

# Next Generation Superconducting Magnets for Future Accelerators

### Ramesh Gupta

### Brookhaven National Laboratory

February 26, 2016
Stony Brook University

The State University of New York

**FAS Lecture Series** 



# Contents

- Superconducting magnets in accelerators
- Present technology
- Future prospects
  - Need for developing new designs and technologies
- Opportunity for graduate students
- Summary



## Superconducting Magnets in Accelerators

- After the discovery of the Higgs Boson at CERN, the scientific community is looking for the next generation higher energy collider
- Superconducting magnets are the key components
- The panel instituted by the US Dept. of Energy has recommended an aggressive R&D to develop higher field, lower cost magnets
- Superconducting magnets define the foot-print of the machine
   ☐ Higher field means smaller size
- They fill most of the tunnel. They are the cost driver
- In fact, often the superconducting magnets is the enabling technology for many discoveries in high energy and nuclear physics
- Next generation accelerators need next generation magnets



## **Relativistic Heavy Ion Collider**

Superconducting Magnet Division



### 3.8 km circular tunnel - mostly filled with magnets





### Superconducting Magnets inside the RHIC Tunnel





Large Hadron Collider (LHC)

Superconducting Magnet Division



Credits: Many pictures in this presentation are taken from web, a large number from CERN



## Superconducting Magnets inside the LHC Tunnel

 Some creativity

 in enhancing

 be picture

Next Generation Superconducting Magnets for Future Accelerators -Ramesh Gupta

Feb 26, 2016 7



## Major Accelerator Projects in Past with Superconducting Magnets

| Machine  | Location      | Energy                     | Circumference | Status             |  |
|----------|---------------|----------------------------|---------------|--------------------|--|
| Tevatron | Fermilab, USA | 900 GeV (p) X 900 GeV (p-) | 6.3 km        | Commisioned: 1983  |  |
| HERA     | DESY, Germany | 820 GeV (p) X 30 GeV (e)   | 6.4 km        | Commisioned: 1990  |  |
| SSC      | SSCL, USA     | 20 TeV (p) X 20 TeV (p)    | 87 km         | Cancelled: 1993    |  |
| UNK      | IHEP, Russia  | 3 TeV                      | 21 km         | Suspended          |  |
| RHIC     | BNL, USA      | 100 GeV/amu X 100 GeV/amu  | 3.8 km        | Commisioned: 2000  |  |
|          |               | (proton: 250GeV X 250 GeV) |               |                    |  |
| LHC      | CERN, Europe  | 7 TeV (p) X 7 TeV (p)      | 27 km         | Commissioned: 2008 |  |

|          | Dipoles |          |           |                   | Quadrupoles      |          |           |        |
|----------|---------|----------|-----------|-------------------|------------------|----------|-----------|--------|
| Machine  | B(T)    | Aper(mm) | Length(m) | Number            | Grad(T/m)        | Aper(mm) | Length(m) | Number |
| Tevatron | 4       | 76.2     | 6.1       | 774               | 76               | 88.9     | 1.7       | 216    |
| HERA     | 4.68    | 75       | 8.8       | 416               | 91.2             | 75       | 1.9       | 256    |
| SSC      | 6.7     | 50       | 15        | 7 <del>9</del> 44 | 1 <del>9</del> 4 | 40       | 5.7       | 1696 - |
| UNK      | 5       | 70       | 5.8       | 2168              | 70               | 70       | 3         | 322    |
| RHIC     | 3.5     | 80       | 9.7       | 264               | 71               | 80       | 1.1       | 276    |
| LHC      | 8.3     | 56       | 14.3      | 1232              | 223              | 56       | 3.1       | 386    |

### Next generation colliders need 16-20 T magnets in 80-100 km tunnel



### Low Temperature Superconductors (LTS) and

Superconducting Magnet Division

## High Temperature Superconductors (HTS)

**High Temperature Superconductors** (1986)

Low Temperature Superconductor Onnes (1911)

**Resistance of Mercury falls suddenly below meas. accuracy at very low (4.2)** 





## Why Use Superconducting Electro-magnets in Accelerators?



**Current density in copper coils of conventional magnets:** 

- Air cooled (max) ~ 1 A/mm<sup>2</sup>
- Water cooled ~ 2-10 A/mm<sup>2</sup>
- Typical fields: ~ 1-1.8 T

High field superconducting magnets (3-8 T) reduce the size of the tunnel, as well as the cost of the operation. They make high energy colliders realistic.

### **Proposed field: 16-20 T, Current density >500 A/mm<sup>2</sup>**

\*



# Proposed High Energy Colliders

#### Superconducting Magnet Division



#### Future Circular Collider (FCC) @ CERN

### **Present LHC at CERN**

- CoM Energy: 14 TeV
- Tunnel Size: 27 km
- Dipole design field: 8.3 T
- Conductor used: NbTi

### **Proposals for Future**

- CoM Energy: 80 100 TeV
- Tunnel Size: 60 100 km
- Dipole design field: 15-20 T
- Conductors: Nb<sub>3</sub>Sn, HTS





# Future Circular Collider (FCC)





## Mechanical and Magnetic Structure of LHC Dipole



|Biol|(T) 28 2.210 -2.357 2.063 -2.210 1.915 -2.063 1.915 1.768 1 621 -1 769 1.473 -1.621 1.473 1.326 -1.326 1.178 -1.178 1.031 -0.884 1.031 0.147 -0.294 0.147

- Field = 8.3 T
- Current = 11.8 kA
- Length = 14.3 m
- Weight = ~35 tonnes
- Number of magnets = 1232

- 2-in-1 design (2 side by side coils in 1 yoke)
- Operating temperature: 1.8 K
- Field uniformity: a few parts in 10<sup>4</sup>
- Stainless collars to hold large forces
- Forces on coil: 400 tonnes
- Stored energy in ring: 11 GJ

Next Generation Superconducting Magnets for Future Accelerators -Ramesh Gupta Feb 26, 2016

13



## Magnets Used in Accelerators LHC 2-in-1 Dipole





## **Magnets Used in Accelerators**



15



## Challenges with Present Magnet Designs and Technology





#### Coil cross-section

**Coil end** 



- Cosine theta coil geometry with complex ends
- NbTi superconductor is practical up to 8-9 Tesla
- High field dipoles create large Lorentz forces
- Design and technology is in use for many decades performance and cost unlikely to change much
- Future colliders need new materials, new designs and perhaps new manufacturing techniques

A major challenge for the next generation







## Current Carrying Capacity of Modern Superconductors at 4 K

NbTi has been used in all existing high energy circular colliders built to date



High field magnets need superconductors with large current carrying capacity at high fields – unfortunately NbTi, which is relatively ductile, doesn't.

However, Nb<sub>3</sub>Sn and YBCO, Bi2231 & Bi223 (HTS) are brittle.

### Interestingly, High Temperature Superconductors (HTS) are also high field Superconductors (HFS)





## Common Coil Design (The Basic Concept)

- Simple 2-d coil geometry for colliders
- Fewer coils (about half) as the same coils are common between the two apertures (2-in-1 geometry for both iron and coils)
- Conductor friendly with large bend radii (determined by the spacing between two apertures) without complex 3-d ends
- Minimum requirements on expensive tooling and labor
- Potential for producing lower cost, more reliable high field magnets
- Efficient and rapid turn around magnet R&D due to simpler and modular design



## Advantage of Common Coil Design in High Field Magnet Structure

### A key technical and cost issue in high field magnets is structure

In most designs, large forces put excessive stress/strain on the conductor in the end region



In a common coil design, coils move as a whole - much smaller stress/strain on the conductor in the end region



#### Expect lower cost due to less structure and better performance due to less strain



## Common Coil Magnets Built at BNL, FNAL, LBNL















What Remains to be Done?

The basic design concept with field up to ~13 T field has been demonstrated

• However, accelerator type dipoles with proper field quality

are yet to be demonstrated

**Requires additional coils and more complex structure** 

• Magnet designs with the desired field (15-20 T), field quality

(a few parts in 10,000) and required aperture (~50 mm)

### □ Magnetic & mechanical design plus demonstration



## Accelerator-type Field Quality and Structure for Common Coil Dipole

### > Require "pole coils" which must clear beam tube in the ends



We have funding available to work on this exciting opportunity which can potentially bring a new magnet design in future machines

## High Temperature Superconductor (HTS) or High Field Superconductors (HFS)

### High Temperature Superconductors

BROOKHAVEN NATIONAL LABORATORY

Superconducting Magnet Division

#### **High Field Superconductors**



### HTS available from industry:

- Bismuth strontium calcium copper oxide (BSCCO): Bi2213, Bi2212 1G
- Yttrium barium copper oxide (YBCO) 2G
  - ☐ Also ReBCO (Re: Rare Earth)



## New Possibilities with HTS in Superconducting Magnet Technology

### HTS can function at high temperature

• That makes helium free superconducting magnets operating at high temperature possible as never before (20 K or More)

### HTS can carry substantial currents at high fields

• That makes very high field superconducting magnets possible as never before (20 T or more)

### Even one of above is sufficient to revolutionize the field

• Here we have two !!



# HTS Coil Test at BNL





The option of operating over a large range (the benefit of HTS)

\*



### Practical Advantage of HTS Magnets Fast turn-around and Inexpensive R&D

### Easy coil winding (table top)



## Easy superconducting coil testing (can be done in simple cryostat with LN<sub>2</sub>)



One can do experiments in a matter of weeks rather than a matter of years

- Can do a lot of trial and experimental R&D
- Fits the time frame of graduate students



# HTS Magnet Program at BNL

- HTS magnet R&D over a wide range:
  - High field, Medium field and low field (high temperature)
  - Many geometries racetrack, cosine theta, solenoid
- We are currently involved in five HTS magnet programs (in house and in collaboration with others)
- Graduate students would have an opportunity to participate in most of them
- You can also create a new design during the course of your thesis



## HTS in LTS/HTS High Field Hybrid Coil Design

Superconducting Magnet Division



LTS COILS



- Use expensive HTS in the inner coil where field is high and lower cost LTS where field is low
- Field in outer layers is ~2/3 of that in the 1<sup>st</sup>
   layer. Use HTS in the 1<sup>st</sup> layer (high field region)
   and LTS in the other layers (low field regions).



### HTS Coil Built and Tested in a Short Period





## HTS Insert Coil Testing in an Existing Magnet









31



## Ends of Single Aperture Block Coil Design with Rutherford Cable



- Cross-section is simple but the design gets complicated in the end region with lifted ends to clear the tube, long length, reverse bend.
- The performance of such magnets often gets limited by the end region







## Freeway Overpass/UnderPass Ends

Superconducting Magnet Division



## To understand it, imagine driving on high way

- > No hard-way bend
- > No reverse bend
- Less strain conductor friendly design
- Less axial space

### An Innovative design which could possibly bring a novel solution to an issue spanning over decades





### **Actual Demonstrations** in a Short Period of Time





**77 K Test Results** 





Next Generation Superconducting Magnets for Future Accelerators -Ramesh Gupta

Feb 26, 2016 34



- Next generation high energy colliders offer many challenges and thus also many opportunities where one can make a real difference in the field.
- Such R&D is highly encouraged by the US high energy physics community.
- At BNL we have many ongoing magnet R&D programs where a young scientist can contribute in a variety of ways. I listed only a select few of them after giving general motivation for them. May be you can create a new.
- Graduate students will have an opportunity to contribute to developing the next generation magnet designs and technologies
  - Requires interest in modelling.
- Graduate students can also contribute to HTS coil and magnet technology
  - Requires interest in hands on work and experimental activities.
- One can either choose one of the above two type or alternatively one can also choose one or more magnet design/program and work on both aspects of that.