

http://supercon.lbl.gov/rgupta/public/Field-Calculations

Ramesh Gupta

DOE/HEP Review of LBNL Superconducting Magnet Program

Lawrence Berkeley National Laboratory

September 8-9, 1999

Ramesh Gupta

BERKELEY LAB

Field Calculations

Superconducting Magnet Program

Overview

• Calculations for RD3 magnet

- Recall: RD3 is not a field quality common coil magnet design
- Design criteria : Minimize peak fields and stresses on the conductor for a ~14 T design

• Investigations for a field quality magnetic design

(unlike cosine theta magnets, little to nothing exists to base various aspects of the design on)

- develop design concepts and develop tools to optimize them Important addition: ROXIE for optimizing common coil design
- Initial results on body and end field optimization

Superconducting Magnet Program

Design Calculations for RD3 - Body

Magnitude of field and Field lines in RD3 at Bo = 13.7 T

All design calculations for RD3 were initially done with OPERA.

Ramesh Gupta

BERKELEY LAB

Initial design consideration for magnet ends:

Iron over ends (same mechanical & magnetic material in body and ends)

Vs. Non-magnetic material over ends

	Iron over ends	Non-magnetic material over ends
Mechanical	+	-
Peak field on conductor	-	+
Stress accumulation/concentration	_	+

• Initial attempt was to use Iron over ends (mechanical reasons). It was estimated that longer outer coil straight section (+/- 50 mm) will be enough to make the peak field in the ends less than that in the body.

• (a) ANSYS calculations found a large accumulated stress concentration in ends (b) Detailed TOSCA calculations with iron also found a higher peak field in the ends then in the SS. Peak field could be reduced by adding end-spacers and/or increasing length difference further, etc., however, stress accumulation (a major issue in Nb₃Sn) not.

• Therefore, at this stage (May, '99, prior to detailed drawings), the end design was changed to nonmagnetic material over (common for high field magnets). New OPERA3d and ANSYS calculations done.

Rames	h Gi	upta

BERKELEY LAB

Peak field in <u>ends</u> for Bo = 13.7 T : ~10.0 T (estimated error < 0.4 T)

Peak field in <u>body</u> for Bo = 13.7 T : ~10.7 T (estimated error < 0.2 T)

Note: The performance of RD3 is limited by the inner conductor (in the magnet body).

Rames	h Gi	ipta

BERKELEY LAB

Computed Short Sample for RD3

Jo: Overall Current Density in Coil Jc: Current Density in Superconductor

New Compu	uted Values	Bpk(Inner)	14.5 T	Bquench	(Inner)	14.5 T
Bss =	13.7 T	Bpk(Outer)	10.0 T	Bquench	(outer)	11.4 T
Margin	===>	Inner	0%		Outer	14%

Spec

10.8 11.0 11.2 11.4 11.6 11.8

B(T)

B(T)

1027

Original Design:

~14.3 T at 4.3K

Expected. Bss in outer coil test : 12.7 T in RD3 structure 12.1 T in RD2 structure

Note:

Strand performance is used. *Not included:* •*degradation in cabling* operation •degradation due to Lorentz stresses/strain.

To be revised based on NHMFL measurements.

Field Calculations

Ramesh Gupta

Superconducting Magnet Program

Next Step: Investigations for a Field Quality Magnetic Design

Development of a conceptual design

• Major Issues : A racetrack coil geometry (not a cosine theta with a lot of experience) where up-down symmetry is inherently broken - *both in body and in ends*

Development of tools

Computer code ROXIE (Routine for the Optimization of Magnet X-sections, Inverse Field Calculation and coil End Design) from CERN (Primary author: Stephan Russenschuck)

- Further adopted/modified at LBNL for common coil magnet design optimization in last
- 3 months by Suitbert Ramberger (Post-doc with significant experience on ROXIE)
- 2nd International ROXIE Users Meeting and Workshop at LBNL (Aug 9-11, 1999)

Use tools to further optimize and develop concepts

• Initial results of an ongoing optimization process that has just begun

Ramesh Gupta

BERKELEY LAP

Development of Tools

Computer code ROXIE has been adopted for optimizing the magnetic design of a common coil magnet.

Unique features of ROXIE that are important here:

- (a) Racetrack coil geometry optimization
- (b) Optimization of a coil in a rectangular (NOT circular) iron aperture
- (c) End geometry optimization for common coil design

Design Optimization Strategies for Body Harmonics (2-d)

Coil

Optimize a block coil design so that it simulates an elliptical coil geometry

Yoke

Optimize iron to minimize saturation induced normal and skew harmonics while making the design compact

- Based on understanding of the influence of holes, etc. by varying parameters by hand
- In future optimizations, use also "Genetic Algorithm" (an initial setup by Suitbert Ramberger) _____

Field Calculations

Ramesh Gupta

Field Quality Design Optimization Options for Magnet Body Harmonics

- With no auxiliary coil
 - very simple
 - uses 30-50% more conductor for a field quality similar (?) to a typical cosine theta collider magnet design
 - Ref: Model of Sabbi@FNAL
 - Ref: Wipf (sort of no auxiliary coil)
- With auxiliary coils
 - field quality similar to cos theta
 - Ref: Texas A&M Peter McIntyre
 - (sort of auxiliary coils)
 - Next few slides: Options that are being investigated at LBNL

Fig 21: Idea for possible high field dipole based on Leeb and Umstatter design [22]: picture shows flux lines on left hand side and constant field contours on right left hand side

Superconducting Magnet Program

Ramesh Gupta

Superconducting Magnet Program

Slide No. 11

DOE/HEP Review; September 8-9, 1999

An Example of a Preliminary **Optimized Design: Magnet Body**

	n	bn	an	All "(
	2	0.00	-0.03	Small satu
4	3	-0.06	0.00	section (4-
4	4	0.00	-0.07	b_3 and a_2 s
ļ	5	-0.07	0.00	Note: a.
(6	0.00	0.08	110 <i>i</i> c. a ₂
-	7	0.05	0.00	
8	8	0.00	0.04	
ļ	9	-0.08	0.00	
1	0	0.00	0.00	
1	1	-0.05	0.00	
1	2	0.00	0.01	
1	3	0.04	0.00	
1	4	0.00	0.00	
0.10 0.08 0.06		л •		
0.04 -		-8-	•	
0.00		• • • • • • •		
-0.04			*	
E -0.06 -	•	•	• bn	
-0.00 -				
0	2	4 6 8 10 Harmonic number (a2	12 14 16 : skew quad)	18
Ra	mesh	Gunta		
۳d	1116211	Gupia		

Geometric Harmonics" at 1.89 T are less than 10⁻⁵.

ration induced harmonics with a single power supply in a compact cross -in-1 magnet: 280 mm X 600 mm - H X V).

saturation can be further optimized (a_2 saturation has been ~ few units).

Design Optimization Strategies for End Harmonics (3-d)

The top-bottom symmetry is highly violated in the ends (example:RD3). In a design with "no end-spacers", it creates very large skew harmonics in addition to normal sextupole.

Compare this to early cosine theta designs which had large sextupole in the ends.

– Must do some thing to reduce them qualitatively.

Strategy:

- Use spacers to reduce peak field and to minimize field harmonics (as done in a typical cosine theta design, but do it here for both normal and skew harmonics). As usual, the field harmonics are minimized in an integral sense.
- Make coils above the midplane (in the upper aperture) go further out in the ends to compensate for the higher conductor volume below the midplane.
- B_z is not zero locally in an individual end. But is zero in integral sense.
- B_z in the ends of two nearby magnets cancel each other. AP issues?
- Ramesh Gupta

Field Calculations

Superconducting Magnet Program

An Example of End Optimization with ROXIE (iron not included)

Delta-Integral

End harmonics can be made small in a common coil design.

End harmonics in Unit-m				
n	Bn	An		
2	0.00	0.00		
3	0.01	0.00		
4	0.00	-0.03		
5	0.13	0.00		
6	0.00	-0.10		
7	0.17	0.00		
8	0.00	-0.05		
9	0.00	0.00		
10	0.00	-0.01		
11	-0.01	0.00		
12	0.00	0.00		
13	0.00	0.00		
14	0.00	0.00		
15	0.00	0.00		
16	0.00	0.00		
17	0.00	0.00		
18	0.00	0.00		

Contribution to integral (a_n, b_n) in a 14 m long dipole (<10⁻⁶)

The additional influence of iron in a re-optimization will be included later with the help of TOSCA. The influence of iron can also be included using the CERN version of ROXIE. **Field Calculations**

```
Ramesh Gupta
```

Superconducting Magnet Program

SUMMARY

- Calculations for RD3 is completed with OPERA.
- Tools, structure and strategies are in place for field calculations and optimizations for both body and end designs

ROXIE will play a major role in optimizing a detailed magnetic design.

• Proof of principle design for field quality optimization in ends.