.02�0.02

b10 -0.53�0.02 -0.58�0.02 -0.56�0.02 -0.58�0.02
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Table 1.4.3: The measured an (skew harmonics) at 25 mm reference

radius in the 9.45 m long 80 mm aperture RHIC arc dipole magnets (data

courtesy Jain and Wanderer). The current at which the measurements are

made and the number of magnets (shown in parenthesis) used in arriving at

the statistics are shown here. The 30 A measurements are made when the

magnet is warm (room temperature), non-superconducting and the current

is carried by the copper in the cable. < an > is the mean and �(an) is the
standard deviation an in the number of magnets measured.

.

< an > ��(an) < an > ��(an) < an > ��(an) < an > ��(an)

30A(296) 660A(63) 1450A(61) 5000A(62)

a1 -0.20�1.62 0.28�1.53 0.21�1.52 -1.51�1.51

a2 -1.11�0.20 -1.03�0.17 -1.03�0.17 -1.07�0.18

a3 -0.01�0.49 -0.03�0.42 -0.02�0.42 -0.36�0.41

a4 0.18�0.07 0.21�0.06 0.21�0.06 0.20�0.06

a5 -0.01�0.17 0.02�0.15 0.01�0.15 -0.06�0.16

a6 -0.11�0.03 -0.10�0.02 -0.10�0.02 -0.10�0.02

a7 0.00�0.05 -0.01�0.05 -0.01�0.05 -0.01�0.05

a8 0.02�0.01 0.02�0.01 0.02�0.01 0.02�0.01

a9 0.00�0.01 0.04�0.02 0.04�0.02 0.04�0.02

a10 -0.01�0.00 -0.01�0.01 -0.01�0.01 -0.01�0.01
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1.5. Magnetic Field Analysis in Accelerator Magnets

In this section an outline of the formalism and theory used in carrying out the �eld

calculations in the superconducting magnets is given. Starting from �rst principles, basic

expressions are developed which are used in designing and describing the magnetic �elds in

the accelerator magnets.

The uniformity of the magnetic �eld is very important since it determines the per-

formance of the machine. A typical requirement for the �eld quality in the accelerator

magnets is that the deviation from the ideal shape should be within a few parts in 104. The

uniformity of the �eld is expressed in terms of the Fourier harmonic components.

1.5.1. Basic Electromagnetic Field Equations

The calculation of the magnetic �eld in accelerator magnets is too complex to be done

directly by solving Maxwell's equations. However, the most complicated formulae describing

the �eld shape in the magnets are derived primarily from them. In this section, Maxwell's

equations and other commonly used expressions of electro-magnetic theory [95,129,150] are

brie
y described. Although the magnetic �eld in the accelerator magnets is not static in

time, the e�ects of time variation are by and large negligible in the problems to be addressed

during the course of this work. Therefore, most of the detailed analysis is limited to the

magneto-static case only.

The four Maxwell's equations are :

r � ~D = �; (1:5:1a)

r � ~B = 0; (1:5:1b)

r� ~E +
@ ~B

@t
= 0; (1:5:1c)

r� ~H = ~J +
@ ~D

@t
: (1:5:1d)

Here ~H is the magnetic �eld, ~E is the electric �eld, ~B is the magnetic induction and

~D is the displacement vector. � denotes the charge density and ~J the current density, and

these two are related by the following continuity equation,

r � ~J +
@�

@t
= 0: (1:5:2)
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Furthermore, ~B and ~H are related by the following equations:

~B

�o
= ~H + ~M; (1:5:3a)

~B

��o
= ~H; (1:5:3b)

where �o is the permeability of the vacuum (�o = 4� � 10�7 henry/meter) and � is the

relative permeability of the medium (relative with respect to that of vacuum). Often, �

is simply referred to as the permeability (which is in fact the case in CGS units) and the

same convention is followed here unless otherwise explicitly mentioned. ~M denotes the

magnetization (or magnetic polarization) of the medium. In free space (vacuum) ~M is 0.

In an isotropic medium ~H, ~B and ~M are parallel to each other.

Furthermore, ~D and ~E are related by the following equations:

~D = �o ~E + ~P ; (1:5:4a)

~D = ��o ~E; (1:5:4b)

where ~P is the electric polarization and �o is the permittivity in vacuum (�o = 8:854�10�12

farad/meter). � is the relative permittivity of the medium. In free space (vacuum), the

electric polarization is 0.

The constants �o and �o are related through the relation

�o�o =
1

c2
;

where c is the velocity of light (c=2.998 � 108 m/s). Since ~B has a zero divergence, it may

be expressed in term of a magnetic vector potential ~A as

~B = r� ~A: (1:5:5)

The vector potential ~A can be obtained at any point (~r) due to a current density ~J(~r0

)

with the help of the following integral equation :

~A (~r) =
��o

4�

Z
V

~J
�
~r0

�
j~r � ~r0 j

dv; (1:5:6)

where ~r and ~r0 are three dimensional coordinates and dv is the three dimensional volume

element.
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The components of the �eld in Eqs. (1:5:5) in Cartesian coordinates are given by

Bx =
@Az

@y
� @Ay

@z
; (1:5:7a)

By =
@Ax

@z
� @Az

@x
; (1:5:7b)

Bz =
@Ay

@x
� @Az

@y
; (1:5:7c)

and in cylindrical coordinates by

Br =
1

r

�
@Az

@�

�
� @A�

@z
; (1:5:7d)

B� =
@Ar

@z
� @Az

@r
; (1:5:7e)

Bz =
1

r

�
@ (rA�)

@r
� @Ar

@�

�
: (1:5:7f)

The research work to be described is restricted to static magnetic �elds only and electric

�elds are not considered. During the accelerating cycle of the machine, the magnetic �eld

does change with time in the superconducting magnets. However, for the problems to be

discussed during the course of this work, the change in magnetic �eld has negligible e�ect

on �eld quality. Therefore the following two Maxwell's equations for the magnetostatic case

are used in developing various formulae

r � ~B = 0; (1:5:8a)

r� ~H = ~J: (1:5:8b)

Amp�ere's law I
S

~H � ds = I; (1:5:9)

can be obtained from Eqs. (1:5:8b) by integrating and using Stoke's theorem :I
C

~V � d~l =
Z
S

�
r� ~V

�
� ~nda

where ~V is a well behaved vector �eld, S is an open arbitrary surface, C is the closed curve

bounding S, d~l is a line element of C, and ~n is a vector element normal to S. The right hand

side of the equation simply states that I =
R
~J �~nda is the total current 
owing through the

area.

Poisson's equation for the vector potential is derived here under the assumptions that

~B = �0� ~H , the medium is homogeneous (i.e. � is constant over a �nite space) and isotropic.

Using ~B = �0� ~H and ~B = r� ~A in Eqs. (1:5:8), one obtains :

r�r� ~A = �0� ~J: (1:5:10)
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The following identity is used to simplify the above equation :

r2 ~A = r
�
r � ~A

�
� r�r� ~A: (1:5:11)

In Cartesian coordinates the above Laplacian operator (r2 ) can be applied to a vector ~A

whose ith component is r2Ai . In other coordinate systems Eq. (1:5:11) must be used to

determine the expression for r2 ~A. In the cylindrical coordinate system :

r2 ~Az =
1

r

@

@r

�
r
@Az

@r

�
+

1

r2
@2Az

@�2
; (1:5:12)

when Ar = A� = 0 by symmetry (axial symmetric case).

The choice of r � ~A has thus far has been arbitrary and it is made zero in the Coulomb

gauge (in the magnetostatic case). In that case Eq. (1:5:10) leads to Poisson's Equation as

r2 ~A = ��0� ~J: (1:5:13)

In the 2-dimensional case, when the direction of current 
ow is parallel to the z-axis,

Jx = Jy = 0. This implies that Ax = Ay = 0 and @Az

@z
= 0. Therefore, the above expression

becomes,

r2Az = ��0�Jz; (1:5:14)

which in the Cartesian coordinate system gives :

@2Az

@x2
+
@2Az

@y2
= ��0�Jz : (1:5:15)

In the case of axial symmetry, the Eq. (1:5:14) in cylindrical coordinates becomes :

1

r

@

@r

�
r
@Az

@r

�
+

1

r2
@2Az

@�2
= ��0�Jz; (1:5:16)

on using Eq. (1:5:12).
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1.5.2. Field Harmonic De�nitions

It is useful to describe the magnetic �eld inside the aperture of accelerator magnets

in terms of harmonic coe�cients [96,140,144,175]. The discussion will be limited to 2-

dimensional analysis, which describes the �eld in the body (or straight section) of a long

magnet. When the magnetic �eld is evaluated a few aperture diameters away from the two

ends of the magnet, the axial component of the �eld is negligible. The accelerator magnets

examined here are those in which the �eld is consists of one fundamental harmonic which

is several orders of magnitude larger (usually 104) than any other harmonic present.

The skew (an) and the normal (bn) �eld harmonics are de�ned through the following

relation :

By + iBx = 10�4BR0

1X
n=0

[bn + i an] [cos (n�) + i sin (n�)]

�
r

R0

�n
; (1:5:17)

where Bx and By are the horizontal and vertical components of the magnetic �eld at (r,�)

and i =
p
�1. R0 is the normalization radius. The magnets for the Relativistic Heavy Ion

Collider (RHIC) have a coil radius ranging from 40 mm to 90 mm. In most of these magnets,

the normalization radius is taken to be 5

8
of the coil radius. The value of the normalization

radius is 25 mm for the 80 mm aperture diameter of the RHIC arc dipoles and quadrupoles,

40 mm for the 130 mm aperture of the RHIC insertion quadrupoles, 31 mm for the 100 mm

aperture of the RHIC insertion dipoles and 60 mm for the 180 mm aperture RHIC insertion

dipoles [140]. BR0
is the magnitude of the �eld due to the fundamental harmonic at the

reference radius on the midplane. In the dipoles, BR0
= B0 (the �eld at the center of the

magnet), in the quadrupoles, BR0
= G�R0 (G being the �eld gradient at the center of the

magnet), and in general for a 2(m+ 1)
th
pole magnet,

BR0
=

Rm

m!

�
@mBy

@xm

�
x=0;y=0

: (1:5:18)

Eq. (1:5:17) can be re-written in several other forms using complex variables. In this

section z represents the complex coordinate and B(z) represents the complex �eld as follows:

z = x + i y;

(x + i y)
n
= rn (cos [n�] + i sin [n�]) ;

B (z) = By + i Bx;

cn = bn + i an;
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Thus :

By + iBx = 10�4BR0

1X
n=0

[bn + i an] [x + i y]
n

�
1

R0

�n
(1:5:19)

B (z) = 10�4BR0

1X
n=0

cn

�
z

R0

�n
(1:5:20)

The harmonics used so far (an; bn; cn) are all dimensionless coe�cients. However, in

another representation, the �eld is expressed in terms of coe�cients which carry the units

of magnetic �eld. These are usually distinguished from the harmonics an and bn given in

Eq. (1:5:17) by the use of the uppercase alphabet. The two are related as follows:

An+1 = 10�4BR0
an; (1:5:21a)

Bn+1 = 10�4BR0
bn; (1:5:21b)

Cn+1 = 10�4BR0
cn: (1:5:21c)

Using these, Eq. (1:5:20) can be written as :

B (z) =
1X
n=1

Cn

�
z

R0

�n�1
: (1:5:22)

In this case the summation begins from n = 1 instead of n = 0. Sometimes Cn is also

written as C(n).

The de�nition for the �eld harmonics used so far is the one which is more common in

U.S. laboratories. The European laboratories (such as CERN and HERA) use a slightly

di�erent de�nition [179]. The two are related as follows :

(an+1)Europe = � 10�4 (an)US

(bn+1)Europe = 10�4 (bn)US

Yet another representation of �eld harmonic is used in beam dynamics calculations

where the particle trajectory is studied in the machine [25]. For this purpose, the �eld is

expressed in the form of a Taylor series. The vertical component of the �eld on the median

plane is expressed as

By (x; 0) =
1X
n=0

1

n!

�
dnBy

dxn

�
0

xn; (1:5:23)

where the subscript 0 implies that the derivatives are evaluated at the equilibrium orbit

(which is generally at the center of the magnet). n=0 gives the vertical component of the

�eld at the center of the magnet, which is represented as B0 and the above equation becomes

By (x; 0) = B0 +
1X
n=1

1

n!

�
dnBy

dxn

�
0

xn; (1:5:24)
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Similarly, the horizontal component of the �eld (Bx) on the horizontal axis (X-axis) is

expressed as :

Bx (x; 0) =
1X
n=0

1

n!

�
dnBx

dxn

�
0

xn: (1:5:25)

where, the subscript 0 implies that the derivatives are evaluated at the equilibrium orbit.

n=0 gives the horizontal component of the �eld at the center of the magnet, which is ideally

zero in the magnets considered here.

The following are de�ned :

kn =
1

B0�

�
dnBy

dxn

�
0

; (1:5:26a)

hn =
1

B0�

�
dnBx

dxn

�
0

; (1:5:26b)

with � as the bending radius of the particle in the magnet and (B0�) as the magnetic

rigidity. Therefore, the Eq. (1:5:24) and Eq. (1:5:25) become

By (x; 0) = B0�

 
1

�
+

1X
n=1

1

n!
kn xn

!
; (1:5:27a)

Bx (x; 0) = B0�

 
1X
n=0

1

n!
hn xn

!
: (1:5:27b)

kn and hn used in the above equations can be related to an and bn given in Eq. (1:5:19)

when the horizontal and vertical components of the �eld are evaluated on the horizontal

axis, respectively. Therefore, with b0 = 104 and BR0
= B0, one obtains

hn =
10�4 n!

� Rn
0

an; (1:5:28a)

kn =
10�4 n!

� Rn

0

bn: (1:5:28b)

The expressions for the horizontal and vertical component of the �eld in Eq. (1:5:17)

can be separated out as

Bx = 10�4BR0

1X
n=0

[bn sin (n�) + an cos (n�)]

�
r

R0

�n
; (1:5:29a)

By = 10�4BR0

1X
n=0

[bn cos (n�) � an sin (n�)]

�
r

R0

�n
: (1:5:29b)

The radial and azimuthal components of the �eld can be computed by using the fol-

lowing relations :
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8>>:Br

B�

9>>; =

8>>: cos (�) sin (�)
�sin (�) cos (�)

9>>;
8>>:Bx

By

9>>; (1:5:30)

Therefore, the radial and azimuthal components of the �eld can be written as :

Br = 10�4BR0

1X
n=0

[bn sin [(n + 1) �] + an cos [(n + 1) �]]

�
r

R0

�n
; (1:5:31a)

B� = 10�4BR0

1X
n=0

[bn cos [(n + 1) �] � an sin [(n + 1) �]]

�
r

R0

�n
: (1:5:31b)

In order to represent the vector potential in terms of harmonics, the following relations

can be used :

Br =
1

r

@Az

@�
and B� = �@Az

@r
;

since in the 2-dimensional case Ax = Ay = 0. Therefore, on integrating Eqs. (1:5:31) one

obtains

Az = �10�4BR0

1X
n=0

�
R0

n + 1

�
[bncos [(n+ 1)�] � ansin [(n+ 1) �]]

�
r

R0

�n+1
: (1:5:32)

The inverse transform can be used to obtain individual �eld harmonics at a reference

radius R0 in terms of �eld or vector potential. For this, �rst a component of the �eld or

vector potential is evaluated at a radius r and then the integration is performed over the

azimuth as follows :

an = � 104

�BR0

�
R0

r

�n Z 2�

0

By (r; �)sin (n�) d�; (1:5:33a)

=
104

�BR0

�
R0

r

�n Z 2�

0

Bx (r; �)cos (n�) d�; (1:5:33b)

=
104

�BR0

�
R0

r

�n Z 2�

0

Br (r; �)cos ((n + 1) �) d�; (1:5:33c)

= � 104

�BR0

�
R0

r

�n Z 2�

0

B� (r; �)sin ((n + 1) �) d�; (1:5:33d)

=
104 (n+ 1)

�R0BR0

�
R0

r

�n+1 Z 2�

0

Az (r; �)sin ((n + 1) �) d�; (1:5:33e)

bn =
104

�BR0

�
R0

r

�n Z 2�

0

By (r; �)cos (n�) d�; (1:5:33f)

=
104

�BR0

�
R0

r

�n Z 2�

0

Bx (r; �)sin (n�) d�; (1:5:33g)

=
104

�BR0

�
R0

r

�n Z 2�

0

Br (r; �)sin ((n+ 1) �) d�; (1:5:33h)

=
104

�BR0

�
R0

r

�n Z 2�

0

B� (r; �) cos ((n+ 1) �) d�; (1:5:33i)

= �10
4 (n + 1)

�R0BR0

�
R0

r

�n+1 Z 2�

0

Az (r; �)cos ((n + 1) �) d�: (1:5:33j)
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For the primary harmonic component n = m, when the �eld is perpendicular to the hori-

zontal plane, one obtains

bm = 104 and am = 0:
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1.5.3. Analytic Expressions for Accelerator Magnets

Analytic expressions for the basic cosine theta superconducting magnet design have

been previously obtained and described by several authors [12-18,144,175,179]. Supercon-

ducting accelerator magnets are usually long cylindrical magnets with the current 
owing

parallel to the magnet axis (z-axis). The geometry of these magnets is such that one can

compute the �eld in the body of the magnet by assuming that the current is carried by a

large number of wires parallel to the z-axis. The total �eld is obtained by simply super-

imposing the �eld created by these wires. For this purpose, it is suitable to carry out a

2-dimensional analysis in the cylindrical coordinate system. A three dimensional analysis

will be necessary for computing the �eld at the ends of the magnet.

Accelerator magnets are designed to produce a well de�ned �eld in the aperture of

the magnets. The �eld in the aperture is constant for dipoles, the �rst derivative of the

�eld is constant for quadrupoles and, in general, the nth derivative is constant for the nth-

order multipole. In the following sections, the current distributions needed to produce such

multipole �elds will be obtained.

1.5.3.1. Field and Vector Potential due to a Line Current

To compute the magnetic �eld and vector potential due to a single in�nitely long wire,

it is assumed to carry a current I in the z-direction which is perpendicular to the plane of

paper. The �eld outside this wire at a perpendicular distance R from it will be computed.

The cylindrical coordinate system is used to take advantage of the symmetry of the problem.

The magnetic �eld produced by this wire can be directly calculated by using the integral

equation
H
~H � ds = I (Eqs. (1:5:9)) which gives:

H =
I

2�R
; (1:5:34)

and in a medium having a relative permeability of �

B =
I��0
2�R

: (1:5:35)

The components of vector potential in cylindrical and Cartesian geometry can be written

as

Az =
��0I

2�
ln

�
1

R

�
; (1:5:36a)

Ar = A� = 0; (1:5:36b)

Ax = Ay = 0: (1:5:36c)
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The validity of the above relation is veri�ed when the curl of the vector potential is taken

to obtain the magnetic �eld as per Eqs. (1:5:7). This gives Br = Bz = 0 and B� = ��0I

2�R
;

which is the same as in Eqs. (1:5:34) with only one component of the �eld present.

In accelerator magnets, the magnetic �eld and vector potential are usually expressed in

terms of harmonic components. To develop this formalism a line current is assumed to be

located at a point \Q" (at ~a) and the magnetic �eld produced by it is computed at point

\P" (at ~r), as shown in Fig. 1.5.1. The distance between the two is ~R = ~r - ~a with the

magnitude jRj =
p
r2 + a2 � 2racos(� � �).

In this section, the computations will be mostly done in a space free of magnetic material

where the relative permeability � is one. Moreover, to simplify the expressions to follow,

Eq. (1:5:36a) is re-written after adding a constant :

Az (r; �) = ��oI
2�

ln

�
R

a

�
; (1:5:37)

the addition of such a constant does not change the magnetic �eld which is a derivative of

Az.

Now Az(r; �) will be given in terms of a series expansion containing, in general, sum-

mation of terms like ( r
a
)
m
and (a

r
)
m
, together with trigonometric functions like cos(m�)

and sin(m�). The exact solution will depend on a particular problem. For example, in the

solution of the case when r approaches the origin (r! 0), the (a
r
)
m
terms can't be present.

Similarly in the solution of the case when r approaches in�nity (r ! 1), the (a
r
)
m
terms

can't be present.

In order to obtain an expansion of the ln in Eq. (1:5:37), the following manipulation is

carried out :

R2 = r2 + a2 � 2ra cos (� � �) ;

R

a
=

�
1�

�
r

a

�
ei(���)

�1

2

�
�
1�

�
r

a

�
e�i(���)

� 1

2

;

ln

�
R

a

�
=

1

2
ln

�
1�

�
r

a

�
ei(���)

�
+
1

2
ln

�
1�

�
r

a

�
e�i(���)

�
:

For jzj < 1, the logarithmic expansion is given by

ln (1� z) = �
�
z +

�
z2

2

�
+

�
z3

3

�
+ :::

�
= �

1X
n=1

zn

n
:

Therefore, for r < a

ln

�
R

a

�
= �

"
1

2

1X
n=1

�
1

n

��
r

a

�n
ei n(���) +

1

2

1X
n=1

�
1

n

��
r

a

�n
e�i n(���)

#
;
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Figure 1.5.1: Computation of the �eld at a location \P" produced by

the line current located at a position \Q".

ln

�
R

a

�
= �

1X
n=1

�
1

n

��
r

a

�n
cos (n (�� �)) : (1:5:38)

Substituting Eqs. (1:5:38) in Eqs. (1:5:37) the desired expansion for the vector potential is

obtained (for r < a) :

Az (r; �) =
�oI

2�

1X
n=1

�
1

n

��
r

a

�n
cos (n (�� �)) : (1:5:39)
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The magnetic �eld components are obtained by using Eqs. (1:5:7) and Eqs. (1:5:37)

with Ar = A� = 0 :

Br =
1

r

�
@Az

@�

�
; (1:5:40a)

B� = �@Az

@r
; (1:5:40b)

Bz = 0: (1:5:40c)

Therefore, for r < a, one would obtain :

Br =
�oI

2�a

1X
n=1

�
r

a

�n�1
sin [(n) (� � �)] ; (1:5:41a)

B� = ��oI

2�a

1X
n=1

�
r

a

�n�1
cos [(n) (�� �)] ; (1:5:41b)

Bz = 0: (1:5:41c)

In order to compute the harmonics components, the above equations are compared with

Eqs. (1:5:31). It should be noted that there the summation starts from n = 0 instead of

n = 1 in Eq. (1:5:39). The following expressions for the normal and skew harmonics at a

reference radius R0 are obtained for a line current located at (a; �) :

bn = 104
�
R0

a

�n
cos [(n+ 1)�] ; (1:5:42a)

an = �104
�
R0

a

�n
sin [(n + 1)�] ; (1:5:42b)

and BRo
= ��oI

2�a
.

For r > a case, the following rearrangement is performed to obtain an appropriate

expansion :

R

a
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�
r
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r
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ei(���)

� 1

2
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�
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�
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r

�
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;

ln
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R
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+
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2
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ln
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a
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�
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1
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1
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��
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r
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1
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��
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r
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#
;

ln

�
R

a

�
= ln

�
r

a

�
�

1X
n=1

�
1

n

��
a

r

�n
cos (n (�� �)) : (1:5:43)

Therefore, for r > a, one obtains the following expression for the vector potential :

Az (r; �) = ��oI
2�

ln

�
r

a

�
+
�oI

2�

1X
n=1

�
1

n

��
a

r

�n
cos (n (�� �)) : (1:5:44)
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The magnetic �eld components are obtained by using Eqs. (1:5:40) :

Br =
�oI

2�a

1X
n=0

�
a

r

�n+1
sin (n (�� �)) ; (1:5:45a)

B� =
�oI

2�a

1X
n=0

�
a

r

�n+1
cos (n (� � �)) ; (1:5:45b)

Bz = 0: (1:5:45c)

It may be noted that in the expression for B� , the summation in n starts from n = 0

instead of n = 1. The (Bx; By) components of the �eld can be computed using the following

relation:

8>>:Bx

By

9>>; =

8>>: cos (�) �sin (�)
sin (�) cos (�)

9>>;
8>>:Br

B�

9>>;: (1:5:46)
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1.5.3.2. Line Current in a Cylindrical Iron Cavity

Expressions are obtained here for the vector potential and magnetic �eld due to an

in�nitely long paraxial �lament of current I at a radius a in a cylindrical cavity having a

radius Rf > a. The iron is in�nitely long and in�nitely thick and has a constant relative

permeability �, which is referred to here simply as permeability following the convention

explained earlier. The method of image currents can be applied to include the contribution

from the iron [179]. The expressions are obtained here by matching the boundary conditions

at the interface of the air and iron boundary [19]. General expressions for the vector

potential and the components of the �eld in the region a < r < Rf , are given by :

Az (r; �) = ��oI
2�

ln

�
r

a

�
+
�oI

2�

1X
n=1

�
1

n

��
a

r

�n
cos (n (�� �))

+ �o

1X
n=1

Enr
ncos (n (�� �)) ; (1:5:47)

Br =
�oI

2�a

1X
n=1

�
a

r

�n+1
sin (n (�� �))

+ �o

1X
n=1

nEnr
n�1sin (n (� � �)) ; (1:5:48a)

H� =
I

2�a

1X
n=0

�
a

r

�n+1
cos (n (�� �))

�
1X
n=1

nEnr
n�1cos (n (�� �)) ; (1:5:48b)

and in the region r > Rf :

Az (r; �) = ��oFoln

�
r

a

�

+ ��o

1X
n=1

Fn

�
1

r

�n
cos (n (� � �)) ; (1:5:49)

Br = ��o

1X
n=1

nFn

�
1

r

�n+1
sin (n (�� �)) ; (1:5:50a)

H� = �Fo
r

+
1X
n=1

nFn

�
1

r

�n+1
cos (n (�� �)) ; (1:5:50b)

where En and Fn are coe�cients which can be determined by the boundary conditions at

r = Rf that

(Br)air = (Br)iron ;

(H�)air = (H�)iron ;
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i.e. the normal component of B and the azimuthal component of H are continuous. There-

fore, the required boundary conditions at r = Rf for n 6= 0 gives :

�oI

2�a

�
a

Rf

�n+1
+ n �o EnRf

n�1 = n �0 � Fn

�
1

Rf

�n+1
;

I

2�a

�
a

Rf

�n+1
� n EnRf

n�1 = n Fn

�
1

Rf

�n+1
;

which gives

En =
1

n

�� 1

�+ 1

I

2�

 
a

R2
f

!n

; (1:5:51a)

Fn =
1

n

2

�+ 1

I

2�a
an+1: (1:5:51b)

The n = 0 term appears only in the expression for H� and on matching the boundary

condition, one obtains :

I

2�Rf

= � Fo
Rf

;

which gives

Fo = � I

2�
: (1:5:52)

The expressions for vector potential and �eld components for a < r < Rf case are

obtained when En from Eq. (1:5:51a) is substituted in Eq. (1:5:47) and Eqs. (1:5:48) :

Az (r; �) = ��oI
2�

ln

�
r
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�

+
�oI

2�

1X
n=1

1

n

�
a

r

�n
cos (n (�� �))

"
1 +

� � 1

� + 1

�
r
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�2n#
; (1:5:53)

Br =
�oI

2�a

1X
n=1

�
a

r

�n+1
sin (n (�� �))

"
1 +

�� 1

�+ 1

�
r

Rf

�2n#
; (1:5:54a)

B� =
�oI

2�r
+

�oI

2�a

1X
n=1

�
a

r

�n+1
cos (n (�� �))

"
1� �� 1

�+ 1

�
r

Rf

�2n
#
: (1:5:54b)

In the above equations, the second term in the square brackets is the additional contribution

of the iron to the �eld produced by the coil.

To obtain the expressions for the vector potential and �eld for r < a it must be noted

that a current �lament is present at r = a. However, the radial component of the �eld Br

must still be continuous, i.e. at r = a

Br (in) = Br (out) ;
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where Br(in) and Br(out) are the magnetic induction for r < a and a < r < Rf respectively.

The presence of the source (current), however, gives a discontinuity in the azimuthal com-

ponent of the �eld H� with H�(in) - H�(out) determined by the current density at r = a.

A general expression for the vector potential for r < a is given by (see Eq. (1:5:39)) :

Az (r; �) = �o

1X
n=1

In rncos (n (�� �)) ; (1:5:55)

where the In are unknown coe�cients. Using Eqs. (1:5:40) :

Br = �o

1X
n=1

In n rn�1sin (n (�� �)) ; (1:5:56a)

B� = ��o
1X
n=1

In n rn�1cos (n (�� �)) ; (1:5:56b)

Bz = 0: (1:5:56c)

In order for Br to be continuous at r = a one obtains from Eq. (1:5:56a) and E-

q. (1:5:54a) :

In =
I
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1
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��
1
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�n "
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�� 1

�+ 1

�
a

Rf

�2n#
: (1:5:57)

Using this in Eqs. (1:5:56) gives the expressions for the �eld and vector potential for r < a

as :

Az (r; �) =
�oI

2�
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1
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��
r
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�n
cos (n (� � �))

"
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: (1:5:58)
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�oI
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1X
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�n�1
sin (n (�� �))

"
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�� 1

�+ 1

�
a

Rf

�2n
#
; (1:5:59a)

B� = ��oI

2�a

1X
n=1

�
r

a

�n�1
cos (n (�� �))

"
1 +

�� 1

�+ 1

�
a

Rf

�2n
#
; (1:5:59b)

Bz = 0: (1:5:59c)

To compute the �eld harmonics the procedure of Eqs. (1:5:42) is repeated. As before,

the summation over n in the above is now changed so that it starts from n=0 instead of

n=1.

bn = 104
�
R0

a

�n
cos ((n+ 1)�)

"
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; (1:5:60a)

an = �104
�
R0

a

�n
sin ((n+ 1)�)

"
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� + 1

�
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Rf

�2(n+1)#
: (1:5:60b)
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All expressions derived so far reproduce the results obtained from the method of images

[179] which says that the e�ect of iron can be replaced by an additional line current I
0

located

at (a
0

; �) with

I
0

=

�
� � 1

� + 1

�
I;

a
0

=
R2
f

a
:

The expressions for vector potential and �eld components for r > Rf case are obtained

when Fn fromEq. (1:5:51b) and Eq. (1:5:52) are substituted in Eqs. (1:5:49) and Eqs. (1:5:50)

:
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B� =
��oI

2�r
+

2�

� + 1

�oI

2�a

1X
n=1

�
a

r

�n+1
cos (n (�� �)) : (1:5:62b)
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1.5.3.3. Line Current in a Cylindrical Iron Shell

In deriving the expressions for the vector potential and �eld due to a line current inside

an cylindrical iron it was assumed in the last section that the iron outer boundary extends

to in�nity. This is, however, not the case in practice. If the outer diameter of the cylindrical

iron shell is Ra, then the general expressions for the vector potential in the various regions

are given by :

Az (r; �) = �o

1X
n=1

I
0

n
rncos (n (�� �)) ; [for r < a] (1:5:63a)
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rncos (n (�� �)) ; [for a < r < Rf ] (1:5:63b)
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cos (n (�� �)) ; [for r > Ra] (1:5:63d)

Following an approach similar to one used in previous section, the �ve coe�cients

(E
0

n
; F

0

n
; G

0

n
; H

0

n
; I

0

n
) are obtained by matching the �ve boundary conditions (Br is con-

tinuous at r = a, r = Rf and r = Ra and B� is continuous at r = Rf and r = Ra). The

results of that exercise for n > 0 are given here :
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and for n = 0, the terms are:

F
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o
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= � I

2�
: (1:5:65)

Therefore, the expressions for the vector potential and �eld components in various

regions due to a line current I at (a; �) inside a cylindrical iron shell having inner radius Rf

and outer radius Ra are given as follows (in each case Bz(r; �) = 0) :
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Between Coil and Iron (a < r < Rf)
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Rf

�2n �
1�

�
Rf

Ra

�2m�

1�
�
��1

�+1

�2 �
Rf

Ra

�2n
1
CCA�

�
a

r

�n+1
cos (n (�� �)) : (1:5:69b)

Inside Iron (Rf < r < Ra)

Az (r; �) = ���oI
2�

ln

�
r

a

�

+
��oI

� (�+ 1)

1X
n=1

�
1

n

� 1� ��1

�+1

�
r

Ra

�2n
1�

�
��1

�+1

�2 �
Rf

Ra

�2n �

�
a

r

�n
cos (n (�� �)) ; (1:5:70)

Br =
��oI

�a (�+ 1)

1X
n=1

1� ��1

�+1

�
r

Ra

�2n
1�

�
��1

�+1

�2 �
Rf

Ra

�2n �

�
a

r

�n+1
sin (n (�� �)) ; (1:5:71a)

B� =
��oI

2�r
+

��oI

�a (� + 1)

1X
n=1

1 + ��1

�+1

�
r

Ra

�2n
1�

�
��1

�+1

�2 �
Rf

Ra

�2n �

�
a

r

�n+1
cos (n (�� �)) : (1:5:71b)

Outside Iron (r > Ra)

Az (r; �) = ��oI
2�

ln

�
r

a

�
+

2��oI

� (�+ 1)
2

1X
n=1

1

1�
�
��1

�+1

�2 �
Rf

Ra

�2n �

�
1

n

��
a

r

�n
cos (n (�� �)) (1:5:72)

Br =
2�

(� + 1)
2

�oI

�a

1X
n=1

1

1�
�
��1

�+1

�2 �
Rf

Ra

�2n �

�
a

r

�n+1
sin (n (�� �)) ; (1:5:73a)

B� =
�oI

2�r
+

2�

(�+ 1)
2

�oI

�a

1X
n=0

1

1�
�
��1

�+1

�2 �
Rf

Ra

�2n �

�
a

r

�n+1
cos (n (�� �)) : (1:5:73b)
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Field Harmonics

The �eld harmonics are given by :

bn = 104
�
R0

a

�n
cos ((n+ 1)�)

2
641 + �� 1

�+ 1

�
a

Rf

�2(n+1) 1�
�
Rf

Ra

�2(n+1)
1�

�
��1

�+1

�2 �
Rf

Ra

�2(n+1)
3
75 ; (1:5:74a)

an = �104
�
R0

a

�n
sin ((n+ 1)�)

2
641 + �� 1

�+ 1

�
a

Rf

�2(n+1) 1�
�
Rf

Ra

�2(n+1)
1�

�
��1

�+1

�2 �
Rf

Ra

�2(n+1)
3
75 : (1:5:74b)
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1.5.3.4. Field and Harmonics due to Current Blocks in Air

The expressions derived for the line current in the section 1.5.3.1 are extended here for

one or more blocks of current. The geometry of the problem is such that a wire is replaced

by a radial block between radii �1 and �2 and angle �1 and �2. The block has a constant

current density J such that the total current is still I with I = 1
2
J(�22 � �21)(�2 � �1). To

compute the vector potential and component of �eld at (r; �) Eq. (1:5:36) and Eqs. (1:5:41)

should be integrated [179] as (for r < �1 ) :

Az (r; �) =
1X
n=1

Z
�2

�1

�oJ

2�

�
1

n

��
r

a

�n
a da

Z
�2

�1

cos [n (� � �)] d�; (1:5:75)

Br (r; �) =
1X
n=1

Z
�2

�1

�oJ

2�a

�
r

a

�n�1
a da

Z
�2

�1

sin [n (�� �)]d�; (1:5:76a)

B� (r; �) = �
1X
n=1

Z �2

�1

�oJ

2�a

�
r

a

�n�1
a da

Z �2

�1

cos [n (� � �)] d�: (1:5:76b)

The integration of the above equations for the vector potential and the �eld components

gives :

Az (r; �) =
�oJr

2�
(�2 � �1) [sin (�2 � �)� sin (�1 � �)]

+
�oJr

2

8�
ln

�
�2
�1

�
[sin (2 (�2 � �))� sin (2 (�1 � �))]

� �oJ

2�

1X
n=3

rn

n2 (n� 2)

�
1

�n�22

� 1

�n�21

�
�

[sin (n (�2 � �))� sin (n (�1 � �))] ; (1:5:77)

Br (r; �) = ��oJ
2�

(�2 � �1) [cos (�2 � �)� cos (�1 � �)]

� �oJr

4�
ln

�
�2

�1

�
[cos (2 (�2 � �))� cos (2 (�1 � �))]

+
�oJ

2�

1X
n=3

rn�1

n (n� 2)

�
1

�n�22

� 1

�n�21

�
�

[cos (n (�2 � �))� cos (n (�1 � �))] ; (1:5:78a)

B� (r; �) = ��oJ
2�

(�2 � �1) [sin (�2 � �) � sin (�1 � �)]

� �oJr

4�
ln

�
�2
�1

�
[sin (2 (�2 � �))� sin (2 (�1 � �))]

+
�oJ

2�

1X
n=3

rn�1

n (n� 2)

�
1

�n�22

� 1

�n�21

�
�

[sin (n (�2 � �))� sin (n (�1 � �))] : (1:5:78b)

Now the harmonics components an and bn (the dimensionless coe�cients as de�ned

in Eqs. (1:5:31)) are computed due to the �eld from a single current block. It should be
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noted that the summation of an and bn starts from n = 0 instead of n = 1 in Eq. (1:5:78).

For n > 1 and harmonics normalized to the dipole �eld, the following expressions for the

normal and skew harmonics at a reference radius Ro are obtained using the procedure of

Eqs. (1:5:42) :

bn =
�104Rn

0

(n2 � 1)

��
1

�n�12

� 1

�n�11

�
=(�2 � �1)

�

sin ((n + 1)�2)� sin ((n + 1)�1)

sin (�2)� sin (�1)
; (1:5:79a)

an =
�104Rn

0

(n2 � 1)

��
1

�n�12

� 1

�n�11

�
=(�2 � �1)

�

cos ((n + 1)�2)� cos ((n+ 1)�1)

sin (�2)� sin (�1)
; (1:5:79b)

and the harmonic expressions for n = 1 are

bn =
104R0ln

�
�2

�1

�
�2 � �1

sin (2�2)� sin (2�1)

sin (�2)� sin (�1)
; (1:5:80a)

an =
104R0ln

�
�2

�1

�
�2 � �1

cos (2�2)� cos (2�1)

sin (�2)� sin (�1)
: (1:5:80b)

To compute An and Bn (having the dimensions of �eld and de�ned in Eqs. (1:5:21))

one derives the expressions for �eld components from Eqs. (1:5:78) at a reference radius Ro

in the form of :

Br =
1X
n=1

�
r

Ro

�n�1
[Bn sin (n�) + An cos (n�)] ; (1:5:81a)

B� =
1X
n=1

�
r

Ro

�n�1
[Bn cos (n�) � An sin (n�)] ; (1:5:81b)

to obtain

A1 = �
�oJ

2�
(�2 � �1) [cos (�2)� cos (�1)] ; (1:5:82a)

A2 = �
�oJRo

2�
ln

�
�2

�1

�
[cos (2�2)� cos (2�1)] ; (1:5:82b)

for n � 3

An =
�oJ

2�

Rn�1
o

n (n � 2)

�
1

�n�22

� 1

�n�21

�
[cos (n�2)� cos (n�1)] ; (1:5:82c)

and

B1 = ��oJ
2�

(�2 � �1) [sin (�2)� sin (�1)] ; (1:5:83a)

B2 = ��oJRo

2�
ln

�
�2

�1

�
[sin (2�2)� sin (2�1)] ; (1:5:83b)

for n � 3

Bn =
�oJ

2�

1X
n=3

Rn�1
o

n (n� 2)

�
1

�n�22

� 1

�n�21

�
[sin (n�2)� sin (n�1)] : (1:5:83c)
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In a typical superconducting magnet several current blocks are used to generate the

desired multipolar �eld. In order to compute the harmonics due to several current blocks,

the �eld and �eld harmonics An and Bn (coe�cients having the dimension of �eld) can be

directly superimposed. However, an and bn (dimensionless coe�cients) can not be directly

added and they must be obtained from An and Bn as follows :

bn = 104
P

k
(Bn+1)kP

k
(Bm+1)k

; (1:5:84a)

an = 104
P

k
(An+1)kP

k
(Bm+1)k

; (1:5:84b)

where the summation k is carried over all k blocks with the kth block carrying a current

density of Jk and located between radii �1k and �2k and angles �1k and �2k. The An and

Bn for each current blocks are computed using the expressions given above. The harmonics

are de�ned such that the fundamental harmonic bm is normalized to 104.

The �eld components outside a current block (r > �2) are obtained similarly by inte-

grating Eqs. (1:5:78) and the results are given below

Br (r; �) = ��oJ
2�

1X
n=1

�n+12 � �n+11

n (n+ 2) rn+1
[cos (n (�2 � �))� cos (n (�1 � �))] ; (1:5:85a)

B� (r; �) =
�oJ

2�

1X
n=1

�n+12 � �n+11

n (n+ 2) rn+1
[sin (n (�2 � �))� sin (n (�1 � �))] : (1:5:85b)

The �eld inside a current block (�1 < r < �2) can be obtained by dividing the current

block in two parts (a) from radius �1 to radius r and (b) from radius r to radius �2. Then

the superimposition principle can be used to determine the �eld components with the (a)

part evaluated from Eqs. (1:5:78) with �2 replaced by r and the (b) part from Eqs. (1:5:85)

with �1 replaced by r.
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1.5.3.5. Field Harmonics due to Current Blocks in a Cylindrical Iron Shell

As shown in a previous section (Eqs. (1:5:67) for r < a), the expressions for the �eld

component due to current blocks get modi�ed when they are placed inside an iron shell

having an iron inner radius of Rf and outer radius of Ra. The harmonic coe�cients An and

Bn are enhanced by :

Kn =

"
1 +

�� 1

�+ 1

�
a

Rf

�2n#
�
1�

�
Rf

Ra

�2n�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2n� ;

To give

A
0

n
= Kn �An;

and

B
0

n
= Kn �Bn:

The harmonics coe�cients an and bn given in Eqs. (1:5:84) are modi�ed to :

bn = 104
P

k
(Kn+1 Bn+1)kP

k
(Km+1 Bm+1)k

(1:5:86a)

an = 104
P

k
(Kn+1 An+1)kP

k
(Km+1 Bm+1)k

(1:5:86b)
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1.5.3.6. COS(m�) Current Distribution for Ideal Fields

In this section, it is demonstrated that an ideal 2m (m=1 for dipole) multipolar �eld

shape in accelerator magnets can be produced by a COS(m�) current distribution. In the

last section the expressions for the �eld and vector potential produced by a line current were

obtained. The �eld in the cross section of the magnet can be described by superimposing

the �eld produced by a large number of such wires.

A cylindrical current sheet [12-18] at a radius of a is shown in Fig. 1.5.2, where the

angular current density I(�) in Amperes=radian as a function of angle � is given by the

relation

I (�) = Io cos (m�) : (1:5:87)

[In the case of skew harmonics the current distribution is I(�) = Io sin(m�)].

It will be demonstrated that a pure dipole �eld is created by m=1, quadrupole by m=2,

sextupole by m=3, etc. The total current required (Ampere-turns) per pole for generating

a 2m-pole �eld is given by

Ipole =

Z �=2m

o

Io cos (m�) d� =
Io

m
:

In Eqs. (1:5:39), the vector potential produced by a single wire at any position is

computed. To obtain the vector potential at (r; �) inside the sheet (i.e. r< a), the expression

is integrated over �

Az (r; �) =
�oIo
2�

1X
n=1

�
1

n

��
r

a

�n Z 2�

o

cos (m�) cos (n (�� �)) d�; (1:5:88)

to obtain

Az (r; �) =
�oIo

2m

�
r

a

�m
cos (m�) ; (1:5:89)

where the following trigonometric relations have been used

cos [n (�� �)] = cos (n�) cos (n�) + sin (n�) sin (n�) ; (1:5:90)

Z 2�

o

cos (m�) cos (n�) d� = ��m;n; (1:5:91a)

Z 2�

o

cos (m�) sin (n�) d� = 0: (1:5:91b)

The �eld components inside the current sheet are obtained by using Eqs. (1:5:40)

B� (r; �) = ��oIo
2a

�
r

a

�m�1
cos (m�) ; (1:5:92a)

Br (r; �) = ��oIo
2a

�
r

a

�m�1
sin (m�) ; (1:5:92b)

Bz (r; �) = 0: (1:5:92c)
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Figure 1.5.2: Computation of the �eld at (r; �) produced by a current

sheet at a radius a in which the current density varies as a function of angle
given by I(�) = Io cos(m�).

It may be noted that the magnitude of the �eld jBj is independent of �. On using

Eqs. (1:5:46)

Bx (r; �) = � �oIo

2a

�
r

a

�m�1
sin ((m� 1) �) ; (1:5:93a)

By (r; �) = � �oIo

2a

�
r

a

�m�1
cos ((m� 1) �) : (1:5:93b)
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For the m=1 case, this generates a pure dipole �eld, as the �eld components from E-

qs. (1:5:92) reduce to

B� (r; �) = ��oIo
2a

cos (�) ;

Br (r; �) = ��oIo
2a

sin (�) ;

and, from Eqs. (1:5:93)

Bx = 0; (1:5:94a)

By = � �oIo
2a

: (1:5:94b)

This implies that a cylindrical current sheet with a cosine � current distribution would create

a uniform vertical �eld inside it. This basic result is widely used in designing supercon-

ducting accelerator dipole magnets, although the actual current distribution is somewhat

modi�ed for practical reasons.

Likewise, for m=2, a pure quadrupole �eld is generated

B� (r; �) = ��oIor
2a2

cos (2�) ;

Br (r; �) = ��oIor
2a2

sin (2�) ;

and, from Eqs. (1:5:93)

Bx = g y; (1:5:95a)

By = g x; (1:5:95b)

with g = �(�oIo)=(2a2).
Similarly, for m=3, a pure sextupole �eld is generated

B� (r; �) = ��oIor
2

2a3
cos (3�) ;

Br (r; �) = ��oIor
2

2a3
sin (3�) ;

and, from Eqs. (1:5:93)

Bx = 2S x y; (1:5:96a)

By = S
�
x2 � y2

�
; (1:5:96b)

with S = �(�oIo)=(2a3).
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In general, a cos(m�) current distribution gives a 2m order multipole with �eld com-

ponents given by Eqs. (1:5:93).

On the x-axis (midplane), � = 0, these components become

Bx (x; 0) = 0; (1:5:97a)

By (x; 0) = ��oIo
2a

�
x

a

�m�1
; (1:5:97b)

and on the y-axis

Bx (0; y) = 0; for m = 1; 3; 5; :::

= ��oIo
2a

�
y

a

�m�1
; for m = 2; 4; 6; ::: (1:5:98a)

By (0; y) = ��oIo
2a

�
y

a

�m�1
; for m = 1; 3; 5; :::

= 0: for m = 2; 4; 6; ::: (1:5:98b)

To obtain the �eld outside the current sheet (r > a), Eqs. (1:5:44) is integrated using

the trigonometric relations given in Eq. (1:5:90)and Eqs. (1:5:91)

Az (r; �) = ��oIo
2�

ln

�
r

a

�Z 2�

o

cos (m�) d�

+
�oIo

2�

1X
n=1

�
1

n

��
a

r

�nZ 2�

o

cos (m�) cos (n (� � �)) d�;

therefore; Az (r; �) =
�oIo
2m

�
a

r

�m
cos (m�) : (1:5:99)

The �eld components for r > a are obtained using Eqs. (1:5:40)

B� (r; �) =
�oIo
2a

�
a

r

�m+1

cos (m�) ; (1:5:100a)

Br (r; �) = ��oIo
2a

�
a

r

�m+1

sin (m�) ; (1:5:100b)

Bz (r; �) = 0; (1:5:100c)

and the (Bx; By) components of the �eld are obtained as :

Bx = Br cos (�) � B� sin (�) ;

and

By = Br sin (�) + B� cos (�) ;

therefore,

Bx = ��oIo
2a

�
a

r

�m+1

sin [(m+ 1) �] ; (1:5:101a)

By =
�oIo

2a

�
a

r

�m+1

cos [(m+ 1) �] : (1:5:101b)
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In the case of the dipole (m=1), the �eld components outside the current sheet, fall as

1
r2
, and are given by :

B� (r; �) =
�oIoa

2r2
cos [�] ; (1:5:102a)

Br (r; �) = ��oIoa
2r2

sin [�] ; (1:5:102b)

Bx (r; �) = ��oIoa
2r2

sin [2�] ; (1:5:102c)

By (r; �) =
�oIoa

2r2
cos [2�] : (1:5:102d)

In deriving the above expressions, for simplicity it is assumed that the current is local-

ized in a sheet. However, in accelerator magnets, the current is present between two radii

a1 and a2. It is assumed that the current density in Amperes/m2 is given by

J (�) = Jo cos (m�) :

For a sheet of in�tesimal thickness da, Jo is related to the angular current density (Io) as

Io = Jo a da;

In this case the expression for the vector potential and �eld components for r < a are by

integrating Eqs. (1:5:39):

Az (r; �) =
�oJo

2�

1X
n=1

�
rn

n

�Z a2

a1

1

an
a da

Z 2�

o

cos (m�) cos (n (�� �)) d�;

Therefore,

Az (r; �) =
�oJor

m

2m
cos (m�)

Z a2

a1

1

am�1
da; (1:5:103)

B� (r; �) = ��oJor
m�1

2
cos (m�)

Z a2

a1

1

am�1
da; (1:5:104a)

Br (r; �) = ��oJor
m�1

2
sin (m�)

Z a2

a1

1

am�1
da; (1:5:104b)

Bz (r; �) = 0: (1:5:104c)

Except for m = 2 case (the quadrupole case, for which the expressions are given later),

one obtains :

Az (r; �) =
�oJoa1

2

2m (m� 2)
cos (m�)

�
r

a1

�m  
1�

�
a1
a2

�m�2!
; (1:5:105)

B� (r; �) = � �oJoa1

2 (m� 2)
cos (m�)

�
r

a1

�m�1  
1�

�
a1

a2

�m�2!
; (1:5:106a)
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Br (r; �) = � �oJoa1

2 (m� 2)
sin (m�)

�
r

a1

�m�1 
1�

�
a1

a2

�m�2!
; (1:5:106b)

By (r; �) = � �oJoa1
2 (m� 2)

cos ((m� 1) �)

�
r

a1

�m�1 
1�

�
a1

a2

�m�2!
; (1:5:106c)

Bx (r; �) = � �oJoa1

2 (m� 2)
sin ((m� 1) �)

�
r

a1

�m�1 
1�

�
a1
a2

�m�2!
: (1:5:106d)

In the case of the dipole (m=1), this gives a vertical �eld

By = ��oJo
�
a2 � a1

2

�
= ��oJo

�
�a

2

�
:

For m = 2 (quadrupole), the integration of Eqs. (1:5:104) gives :

Az (r; �) =
�oJor

2

4
cos (2�) ln

�
a2

a1

�
(1:5:107)

B� (r; �) = ��oJor
2

cos (2�) ln

�
a2
a1

�
(1:5:108a)

Br (r; �) = ��oJor
2

sin (2�) ln

�
a2

a1

�
(1:5:108b)

By (r; �) = ��oJor
2

cos (�) ln

�
a2

a1

�
(1:5:108c)

Bx (r; �) = ��oJor
2

sin (�) ln

�
a2

a1

�
(1:5:108d)

If the sheet thickness �a = a2�a1 is very small compared to the the average radius �a =

(a2+a1)

2
, then the expressions in Eqs. (1:5:106) for r < a may be simpli�ed to the following

equations since the integral in Eq. (1:5:103) and Eqs. (1:5:104) can be approximated as

(�a=�am�1) :

Az (r; �) =
�oJor�a

2m

�
r

�a

�m�1
cos (m�) ; (1:5:109)

B� (r; �) = ��oJo�a
2

�
r

�a

�m�1
cos (m�) ; (1:5:110a)

Br (r; �) = ��oJo�a
2

�
r

�a

�m�1
sin (m�) : (1:5:110b)
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1.5.3.7. COS(m�) Current Distribution in a Cylindrical Iron Shell

In superconducting accelerator magnets, the coils are frequently placed inside a cylin-

drical iron yoke to (a) reduce the stray magnetic �eld outside the magnet and (b) as an

added bene�t to enhance the �eld in the aperture of the magnet. Due to the non-linear

properties of the iron, the fraction of �eld generated by the iron at any current depends

on how much the yoke is magnetized. This is too complex a problem to solve analytically.

However, one can obtain simple expressions if one assumes that the permeability (�) of the

iron is constant everywhere in the yoke. Expressions for the vector potential and the �eld

are given for the case in which a COS(m�) current sheet at radius a is inside in an iron

shell with inner radius of Rf and outer radius of Ra.

In this case, the method of matching the boundary conditions at the air and iron

interfaces, as described in the last section, can be used to include the contribution from the

iron. This is equivalent to the method of images when the e�ect of the iron is replaced by

the equivalent image currents.

In the presence of a cylindrical iron yoke, the vector potential and the �eld components

given in Eqs. (1:5:89) and Eqs. (1:5:92), for r < a, are modi�ed to

Az (r; �) =
�oIo

2m
cos (m�)

�
r

a

�m
�

2
6641 + � � 1

� + 1

�
a

Rf

�2m

�
1�

�
Rf

Ra

�2m�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2m�
3
775 ; (1:5:111)

B� (r; �) = ��oIo
2a

cos (m�)

�
r

a

�m�1
�

2
6641 + � � 1

� + 1

�
a

Rf

�2m

�
1�

�
Rf

Ra

�2m�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2m�
3
775 ; (1:5:112a)

Br (r; �) = ��oIo
2a

sin (m�)

�
r

a

�m�1
�

2
6641 + � � 1

� + 1

�
a

Rf

�2m

�
1�

�
Rf

Ra

�2m�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2m�
3
775 : (1:5:112b)

The other components are obtained using Eqs. (1:5:46)

Bx (r; �) = ��oIo
2a

sin ((m� 1) �)

�
r

a

�m�1
�
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2
6641 + �� 1

�+ 1

�
a

Rf

�2m

�
1�

�
Rf

Ra

�2m�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2m�
3
775 ; (1:5:113a)

By (r; �) = ��oIo
2a

cos ((m� 1) �)

�
r

a

�m�1
�

2
6641 + �� 1

�+ 1

�
a

Rf

�2m

�
1�

�
Rf

Ra

�2m�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2m�
3
775 ; (1:5:113b)

Bz (r; �) = 0: (1:5:113c)

Similarly, the vector potential and �eld outside the current sheet but inside the iron,

i.e. a < r < Rf , is given by :

Between Coil and Iron (a < r < Rf)

Az (r; �) =
�oIo
2m

0
BB@1 + � � 1

� + 1

�
r

Rf

�2m

�
1�

�
Rf

Ra

�2m�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2m�
1
CCA �

�
a

r

�m
cos (m�) ; (1:5:114)

Br = ��oIo
2a

0
BB@1 + �� 1

�+ 1

�
r

Rf

�2m
�
1�

�
Rf

Ra

�2m�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2m�
1
CCA �

�
a

r

�m+1

sin (m�) ; (1:5:115a)

B� =
�oIo
2a

0
BB@1� � � 1

� + 1

�
r

Rf

�2m

�
1�

�
Rf

Ra

�2m�
�
1�

�
��1

�+1

�2 �
Rf

Ra

�2m�
1
CCA �

�
a

r

�m+1

cos (m�) : (1:5:115b)

Inside Iron (Rf < r < Ra)

Az (r; �) =
��oIo

m (�+ 1)

0
B@ 1� ��1

�+1

�
r

Ra

�2m
1�

�
��1

�+1

�2 �
Rf

Ra

�2m
1
CA �

�
a

r

�m
cos (m�) ; (1:5:116)

Br = � ��oIo

a (� + 1)

0
B@ 1� ��1

�+1

�
r

Ra

�2m
1�

�
��1

�+1

�2 �
Rf

Ra

�2m
1
CA �
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�
a

r

�m+1

sin (m�) ; (1:5:117a)

B� =
��oIo

a (� + 1)

0
B@ 1 + ��1

�+1

�
r

Ra

�2m
1�

�
��1

�+1

�2 �
Rf

Ra

�2m
1
CA �

�
a

r

�m+1

cos (m�) : (1:5:117b)

Outside Iron (r > Ra)

Az (r; �) =
2��oIo

m (�+ 1)
2

1

1�
�
��1

�+1

�2 �
Rf

Ra

�2m
�
a

r

�m
cos (m�) ; (1:5:118)

Br = � 2��oIo

a (� + 1)
2

1

1�
�
��1

�+1

�2 �
Rf

Ra

�2m
�
a

r

�m+1

sin (m�) ; (1:5:119a)

B� =
2��oIo

a (�+ 1)
2

1

1�
�
��1

�+1

�2 �
Rf

Ra

�2m
�
a

r

�m+1

cos (m�) : (1:5:119b)



REVIEW OF THE FIELD 57

1.5.3.8. Intersecting Circles with a Constant Current Density for Ideal Fields

It has been shown [137] that a pure dipole �eld can be created simply by two intersecting

circles carrying constant current densities in opposite directions. To demonstrate this, the

�eld is evaluated inside and outside a circular conductor with a radius a and carrying

a constant current density J in the direction of the axis (perpendicular to the plane of

paper). For a radius R > a (outside the conductor), Ampere's law gives

2�R �H = �a2 J:

Therefore,

H =
Ja2

2R
: (1:5:120)

The direction of the magnetic �eld is azimuthal, with (x; y) components of the �eld at any

point outside the conductor given by

Hx = �Ja
2

2R
sin (�) = �J

2

�
a

R

�2
y;

Hy =
Ja2

2R
cos (�) =

J

2

�
a

R

�2
x:

The �eld inside the conductor (R < a) can be obtained as

2�R �H = �R2 J;

i:e:; H =
JR

2
: (1:5:121)

with the components of the �eld being given by

Hx = �
J

2
R sin (�) = �J

2
y;

Hy =
J

2
R cos (�) =

J

2
x:

Now expressions will be derived for the �eld produced by the conductors in two inter-

secting circles. The coordinate system is de�ned such that the x-axis passes through the

centers of the two circles with the origin of the new coordinate system (x
0

; y
0

) being in the

middle of the two. The distance between the centers of the two circles is s with circle 2 to

the right such that x
0

= x1 � s

2
= x2 +

s

2
and y1 = y2 = y

0

. The direction of the current

is opposite in the two circles, with constant current densities J1 and �J2 respectively. The
components of the �eld inside the region created by the two intersecting circles can be

computed by superimposing the �eld produced by the conductors in the two circles

Hx =
y

0

2
(J2 � J1) ;

Hy =
x

0

2
(J1 � J2) +

s

4
(J1 + J2) :
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Figure 1.5.3: This �gure shows the two intersecting circles of equal

size with one carrying a current with a constant density J = �Jo and

the other J = Jo. The two circles are separated by a distance s. In the

intersection region of the two circles, the net current density is zero and

therefore it can be replaced by a current free region. It is demonstrated

that this con�guration produces a vertical dipole �eld given by Jo

2
s.

A special case comes when the magnitude of the current densities in the two circles is

Jo but the direction is opposite as shown in Fig. 1.5.3. This means that the intersection

region is a current free region which can be used as an aperture for the particle beam and

and the aperture has a constant vertical magnetic �eld given by Hy =
Jo

2
s.
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It can be shown [14] that four intersecting circles create a quadrupole �eld and in

general 2m intersecting circles create a 2m-order multipole. The treatment has been also

been extended to ellipses by a number of authors (see for example Beth [14]).
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1.5.4. Complex Variable Method in 2-d Magnetic Field Calculations

The method of complex variable is found very useful in deriving many expressions in

superconducting magnets. [12-18,81] These methods can be applied to 2-dimensional �eld

computations, which is the case for the most part of long superconducting magnets. Mills

and Morgan [115] have shown that the complex method can also be extended throughout

the ends, however, to the �eld integral (
R
B:dz). The complex variables have two parts (real

and imaginary) and the following variables will be used :

z = x + i y; (1:5:122a)

H (z) = Hy + i Hx; (1:5:122b)

B (z) = By + i Bx; (1:5:122c)

W (z) = � (A + i �) + constant: (1:5:122d)

where W is the complex potential having � and A (scalar and vector potentials) as the two

components, and i =
p
�1. z� is the complex conjugate of z with

z� = x � i y:

In the 2-d case the following relations are valid :

Bx =
@A

@y
(1:5:123a)

By = �@A
@x

; (1:5:123b)

with Bx = �0�Hx;

and By = �0�Hy:

Moreover, in air (� = 1),

Hx = �
1

�0

@�

@x
=

1

�0

@A

@y
; (1:5:124a)

Hy = �
1

�0

@�

@y
= � 1

�0

@A

@x
: (1:5:124b)

The Cauchy-Riemann equations are the necessary and su�cient conditions for a func-

tion to be analytic in Z-plane. For a function Fw = u + i v, these conditions are:

@u

@x
=

@v

@y
; (1:5:125a)

@u

@y
= �@v

@x
: (1:5:126a)
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In a medium free of magnetic material with � = 1, Eqs. (1:5:124) gives

@A

@x
=

@�

@y
;

@A

@y
= �@�

@x
;

which are the Cauchy-Riemann conditions for W (z) = �(A+ i�)+constant to be analytic.

In the same way, B(z) (and similarly H(z)) is analytic if :

@By

@x
=

@Bx

@y
;

@By

@y
= �@Bx

@x
;

which are just Maxwell's equations in a current free region. It may be noted that the choice

of variable B(z) as B(z) = By + iBx is important since Bx and By do not the satisfy the

Cauchy-Rieman conditions if the variable is Bx + iBy.

Since W (z) is analytic, the derivative of W (z) gives the the complex �eld function :

dW

dz
= �@A

@x
� i

@�

@x
= i

@A

@y
� @�

@y
= Hy + i Hx = H (z) :

To deal with a region with current, a new analytic function is de�ned as follows :

F (z) = B (z)� 1

2
�oJz

� = (By � 1

2
�oJx) + i (Bx + 1

2
�oJy) ; (1:5:127)

where the current density J is constant throughout the region. The Cauchy-Riemann

conditions become :

@By

@x
� 1

2
�oJ =

@Bx

@y
+ 1

2
�oJ

=) @By

@x
� @Bx

@y
= �oJ

and;
@By

@y
= � @Bx

@x

=) @Bx

@x
+
@By

@y
= 0

which are Maxwell's equations in the presence of current.
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1.5.4.1. Field due to an array of Line Currents

The complex potential at a point z, due a current 
owing in a direction perpendicular

to the Z-plane at z = zo, is given by :

W (z) =
I

2�
log (z � zo) + constant ;

and the magnetic �eld is given by :

H (z) =
dW

dz
=

I

2� (z � zo)
: (1:5:128)

The direction of the �eld is that of (z � zo)
�, which is perpendicular to the vector (z � zo).

The superposition principle can be used to obtain the �eld due to n �laments with the kth

�lament carrying Ik amperes and located at z = zk :

H (z) =
nX

k=1

Ik

2� (z � zk)
: (1:5:129)

Cauchy's Residue Theorem gives [29]

I
C

f (z) dz = 2�i
X
k

Res (ak); (1:5:130)

where Res(ak) are the residues which are de�ned as the coe�cients of 1

z�zk
inside the

contour C over which the contour integral of the function f(z) is taken. Applying this to

Eq. (1:5:129) while taking the contour integral of the �eld around the wires in the Z-plane,

one obtains I
H (z) dz = i

nX
k=1

Ik: (1:5:131)

which is basically Ampere's law.

The Cauchy integral formula [29] gives :

f (zo) =
1

2�i

I
C

f (z)

(z � zo)
dz; (1:5:132)

where the function f(z) is analytic everywhere within and on a closed contour C and f(zo)

is the value of f(z) at z = zo.
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1.5.4.2. Beth's Current Sheet Theorem

Beth's \Current Sheet Theorem" [12-18] can be derived from Eq. (1:5:131). As shown

in Fig. 1.5.4 the current sheet is made up of a number of �laments carrying a total current

�I perpendicular to the Z-plane along the curve from z to z + �z. A contour integral on

a closed path enclosing the current sheet will give

I
H (z) dz = i �I:

Now if the path is squeezed from the right and left sides (indicated by the subscripts R and

L) on to the current sheet, then in the limiting case one obtains

HR (zo) � HL (zo) = i
dI

dz
; (1:5:133)

where HR(zo) and HL(zo) are the limits of the analytic functions HR(z) and HL(z) when

z approaches zo from the right and left and dI

dz
is the limit of �I

�z
when �z approaches 0 at

any z.

The above equation Eqs. (1:5:133) is called Beth's current sheet theorem. To obtain

another equation in potential form this equation is integrated to give

WR (zo) � WL (zo) = i I + Constant ; (1:5:134)

where WR(zo) and WL(zo) are the limits of the analytic functions WR(z) and WL(z) when

z approaches zo from the right and left.
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Figure 1.5.4: Beth's current sheet is shown here, which is made up of

a number of �laments, carrying a total current �I perpendicular to the

Z-plane along the curve from z to z+�z. The sub-script \R" denotes the
right side and \L" denotes the left side to the sheet.
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1.5.4.3. Example { Cos(m � ) current distribution

As an example of use of the complex variable methods, expressions are derived here for

the �eld due to a cylindrical current sheet at a radius r = a, as shown in Fig. 1.5.2. An

angular current density distribution, mentioned earlier, is :

dI

d�
= Io cos (m�) :

In complex coordinates, the above current sheet is located at z = a ei�. Then,

dI

dz
=

�
dI

d�

�
=

�
dz

d�

�
=

Io cos (m�)

i a ei�
:

Since H(z) is analytic both inside and outside the current sheet, a general expression

for the �eld to remain �nite inside the current sheet (r < a) is Hin =
P

n
anz

n and for

outside the current sheet (r > a) is Hout =
P

n
bnz

�n. To obtain the coe�cients an and bn,

the �elds (Hin) and (Hout) are linked using Beth's current sheet theorem (Eqs. (1:5:133))

as follows :

Hout � Hin = Io
cos (m�)

a ei�

=
Io

2 a

h
e�i(m+1)� + ei(m�1)�

i

=
Io
2 a

"�
a

z

�m+1

+

�
z

a

�m�1#
:

The right hand side of the above equation gives the �eld on the current sheet and it acts

as a boundary condition which must match interior and exterior solutions. Hence an=0 for

n 6=m-1 and bn=0 for n6=m+1, giving

Hin =
�Io
2 a

�
z

a

�m�1
jzj < a;

Hout =
Io

2 a

�
a

z

�m+1

jzj > a:
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1.6. Methods Investigated for Improving Field Quality

This section gives a brief summary of the research and development work performed

during the course of this work for improving the �eld quality in superconducting magnets.

The work is presented in more detail in chapters 2 through 6. The two major components

of the magnet which in
uence the �eld quality are the coil and yoke designs. A major e�ort

has been made to develop and apply various methods of obtaining the �eld quality required

in large particle accelerators. The �eld quality is further improved by using tuning shims

for correcting errors after construction. Improvements in the techniques used to analyze

the magnets have also been made. In the end, optimized designs for the cross section of

the SSC collider dipole and RHIC insertion quadrupole magnet are described. The research

work is divided into �ve chapters. The following is a brief description of each chapter.

1.6.1. Improvements in the Computational and Analysis Methods

A technique has been developed for a computer-aided mechanical measurement of the

cross section. This can be used to study the geometry of the coil and iron cross section

in an actual magnet as built. It can be used to understand the magnetic performance of

a design and also to examine the mechanical deformation in a magnet resulting from the

large mechanical forces applied during the magnet assembly. This technique is described in

chapter 2.

The computer code POISSON has been extensively used to carry out the calculations

presented during the course of this work. In order to make a precise computer model of

a magnet and in order to obtain the desired accuracy, this program has been extensively

modi�ed. A signi�cant e�ort has been made developing the techniques used in setting up

the mesh which describes the problem, to a desired accuracy. These improvements are also

described in chapter 2.
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1.6.2. Field Quality Improvements through Yoke Design

An iron yoke is used in superconducting magnets to reduce the fringe �eld outside the

physical boundary of the magnet. In addition, the magnetized yoke iron also contributes

to the �eld at the center of the magnet. However, the magnetization is not proportional

(linear) to the current in the coil. This contribution becomes non-linear when the �eld in

the iron is above �1.2 Tesla. This non-linearity in iron properties (referred to commonly as

saturation e�ects) complicates the design and limits the �eld quality of the magnet at high

�eld. The iron saturation changes the azimuthal distribution of the yoke magnetization.

This in turn changes the uniformity of the �eld in the magnet aperture.

In the magnet designs described in this research work, the saturation e�ects are min-

imized by controlling the iron saturation across the azimuth. The path of the magnetic

�eld lines is controlled with the help of a number of techniques so that the iron saturates

uniformly throughout the yoke.

The �eld in the accelerator magnets is represented by the harmonic components and

they change with the azimuthal distribution of the �eld. In an ideal magnet all except one

harmonic is zero. In RHIC dipole magnets these yoke design techniques have resulted in

reducing the saturation induced harmonics by about an order of magnitude. These involve

(a) optimizing the locations of certain holes in the yoke which must be there, or (b) putting

in some additional holes which are dedicated to controlling the saturation or (c) putting in

cutouts or bumps to shape the aperture or (d) using a non-circular aperture having multiple

circular arcs with di�erent radii. The �eld quality improvements obtained through the yoke

designs are described in chapter 3.

1.6.3. Field Quality Improvements through Coil Design

For a variety of reasons a signi�cant di�erence is observed between the design and mea-

sured values of harmonics in the magnets. Moreover, sometimes, there are also di�erences

between the component dimensions as used in the original design computations and the

component dimensions as delivered for use in the magnets. A systematic study of this is

made in chapter 4. To handle such errors the coil cross section is generally iterated. This

is also studied in chapter 4. This approach, however, requires a long time to incorporate in

the next design of the magnet and is relatively in
exible. In the RHIC interaction region

quadrupole magnets, the cross section iterations are accomplished by changing the size of
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the midplane shims (thin material at the coil midplane) and the size of the pole shims (thin

material at the coil pole). The major advantage of this approach is the fast turn-around

time and an ability to iterate the cross section after the coils are made.

An adjustment in the midplane gap has been used in the industry-built 80 mm aperture

RHIC arc dipole magnet to minimize the critical b4 harmonic. This is also described in

chapter 4.

An ideal dipole cross section has 2-fold symmetry and an ideal quadrupole has 4-fold

symmetry. The RHIC arc and insertion quadrupoles are collared like dipoles to save cost

and for design simplicity reasons. This, however, breaks the ideal 4-fold symmetry in

the quadrupoles. Earlier RHIC quadrupoles thus built had large undesired harmonics. The

harmonics have been compensated in the present design using a method described in chapter

4. This basically involves creating another deliberate asymmetry between the horizontal

and vertical planes by making the gap between the two coils asymmetric at the midplane.

1.6.4. Field Quality Improvements after Construction

The ultimate luminosity performance of RHIC is determined by the �eld quality in the

130 mm aperture interaction region quadrupoles. To overcome the limitations in obtaining

a good �eld quality due to practical manufacturing and assembling tolerances, the method

of Tuning Shims has been developed. This is described in detail in chapter 5. The method

is referred to as the Tuning Shim Method because it corrects the measured harmonics in

an individual magnet by adjusting the strength of harmonics generated by each of several

tuning shims.

The basic principle is as follows : when a magnetic material (shim) is placed inside the

yoke aperture, it becomes magnetized and changes the shape of the �eld at the center of

the magnet. This change can be expressed in terms of harmonic components. By properly

choosing the location and size of these magnetic shims one can cancel out as many measured

harmonics as the number of shims. In the 130 mm aperture RHIC interaction region

quadrupoles, the number of tuning shims is eight. They are used to compensate eight

critical harmonics. Calculations will be compared with measurements.

In addition to the above method, which corrects the harmonics in the body of the

magnet, an integral correction can also be made in the two ends of the magnet. This
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scheme was examined for correcting the top-bottom asymmetry in the SSC collider dipole

magnets. This is also described in chapter 5.

1.6.5. Optimized Cross section Designs

The ultimate purpose of the above research and development in the design and analysis

methods is to obtain optimized cross section designs which produce the required good �eld

quality in superconducting accelerator magnets. A detailed description of the magnetic

design of the cross section of the prototype of the 50 mm aperture SSC collider dipole

magnets and the 130 mm aperture RHIC insertion quadrupole magnets is given in chapter

6. This chapter also describes the design philosophy and other considerations used in

developing the �nal optimized sets of parameters. Moreover, detailed computations of the

�eld harmonics at various currents and computations of other quantities like the maximum

expected �eld at which the magnet would remain superconducting (quench �eld), etc. are

also given.


