EIC IR Magnet Design Summary (FY20)

Ramesh Gupta Superconducting Magnet Division November 2020

- Magnet designs based on the cables that can be easily procured
- Two types of 36-strand cables
 - -Same width and mid-thickness for both
 - -Keystone #1 for B1apF and B1pF
 - -Keystone #2 for quadrupoles

Content

- These slides summarize the magnetic design work performed in FY20 on EIC IR cable magnets
- The main goal of this exercise was to develop magnetic designs such that all EIC IR magnets can operate at 4.2 K rather than 1.8 K
- Since the electron beam is very close to the proton beam, leakage field from the proton IR magnets must be low in the path traverse by the e-beam.
- Another goal was to develop designs based on the cables that can be easily procured (36-strand)

Superconducting

Magnet Division

Overview

- Design studies completed for now for Q2pF. Several cases examined but only the chosen one will be presented.
- Operation at 4.2K/4.6K. Peak field (margin), field quality and field in the electron beam region optimized.
- > Strand/wire used: dia =1.065 mm, Cu/Sc =1.6.
- Cable: 19.4 mm wide (19.7 with insulation) with 36 strands, min thickness: 1.788 mm, max thickness: 2.012 mm.

Chosen Cable Design (ROXIE)

Superconducting

NATIONAL LABORATORY

KHAVEN

Magnet Division

[No	Name	diam.	cu/sc	RRR	Tref	Bref	Jc@BrTr	dJc/dB	Comment	8
	\Rightarrow	STREIC1	1.065	1.6	70	1.9	10	1591	500.34	EIC BRUKER-CERN SCALED, 7%DEGR#	$ \Delta$
	1	STR01	1.065	1.6	70	1.9	10	1433.3	500.34	MB INNER	
	2	STR02	0.825	1.9	80	1.9	9	1953	550.03	MB OUTER, MQ	

Ę	e C	able Geometry										
		No	Name	height	width_i	width_o	ns	transp.	degrd	Comment		
		1	EIC3642A	19.4	1.788	2.012	36	115	3	EIC 36 STRAND 04.2K 2 Layers	$\overline{\Delta}$	

ŧ.] Cable Definition										
[No	Name	Cable Geom.	Strand	Filament	Insul	Trans	Quench Mat.	T_o Comment		
	4	2 EIC3618	EIC3618	STREIC1	. NBTII	ALLPOL	YIL NONE	NONE	1.8 EIC (CABLE 36 STRAND, 3	1.8K
	4	3 EIC3642	EIC3642	STREIC1	. NBTII	ALLPOL	YIL NONE	NONE	4.2 EIC (CABLE 36 STRAND, 4	4.2K
	4	4 EIC3642A	EIC3642A	STREIC1	. NBTII	ALLPOL	YIL NONE	NONE	4.2 EIC (CABLE 36 STRAND, 4	4.2K
	4	5 EIC3642B	EIC3642A	STREIC1	. NBTII	ALLPOL	YIL NONE	NONE	4.6 EIC (CABLE 36 STRAND, 4	4.6K

Strand dia =1.065 mm; 36 strands in cable Cu/Sc =1.6, width 19.4 mm (bare) Operating Temperature: 4.2 K / 4.6 K

Field Harmonics in Q2pF

5.233

4.927 4.620 4.314 4.008 3.701 3.395

ROXIE 10.2

A good field quality can be obtained with the restriction of designing the cross-section for a good mechanical design (all harmonics <1 unit)

NORMAL RELATIVE MULTIPOLES (1.D-4):

b 1:	-0.00000	b 2:	10000.00000	b 3:	-0.00000
b 4:	-0.04348	b 5:	0.00000	b 6:	-0.36357
b 7:	0.0000	b 8:	-0.00184	b 9:	-0.00000
b10:	0.62176	b11:	-0.00000	b12:	-0.00007
b13:	0.00000	b14:	-0.22463	b15:	-0.00000
b16:	-0.00000	b17:	0.00000	b18:	0.01234

Magnet Division_

Peak Fields in Q2pF

EIC 36 strand cable 4.6 K Q2pF Half Iron

20/06/26 16:19

Field Margin at 4.2 K

Superconducting Magnet Division

EIC 36 strand cable 4.2 K Q2pF

20/06/22 17:32

Healthy Margin: ~47% over 36 T/m at 4.2K (68% on loadline)

Field Margin at 4.6 K

EIC IR Magnet Design Summary (FY20)

Superconducting

Magnet Division

EIC 36 strand cable 4.2 K Q2pF

Temperature Margin at 4.2 K Over Different Blocks

20/06/22 17:32

20/06/22 17:32

November 2020

EIC IR Magnet Design Summary (FY20)

Field Margin at 4.6 K

Field Margin at 4.6 K

Superconducting Magnet Division

Margin across the coil: Minimum 28% on the loadline at 36 T/m @4.6 K

120

100

160

140

180

200

EIC IR Magnet Design Summary (FY20)

Field Margin at 4.2 K over 41 T/m

Significant Margin: ~25% over 41 T/m at 4.2K (9 kA) (80% on loadline)

Magnet Division

Field Margin over 41 T/m @4.2 K

Margin across the coil: Minimum 20% on the loadline at 41 T/m at 4.2K

A Reasonable Margin: ~25% over 41 T/m at 4.2K (80% on loadline)

Temperature Margin over 41 T/m at 4.2 K Over Different Blocks

November 2020

BROOKHAVEN NATIONAL LABORATORY

Superconducting

EIC IR Magnet Design Summary (FY20)

Extra layer reduced the space for the flux return and increased the field the electron beam region.

Field in the electron beam region can be reduced by increasing the yoke size

Superconducting

Two Positions of Holes in the Yoke

A total of five sets of files. 4.2 K and 4.6 K for two hole positions. Also one case at 41 T/m for completeness.

November 2020

Superconducting

Magnet Division

Overview

- Initial design studies of Q1BpF for a possible 4.2 K operation. Several cases examined but only one will be presented.
- Peak field (margin), field quality and field in the electron beam region are being optimized.
- The design consider several fronts geometric, mechanical, magnetic design. Anis will continue on further optimization.
- Strand/wire used: dia =1.065 mm, Cu/Sc =1.3 (new) and 1.6.
- Cable: 19.4 mm wide (19.7 with insulation) with 36 strands, min thickness: 1.788 mm, max thickness: 2.012 mm (same as before).
- As mentioned during the last meeting, we will "try" to use this cable (and RHIC dipole type cable) for all EIC magnets.

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division Coil 2 Layers, Three wedges (2+1) 54 turns/pole (24 inner, 30 outer)

Poles of inner and outer layers aligned Coil poles have proper angles for collaring Two wedges in the inner to deal with keystone Coil radius: 93 mm (Q2B had 140 mm)

November 2020

Magnet Division

Field Harmonics in Q1BpF

A reasonably good field quality is obtained with a good mechanical design (coil radius 93 mm) (all harmonics <1 unit)

REFERENCE RADIUS (mm) 36

Gradient 66.2 T/m at ~10 kA

MAIN FIELD (T) .		2.384284
MAGNET STRENGTH	(T/(m^(n-1))	66.2301

NORMAL RELATIVE MULTIPOLES (1.D-4):

b 1:	-3.92024	b 2:	10000.00000	b 3:	-0.40995
b 4:	-0.08318	b 5:	-0.02163	b 6:	-0.29828
b 7:	-0.00150	b 8:	-0.00033	b 9:	-0.00008
b10:	0.02322	b11:	-0.00001	b12:	-0.00000
b13:	-0.00000	b14:	-0.00054	b15:	-0.00000
b16:	-0.00000	b17:	0.00000	b18:	-0.00000
b19:	0.00000	b20:	-0.00000	b	

Magnet Division

Iron Yoke - Current Design

Yoke: ir = \sim 150 mm; or = 550 mm (or 500 mm) Hole@ x = 288.3 mm to 312.5 mm Radius of hole = 83 mm (63 mm for electron beam) Collar width = \sim 20 mm for 66.2 T/m

ROXIE

Field in the electron beam region Yoke OR = 550 mm, Hole@288.3 mm

Initial Design. What is acceptable?

November 2020

Field Margin at 4.2 K

Healthy Margin: ~20% over 66.2 T/m at 4.2K For Cu/Sc of 1.6 (83% on loadline)

Field Margin at 4.2 K

Temperature Margin at 4.2 K Over Different Blocks

November 2020

EIC IR Magnet Design Summary (FY20)

Magnet Division

Field Margin at 4.6 K, Cu/Sc =1.3

EIC Quad Q1PF 4.2K, Cu/Sc 1.3, 4.6 K

20/06/29 09:35

EIC IR Magnet Design Summary (FY20)

Field Margin at 4.6 K, Cu/Sc =1.3

EIC Quad Q1PF 4.2K, Cu/Sc 1.3, 4.6 K

20/06/29 09:35

13% Margin on the loadline15% over the design field

Path of flux lines navigated with cutout in yoke and small coils on the two side of yoke over e-beam region added to further navigate flux lines (and reduce saturation) to significantly reduce field in the e-beam region

Two order of magnitude reduction in field in e-beam region of Q1B

Such fields can be shield with mu-metal, etc.

BROOKHAVEN

NATIONAL LABORATORY

Superconducting

BROOKHAVEN NATIONAL LABORATORY Superconducting

It works. Field in the e-beam region ~10⁻⁴ But it may or may not be the best solution

November 2020

Superconducting Magnet Division

Q1BpF with Q1eF (need to remove flat-top)

Superconducting Magnet Division

November 2020

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

Magnet Division

Q1BpF (Q1eF in flat-top yoke NOT GOOD)

Q1BpF (Q1eF with one polarity)

Looks good as iron providing the shielding is not saturated

Q1BpF (Q1eF with one polarity)

Looks good as gradient is symmetric around the center of Q1eF (x=288.3)

November 2020

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

Q1BpF (Q1eF with opposite polarity)

Does NOT looks good as gradient is not symmetric around the center of Q1eF

November 2020

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

Q1BpF (Q1eF with opposite polarity)

Does not look good as the iron providing the shielding is highly saturated on one side (>2T)

November 2020

Superconducting

Magnet Division

Solution Use the technique that we recently invented (strengthen the coils around the iron to reduce saturation)

Q1BpF (Q1eF with opposite polarity AND stronger control coils)

Looks better as the iron providing the shielding is less saturated (1.7 T rather than over 2 T)

November 2020

BROOKHAVEN NATIONAL LABORATORY

Superconducting Magnet Division

Q1BpF (Q1eF with opposite polarity AND stronger control coils)

Still looks good as gradient is symmetric around the center of Q1eF (x=288.3)

November 2020

BROOKHAVEN NATIONAL LABORATORY

Superconducting Magnet Division

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

Q1BpF (Q1eF with opposite polarity AND stronger control coils)

Field (gradient) on vertical axis looks good as well around the center of Q1eF (x=288.3)

November 2020

BROOKHAVEN NATIONAL LABORATORY

Superconducting Magnet Division

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

Looks good as the iron providing the shielding is less saturated (1.3 T)

November 2020

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

Field (gradient) on vertical axis looks good as well around the center of Q1eF (x=288.3)

November 2020

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

Field (gradient) on vertical axis looks good as well around the center of Q1eF (x=288.3)

November 2020

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

Superconducting

Magnet Division

Overview

- > Design studies of Q1ApF coil for a possible 4.2 K operation.
- > Q1BpF yoke optimization to reduce field in electron beam region.
- > Q1BpF coil redesign to increase margin for 4.2 K operation
- > Several cases examined; only one each of above will be presented.
- In all cases, peak field (margin), field quality and field in the electron beam region are being optimized together.
- The design consider several fronts geometric, mechanical, magnetic design. Anis will continue on further optimization.
- Strand/wire used: dia =1.065 mm, Cu/Sc =1.3 and 1.6.
- > Use this cable (and RHIC dipole type cable) for all EIC magnets.
- > Some thoughts on system optimization

November 2020

Q1ApF Coil 2 Layers, Four wedges 41 turns/pole (18 inner, 23 outer)

- Poles of inner and outer layers aligned
- Coil poles have proper angles for collaring
- Two wedges in each layer to deal with keystone
- Coil radius: 71 mm (Q1B had 93 and Q2B had 140

EIC IR Magnet Design Summary (FY20)

Magnet Division

Field Harmonics in Q1ApF

A reasonably good field quality is obtained with a good mechanical design (coil radius 71 mm) (all harmonics <1 unit)

....... 36 0

Gradient 72.6 T/m at ~9.3 kA

		 0010
MAGNET STRENGT	Ĥ (T/(m^(n-1))	

NORMAL RELATIVE MULTIPOLES (1.D-4):

REFERENCE RADIUS (mm)

o 1:	-0.77119	b 2:	10000.00000	b 3:	-0.17439
o 4:	-0.03551	b 5:	-0.01107	b 6:	-0.18329
o 7:	-0.00119	b 8:	-0.00028	b 9:	-0.00008
o10:	0.17361	b11:	-0.00001	b12:	-0.00000
513:	-0.00000	b14:	0.04157	b15:	-0.00000
516:	-0.00000	b17:	0.00000	b18:	-0.00097
o19:	-0.00000	b20:	-0.00000	b	

72.6821

Superconducting

Peak Fields in Q1ApF

Field Margin at 4.2 K

eRHIC Quad Q1PF

20/07/14 07:01

Very Good Margin

November 2020

Field Margin at 4.2 K

Temperature Margin at 4.2 K Over Different Blocks

Superconducting Magnet C

Temperature margin (at Jop,Bop,Top)(K)

Field Margin at 4.6 K, Cu/Sc =1.6

eRHIC Quad Q1PF

20/07/14 07:07

November 2020

Magnet Division

Iron Yoke - Initial Design

Yoke: ir = \sim 131 mm; or = 550 mm (or 500 mm) Hole@ x = 230.5 mm to 259 mm Radius of hole = 44.6 & 58.4 mm (+20 mm for electron beam) Collar width = \sim 20 mm

ROXIE

Iron Optimization to Reduce Field in the electron Beam Region

November 2020

Field in the electron beam region Yoke OR = 550 mm, Hole@288.3 mm

Shown a couple week ago (6/30/2020) Field in electron Beam Region 0.02 T

Several techniques from the first principle examined. Only a couple of cases shown

November 2020

Technique: Guide flux away from electron beam region

Provide circular shielding for electron and ion beam

November 2020

EIC IR Magnet Design Summary (FY20)

Over an order of magnitude reduction in field

This field can be shield with mu-metal, etc.

Superconducting

Magnet Division

Further Reduction

Tiny current on the two side of circular yoke over e-beam (still shielding for electron and ion beam)

Magnet Division

Two order of magnitude reduction

Tiny current on the two side of circular yoke over e-beam gives a solution (still shielding for electron and ion beam)

Superconducting

Magnet Division

Yoke Design of Q1A for a low field e-beam region

BROOKHAVEN
NATIONAL LABORATORYOptimized Q1A Yoke with Small Coil
(same technique that worked in Q1B)Superconducting
Magnet Division

Path of flux lines navigated with cutout in yoke and small coils on the two side of yoke over e-beam region added to further navigate flux lines (and reduce saturation) to significantly reduce field in the e-beam region

November 2020

Magnet Division

Original Case (nothing done)

Original Case (nothing done)

Very high field in electron beam region

November 2020

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

Magnet Division

Original Case (nothing done)

Very high field in electron beam region

November 2020

Original Case (nothing done)

Very high field in electron beam region

November 2020

EIC IR Magnet Design Summary (FY20)

Original Case (nothing done)

Yoke around electron beam region highly saturated

November 2020

EIC IR Magnet Design Summary (FY20)

Superconducting

Magnet Division

Cutout in the Yoke of Q1A

November 2020

EIC IR Magnet Design Summary (FY20)

Cutout in the Yoke of Q1A

80

Cutout and Small Coil in Q1A

81

November 2020

Cutout and Small Coil in Q1A

Cutout and Small Coil in Q1A

83

Cutout and Small Coil in Q1A

Cutout and Small Coil in Q1A

-Ramesh Gupta

Cutout and Small Coil in Q1A

Superconducting

Magnet Division

Cable for B1pF and B1apF

- Cross-sections of B1pF and B1apF are based on the cables that can be easily procured
- B1pF and B1apF are designed with 36-strand cable which is a fully keystone cable for B1apF. The same cable is used in B1pF

• Present designs retain the rectangular yoke as before; however, can be changed to circular

Good Field Quality B1pF with Keystoned Cable

• All field harmonics small (3.4 T @ 8.1 kA)

MAIN HARMONIC		1
REFERENCE RADIUS (mm)		73.0000
X-POSITION OF THE HARMONIC COIL (mm)		0.0000
Y-POSITION OF THE HARMONIC COIL (mm)		0.0000
MEASUREMENT TYPE	ALL FIELD CON	TRIBUTIONS
ERROR OF HARMONIC ANALYSIS OF Br		0.1501E-04
SUM (Br(p) - SUM (An cos(np) + Bn sin	n(np))	
MAIN FIELD (T)		3.390620
MAGNET STRENGTH $(T/(m^{(n-1)})$		3.3906
NORMAL RELATIVE MULTIPOLES (1.D-4):		
b 1: <u>10000.00000 b</u> 2: -0.00000	b 3: 0.00574	:
b 4: 0.00000 b 5: -0.00729	b 6: 0.00000)
b 7: -0.01287 b 8: -0.00000	b 9: -0.12301	
b10: 0.00000 b11: -0.11449	b12: 0.00000)
b13: 0.02768 b14: 0.00000	b15: 0.00780)
b16: -0.00000 b17: 0.00316	b18: 0.00000)
b19: 0.00076 b20: 0.00000	b	

Good Margin (B=3.4T, T=4.6K) B1pF with Keystoned Cable

• Very healthy margin in cross-section @4.6 K

✓ >78% field margin, >2.2 K temperature margin

BLOCK NUMBER	20
PEAK FIELD IN CONDUCTOR 280 (T)	4.0120
CURRENT IN CONDUCTOR 280 (A)	-8050.0000
LOWEST FIELD IN CONDUCTOR 276 (T)	2.3731
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-652.6459
COPPER CURRENT DENSITY (A/MM2)	-407.9037
PERCENTAGE ON THE LOAD LINE	54.9393
QUENCHFIELD (T)	7.3026
TEMPERATURE MARGIN TO QUENCH (K)	2.2178
PERCENTAGE OF SHORT SAMPLE CURRENT	20.8573
MAXIMUM LOADLINE IN BLOCK 15 (%)	56.3052
MINIMUM TEMPERATURE MARGIN IN BLOCK 4 (T)	2.1593

Peak Fields B1pF

|B| (T)

Peak field enhancement ~18%

November 2020

EIC IR Magnet Design Summary (FY20)

Superconducting

Magnet Division

BlapF with Keystone Cable (keystone chosen for BlapF)

Good Field Quality B1pF with Keystoned Cable

• All field harmonics small (2.7 T @ 7.3 kA)

MAIN HAR	MONIC					1
REFERENC	E RADIUS (mm)				80.0000
X-POSITI	ON OF THE	HARMONIC	COIL (mm)			0.0000
Y-POSITI	ON OF THE	HARMONIC	COIL (mm)			0.0000
MEASUREM	ENT TYPE .			ALI	FIELD CONT	RIBUTIONS
ERROR OF	HARMONIC	ANALYSIS	OF Br		0	.9843E-06
SUM (Br(p) – SUM (An cos(ng	o) + Bn sin	(np))		
MAIN FIE	LD (T)					2.712609
MAGNET S	TRENGTH (T	/(m^(n-1)))			2.7126
NORMAL R	ELATIVE MU	LTIPOLES	(1.D-4):			
b 1: 10	000.00000	b 2:	0.00000	b 3:	0.00437	
b 4:	0.00000	b 5:	0.00488	b 6:	-0.00000	
b 7:	0.02281	b 8:	-0.00000	b 9:	0.07717	
b10:	-0.00000	b11:	0.15408	b12:	0.00000	
b13:	-0.00641	b14:	0.00000	b15:	0.00157	
b16:	-0.00000	b17:	0.00016	b18:	-0.00000	
b19:	-0.00021	b20:	-0.00000	b		

Good Margin (B=2.7T, T=4.6K) B1pF with Keystoned Cable

• Very healthy margin in cross-section @4.6 K

✓ ~110% field margin, >2.5 K temperature margin

BLOCK NUMBER	20
PEAK FIELD IN CONDUCTOR 320 (T)	3.4471
CURRENT IN CONDUCTOR 320 (A)	-7300.0000
LOWEST FIELD IN CONDUCTOR 316 (T)	2.1835
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-591.8404
COPPER CURRENT DENSITY (A/MM2)	-369.9003
PERCENTAGE ON THE LOAD LINE	47.8841
QUENCHFIELD (T)	7.1989
TEMPERATURE MARGIN TO QUENCH (K)	2.5238
PERCENTAGE OF SHORT SAMPLE CURRENT	16.3463
MAXIMUM LOADLINE IN BLOCK 5 (%)	47.8841
MINIMUM TEMPERATURE MARGIN IN BLOCK 5 (T)	2.5238

Superconducting

Magnet Division

B1pF - pCDR parameters

Table 6.8: Parameters of the B1PF magnet.

Parameter	Value
Magnetic length [m]	3
Maximum dipole field [T]	3.4
Aperture [m]	0.262
Required field quality [%]	0.01
Coil width [m]	0.34
Coil height [m]	0.34
Superconductor Type	NbTi
Current density [A/mm ²]	241
Cu:Sc ratio	1.3
Temperature [K]	4.2
Peak field wire [T]	4.37
Magnetic energy [MJ]	1.36
Ampere turns [MA·t]	1.16
Margin loadline [%]	58

Figure 6.34: Vertical magnetic field on the center plane for the hadron beam (a). Figure (b) shows the good field region.

Good Field Quality B1pF with Keystoned Cable

• All field harmonics small (3.4 T @ 8.1 kA)

MAIN HARMONIC			1
REFERENCE RADIUS (mm)			73.0000
X-POSITION OF THE HARMONIC COI	L (mm)		0.0000
Y-POSITION OF THE HARMONIC COI	L (mm)		0.0000
MEASUREMENT TYPE		ALL FIEL	D CONTRIBUTIONS
ERROR OF HARMONIC ANALYSIS OF	Br		0.1501E-04
SUM (Br(p) - SUM (An cos(np) +	Bn sin(n	c))	
MAIN FIELD (T)			3.390620
MAGNET STRENGTH $(T/(m^{(n-1)})$.			3.3906
NORMAL RELATIVE MULTIPOLES (1.	D-4):		
b 1: <u>10000.00000 b</u> 2: -0	.00000 b	3: 0.	00574
b 4: 0.00000 b 5: -0	.00729 b	6: 0.	00000
b 7: -0.01287 b 8: -0	.00000 b	9: -0.	12301
b10: 0.00000 b11: -0	.11449 bi	12: 0.	00000
b13: 0.02768 b14: 0	.00000 bi	15: 0.	00780
b16: -0.00000 b17: 0	.00316 bi	18: 0.	00000
b19: 0.00076 b20: 0	.00000 b		

Good Margin (B=3.4T, T=4.6K) B1pF with Keystoned Cable

• Very healthy margin in cross-section @4.6 K

✓ >78% field margin, >2.2 K temperature margin

BLOCK NUMBER	20
PEAK FIELD IN CONDUCTOR 280 (T)	4.0120
CURRENT IN CONDUCTOR 280 (A)	-8050.0000
LOWEST FIELD IN CONDUCTOR 276 (T)	2.3731
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-652.6459
COPPER CURRENT DENSITY (A/MM2)	-407.9037
PERCENTAGE ON THE LOAD LINE	54.9393
QUENCHFIELD (T)	7.3026
TEMPERATURE MARGIN TO QUENCH (K)	2.2178
PERCENTAGE OF SHORT SAMPLE CURRENT	20.8573
MAXIMUM LOADLINE IN BLOCK 15 (%)	56.3052
MINIMUM TEMPERATURE MARGIN IN BLOCK 4 (T)	2.1593

Peak Fields

|B| (T) Peak field over 3.5 T 4.147 3.931 3.716 3.501 3.285 **Peak field** 3.070 2.854 enhancement 2.639 2.424 2.208 ~18% 1.993 120 1.778 1.562 1.347 1.132 0.916 0.701 0.486 0.270 0.055 ROXIE 10.2

November 2020

EIC IR Magnet Design Summary (FY20)

-Ramesh Gupta

10

Very Good Overall Margin

eRHIC Dipole B1PF with B1aPF keystone cable

20/09/21 14:45

Over 70% field margin

BROOKHAN NATIONAL LABOR Superconduct Magnet Division

eRHIC Dipole B1PF with B1aPF keystone cable

20/09/21 14:45

Over 2.1 K Temperature Margin

November 2020

Superconducting

Magnet Division

BlapF - pCDR parameters

Hadron beam

0.1

0.2

0.2

9.4

(a) Cross-section of B1APF

-0.05

Table 6.10: Parameters of the B1APF Dipole Magnet.

Parameter	Value
Magnetic length [m]	1.5
Maximum dipole field [T]	2.7
Aperture front [m]	0.3360
Aperture rear [m]	0.3360
Design field quality	1×10^{-4}
Physical length [m]	1.6
Physical width [m]	0.41
Physical height [m]	0.41
Superconductor type	NbTi
Conductor	Cable 20x2mm ²
Current density [A/mm ²]	148
Cu:Sc ratio	1.3
Temperature [K]	4.2
Peak field wire [T]	3.5
Magnetic energy [MJ]	0.717
Ampere turns [MA·t]	1.16
Number of turns	154
Current [A]	7670
Inductance [H]	0.024376
Margin loadline [%]	60

November 2020

EIC IR Magnet Design Summary (FY20)

0.6

9.7

Electron beam

0.5

0.8

Magnet Division

BlapF with Keystone Cable (keystone chosen for B1apF)

Mechanically good cross-section

Part of the coil missing because of the choice of scale

Good Field Quality B1pF with Keystoned Cable

• All field harmonics small (2.7 T @ 7.3 kA)

MAIN HARMONIC				1
REFERENCE RADIUS (mm)				80.0000
X-POSITION OF THE HARMONI	C COIL (mm)			0.0000
Y-POSITION OF THE HARMONI	C COIL (mm)			0.0000
MEASUREMENT TYPE		AI	LL FIELD CON	TRIBUTIONS
ERROR OF HARMONIC ANALYSI	S OF Br			0.9843E-06
SUM (Br(p) - SUM (An cos(np) + Bn sin	(np))		
MAIN FIELD (T)				2.712609
MAGNET STRENGTH (T/(m^{n})	1))			2.7126
NORMAL RELATIVE MULTIPOLE	S (1.D-4):			
b 1: <u>10000.00000 b</u> 2:	0.00000	b 3:	0.00437	
b 4: 0.00000 b 5:	0.00488	b 6:	-0.00000	1
b 7: 0.02281 b 8:	-0.00000	b 9:	0.07717	
b10: -0.00000 b11:	0.15408	b12:	0.0000	1
b13: -0.00641 b14:	0.0000	b15:	0.00157	1
b16: -0.00000 b17:	0.00016	b18:	-0.00000	1
b19: -0.00021 b20:	-0.00000	b		

Good Margin (B=2.7T, T=4.6K) B1pF with Keystoned Cable

• Very healthy margin in cross-section @4.6 K

✓ ~110% field margin, >2.5 K temperature margin

BLOCK NUMBER	20
PEAK FIELD IN CONDUCTOR 320 (T)	3.4471
CURRENT IN CONDUCTOR 320 (A)	-7300.0000
LOWEST FIELD IN CONDUCTOR 316 (T)	2.1835
SUPERCONDUCTOR CURRENT DENSITY (A/MM2)	-591.8404
COPPER CURRENT DENSITY (A/MM2)	-369.9003
PERCENTAGE ON THE LOAD LINE	47.8841
QUENCHFIELD (T)	7.1989
TEMPERATURE MARGIN TO QUENCH (K)	2.5238
PERCENTAGE OF SHORT SAMPLE CURRENT	16.3463
MAXIMUM LOADLINE IN BLOCK 5 (%)	47.8841
MINIMUM TEMPERATURE MARGIN IN BLOCK 5 (T)	2.5238

Peak Fields at 2.7 T

Superconducting Magnet Division

Peak field enhancement ~25%

(peak field cana be reduced in design iteration but already a very high margin)

Superconducting **Magnet Division**

Very Good Overall Margin

EIC Dipole B1APF fully keystone cable 4.6K

20/09/21 17:39

About 110% field margin

November 2020

EIC IR Magnet Design Summary (FY20)

BROOKHAN NATIONAL LABOR Superconduct Magnet Division

EIC Dipole B1APF fully keystone cable 4.6K

20/09/21 17:39

Over 2.5 K Temperature Margin

Superconducting Magnet Division

Some thoughts on the non-circular iron yoke

Coldmass can be circular even if yoke really has to be rectangular.

Put extra warm iron outside the coldmass

Summary

- Initial cross-section of cable all magnets developed for 4 K operation
- All cross-sections are based on the superconducting wire and cable designs that can be easily procured
- Two types of 36-strand cable used (a) Quad cable that is fully keystone for Q2BpF and (b) dipole cable which is fully keystone for B1apF
- Techniques developed to minimize fringe field from the proton/ion quad on the path of the electron beam, including cases when the quadrupole for electron beam were also present