Magnet Design Approach and Strategy

Ramesh Gupta
Overview of the Presentation

• Common Coil Design Approach
 The basic philosophy
 A brief description of the design and its advantages

• Magnet Program
 First Magnet ~ 7 T (under construction; almost completed)
 High Field Magnet ~ 14 T (under development; better J_c)

• R&D Strategy
 Experimental program for pre-stress and force containment
 High stress and high field (~16 T) configuration
Preface

- 10-15 years to VLHC; 5-10 years to do magnet research
- A rare opportunity to explore alternative approaches
- Be innovative

Alternate design concept
“Magnet R&D Factory” for faster turn-around
to explore/develop innovative magnet technology
Common Coil Design Concept

- Simple 2-d geometry with large bend radius (no complex 3-d ends)
- Conductor friendly (suitable for brittle materials - most are, including HTS tapes and cables)
- Compact (compared to D20, half the size for twice the apertures)
- Block design (for large Lorentz forces at high fields)
- Efficient and methodical R&D due to simple & modular design
- Minimum requirements on big expensive tooling and labor
- Lower cost magnets expected
Field Lines at 15 T in a Common Coil Design Magnet
A Modular Design for a New R&D Approach

- Replaceable coil module
- Change cable width or type
- Combined function magnets
- Vary magnet aperture
- Study support structure

Traditionally such changes required building a new magnet
Also can test modules off-line

This is our Magnet R&D Factory
Change in Aperture for Various Field/Stress Configurations

Expected Performance of a Double Pancake Coil made with D20 Cable

<table>
<thead>
<tr>
<th>Aperture</th>
<th>Bo (T)</th>
<th>Bpeak (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm</td>
<td>11.68</td>
<td>11.72</td>
</tr>
<tr>
<td>20 mm</td>
<td>11.1</td>
<td>11.4</td>
</tr>
<tr>
<td>30 mm</td>
<td>10.5</td>
<td>11.1</td>
</tr>
<tr>
<td>40 mm</td>
<td>9.8</td>
<td>10.9</td>
</tr>
<tr>
<td>50 mm</td>
<td>9.1</td>
<td>10.7</td>
</tr>
</tbody>
</table>
I am not the only one to have suggested this type of crazy geometry

Danby, BNL (1983)

Had to come out of BNL to find what a very respected scientist thought there before I was born as a magnet person.

Similar, except that in Danby’s design the pole coil must to be bent in a tight radius.

Common coil design has some more advantages in terms of compact, flexible and modular easy-to-fabricate structure, etc.
Design Parameters of the 1st Magnet

- 40 mm aperture 2-in-1 common coil design magnet. Aperture and internal support structure can be changed.
- Double pancake coils with one end-spacer to reduce peak field.
- ~13 mm wide cable made from existing Nb$_3$Sn ITER conductor. Only 7-8 tesla field with this conductor.
 \[J_{sc}(12T,4.2K) \approx 675 \text{ A/mm}^2, \text{Cu/Sc Ratio} = 1.5 \]
- 150 mm spacing between the two bores.
- 40 mm coil bend radius in the ends.
- Straight section length 0.5 meter; overall length ~ 1 meter.
- No iron yoke.
- After initial testing, this magnet becomes a flexible R&D test facility to examine different concepts and insert coils.
TOSCA Analysis for Ends

10 mm spacers (after 6 turns) to reduce peak field in the ends

Component: BMOD

0.0 4.0 8.0
Field Lines and Contour Plot at 7 T in the 1st Common Coil Design Magnet

Max. field point 7.7 T
High Field Magnet Design

- Use high performance, the best available, Nb₃Sn conductor
 - $J_{sc}(12T, 4.2K) \sim 2000$ A/mm², Cu/Sc Ratio = 0.7, 1.7

- 40 mm aperture (variable), 2-in-1 common coil design

- 50 mm bend radius (in ends), 170 mm bore spacing, iron yoke

- Three layers to generate ~14 T field with the specified cable

- Uses unconventional cable grading (more in 2nd talk)

 graded in width (NOT in thickness) for better efficiency and flexibility

- Field quality

 This is not a field quality magnet design yet
 Tools are being developed in collaboration with CERN
 Magnet assembly (with auxiliary coils) to be addressed later
Superconducting Magnet Program

Magnet Design Approach and Strategy

Accelerator and Fusion Research Division

Ramesh Gupta: August 12, 1998

Field in High Field Magnet Design

(40 mm aperture, 3 layers)

Max. accumulated stress region also has the maximum margin

Field in the coil and magnet aperture

Inner layer cable: wider 40 strands
Outer 2 layers: narrower 26 strands.
B_{ss} \sim 13.8 (4.2K), \sim 14.5 (1.8 K) [not including stress degradation].
B_{pk1} \sim 15 T (+8.5\%), B_{pk2} \sim 10.5 T.

Field lines in a quarter of the magnet and iron saturation in the yoke

Max saturation between the two apertures.
Inter beam spacing increased by increasing coil bend radius from 40 mm to 50 mm.

Note: Compact size (yoke o.d. = 50 cm)

Field in a quarter of the magnet
Pole blocks included for some field uniformity (peak field reduced)

Inner 2 layers: wider cable 40 strands
Outer 2 layers: narrower 26 strands.
B_{ss} \sim 14.4 (4.2K), \sim 15 (1.8 K) [not including stress degradation].
B_{pk1} \sim 15 T (+4\%), B_{pk2} \sim 10.3 T.

In actual common coil design this block would return upward to clear the bore.
Use 40 mm coil (not optimized for 50 mm aperture)

\[B_{ss} \text{ (at 4.3 K)} = 14.3 \text{ T}, \ B_{pk} = 14.9 \text{ T} \]

Compact design (Yoke cross-section half of D20)

Number of turns per quadrant per aperture = 71

(D20 used 118 turns)

Uses much less conductor volume:

- No wedges for arc shape
- Pole turn in outer layers of D20
- Compact Design
- Better Conductor
Investigations for Very High Field (to probe the limit of technology)

Vary aperture after the coils are made a unique feature of this design

Lower separation (aperture) reduces peak field, increases T.F. => Higher B_{ss}

May not be practical for machine magnet but an attractive way to address technology questions

Determine stress degradation in an actual conductor/coil configuration

Max. stress accumulation at high margin region

When do we really need a stress management scheme (cost and conductor efficiency questions), and how much is the penalty?

Simulate the future (better J_c) conductor
Pre-stress

How much is needed? Past Experience?
Full/Intermediate/Low?
(conventional wisdom of full pre-stress puts a very high value which may be difficult, if not practical)

Vertical pre-stress: Try to determine experimentally. Experiments in first magnet?

Horizontal pre-stress: Not an option
Conflict between beam aperture and internal support structure.

Strategy: Assure contact between coil and external support structure at low field
Outward Lorentz forces will help.
Test this approach in the first magnet.
Field Quality Design/Optimization (Conceptual)

Parameters for optimizing

- Each layer of coils (module) with different height
- Midplane and pole blocks
- Spacers (wedges)
- Iron between two apertures
- Top bottom asymmetry

Lower random errors expected because of geometry

Systematic errors, including tools, will be optimized next year
Field Quality Design/Optimization (in collaboration with CERN)

ROXIE
by Stephan Russenschuck

- Basic tools are in place to define the coil geometry and to do x-section and end optimization
- Refinement on how to better define geometry, do optimization and field calculations
- A fruitful collaboration
Conclusions and Summary

• A new flexible design to do modular, faster and innovative magnet R&D.
 Geometry is suitable for high field magnets.
 It is also expected to produce lower cost magnets.

• First magnet will have a modest field (7 T). It will test the basic concept and address basic design issues.

• The new conductor (with improved J_c) is expected to create ~14 T in a 3-layer coil design.