

Another Phase I SBIR/STTR Proposal using the Direct Wind Technology

Ramesh Gupta

Date: August 10, 2021

Introduction

- SBIR/STTR program allows us to explore different/new ideas.
- SBIR/STTR is not supposed to support what national labs are doing as a part of their main programs - not intended to be an additional supplement funding source.
- This proposal is for a tapered quadrupole based on the optimum integral design. Direct Wind technology makes building a magnet based on the proposed design practical.
- This will be an alternate concept to the double helix design. It works for dipole, etc. also.
- Since this is not part of the EIC baseline design, it qualifies for a BNL based SBIR/STTR.
- This will be in continuation of the ongoing PBL/BNL STTR. Therefore, PBL should be in a better position as compared to last time. We got good feedback from the program manager.
- This will continue to expand the applications of the "Direct Wind Technology". Current Phase
 I is going well. Both layers wound. New staff is having fun + getting good hands-on training.
- This proposal, if funded, will also bring \$200k to the program in Phase I (\$60k to \$115k to BNL, depending on whether it is SBIR or STTR) and \$1.1M (\$500k-\$600k) in Phase II.

EIC Baseline Tapered Coil Design – Double Helix (Holger Witte)

Baseline Tapered Coil – Double Helix (2)

Ramesh Gupta

Magnet Division

SBIR/STTR 2021 Phase I, Release 1 August 10, 2021

IP End

Non-IP End

Earlier Tapered Coil Design at BNL- (Brett Parker)

HERA-II Production Overview

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

> BNL computer controlled winding of two types of multi-coil magnets for the HERA-II upgrade. 60 Q

15 September 2011

"BNL Direct Wind Magnets," Brett Parker BNI -SMD

GO Quadrupole (cable)

4

GG Harmonics at R=45 mm, Centered Tapered Magnet, Quad Inner Radius = 65 to 70 mm

	Quadrupole	Dipole	Skew Dipole	Skew Quad.	Sextupole
I.T.F.	9.423	1.1593	1.0398	15.307	162.51
Fld. Ang.	0.0	-0.4	-2.3	0.0	-1.2
Leff(m)	Not meas.	Not meas.	Not meas.	Not meas.	Not meas.
b1	0.00	10000.00	0.00	0.00	-8.57
b2	10000.00	-2.23	-1.99	0.00	0.00
b3	-2.23	-0.04	0.21	-1.09	10000.00
b4	1.49	-0.07	-0.31	-1.01	-1.95
b5	-1.10	-0.12	-0.58	1.31	-3.27
b6	1.11	0.03	0.43	0.45	0.72
b7	-1.48	0.33	-0.38	0.53	-2.22
b8	0.73	-0.11	-0.34	0.51	0.73
b9	-0.34	0.09	0.04	0.08	-1.57
b10	0.63	-0.03	0.00	0.10	-0.28
b11	-0.08	0.06	0.05	-0.13	-1.19
b12	0.13	0.01	-0.06	-0.17	-0.08
b13	-0.07	-0.04	0.00	0.04	-0.63
b14	0.02	0.06	0.10	0.09	0.04
b15	0.01	-0.08	0.04	0.06	-0.25
a1	0.00	0.00	10000.00	0.00	13.99
a2	0.00	-3.02	5.22	10000.00	0.00
a3	-1.51	0.08	2.95	-3.53	0.00
a4	1.18	-0.43	0.09	5.12	-0.93
a5	1.81	-0.31	-3.25	-0.53	0.55
a6	-0.64	-0.18	-0.37	0.10	-1.61
a7	-0.96	-0.36	0.13	0.51	0.70
a8	0.52	0.14	0.07	0.65	0.44
a9	-0.45	-0.05	0.08	0.12	0.12
a10	-0.11	0.03	-0.11	-0.17	0.32
a11	0.23	0.02	-0.22	0.32	0.42
a12	0.12	-0.02	-0.06	0.02	0.49
a13	-0.03	-0.01	-0.14	-0.08	0.09
a14	0.13	0.00	0.04	-0.16	-0.43
a15	0.02	0.07	0.19	0.02	-0.18

Ramesh Gupta

SBIR/STTR 2021 Phase I, Release 1

se I, Release 1 August 10, 2021

https://www.bnl.gov/magnets/

Tapered Cosine Theta Coil Design Principle

- Conventional Design Principle: to assure a good field quality maintain the same angular position of each wire while the coil radius is changing
- Issue: If the taper or the change in radius is large (as is the case in the several EIC magnets), there will be a significant empty space (white space) between the turns causing a large loss in field or field gradient.
- Proposed Principle: A configuration which minimizes the white space between the turns and pack as many turns as possible despite a taper

Next few slides will explain the proposed concept/principle (illustrated first for the dipole and then for the quadrupole)

View from the top

Conventional Design of a Tapered Cosine Theta Dipole

Wire maintain their angular position while radii change

0.15

View from the end

Ramesh Gupta

View from the side

SBIR/STTR 2021 Phase I, Release 1 August 10, 2021

Opera

Positives and Negatives of the Conventional Cosine Theta Tapered Dipole

Positives:

- Design is simple to understand
- Good harmonics are assured

Negatives:

Magnet Division

- > Number of turns is limited by the side having smaller radius
- Field strength along the axis decreases as the radius increases

Ramesh Gupta

Proposed Design - Step #1

Keep the separation between the adjacent wires constant even while the radius is increasing

Ramesh Gupta

View from the end

Brookhaven

Magnet Division

August 10, 2021

SBIR/STTR 2021 Phase I, Release 1

View from the top

Proposed Design - Step #2

Add more turns in the longitudinal space created in step #1 (with increasing radius)

$\mathbf{B} \propto \mathbf{J.w}$ (doesn't depend on r)

In principle, there should be no decrease in dipole field strength for the same conductor width

0.1 0.05 -0.05 -0.1

0.15

View from the end

Ramesh Gupta

SBIR/STTR 2021 Phase I, Release 1 August 10, 2021

Opera

EIC Magnet to be evaluated for SBIR: Q1AB (to see if there is any real advantage of this approach)

Parameters of the current design will be used

Ramesh Gupta SBIR/STTR 2021 Phase I, Release 1 August 10, 2021

EIC Cosine Theta Tapered Quad Q1AB (conventional design)

8/Aug/2021 11:22:51

Magnet Division

Ramesh Gupta

August 10, 2021

Proposed Design – Step 1

Constant angle

Magnet Division

Wind pattern with a "*constant separation*" between the turns along the length of the taper

Ramesh Gupta SBIR/STTR 2021 Phase I, Release 1 August 10, 2021

Constant separation

Proposed Design - Step #2

> Add more turns (with increasing radius) in longitudinal space created in step #1

Proposed Design - Step #2 (cont.)

> Add more turns in longitudinal space created in step #1 (with increasing radius)

Earlier Distributed Windings at BNL

Ramesh Gupta

SBIR/STTR 2021 Phase I, Release 1 August 10, 2021

Two Main Tasks of Phase I

- Develop codes and methodology (including a theoretical prescription that can be easily used in optimization).
- Wind a single layer coil and measure field profile/harmonics. These will be warm measurements only. No cold test will be performed in Phase I (budget limitations).

Ramesh Gupta SBIR/STTR 2021 Phase I, Release 1 August 10, 2021

Summary (same as the introduction)

- SBIR/STTR program allows us to explore different/new ideas.
- SBIR/STTR is not supposed to support what national labs are doing as a part of their main programs - not intended to be an additional supplement funding source.
- This proposal is for a tapered quadrupole based on the optimum integral design. Direct Wind technology makes building a magnet based on the proposed design practical.
- This will be an alternate concept to the double helix design. It works for dipole, etc. also.
- Since this is not part of the EIC baseline design, it qualifies for a BNL based SBIR/STTR.
- This will be in continuation of the ongoing PBL/BNL STTR. Therefore, PBL should be in a better position as compared to last time. We got good feedback from the program manager.
- This will continue to expand the applications of the "Direct Wind Technology". Current Phase
 I is going well. Both layers wound. New staff is having fun + getting good hands-on training.
- This proposal, if funded, will also bring \$200k to the program in Phase I (\$60k to \$115k to BNL, depending on whether it is SBIR or STTR) and \$1.1M (\$500k-\$600k) in Phase II.

Magnet Division

Brookhaven

Ramesh Gupta SBIR/STTR 2021 Phase I, Release 1 August 10, 2021