List of Figures

Figure 1.2.1.	Phase diagram of nuclear matter and nuclear collisions.	3
Figure 1.4.1.	Drawing of the cross section of the RHIC arc dipole in	
cryostat		9
Figure 1.4.2.	Critical current density as a function of applied field in	
supercor	nducting wire.	11
Figure 1.5.1.	Computation of the field produced by a line current	33
Figure 1.5.2.	Computation of the field produced by a current sheet. \ldots	49
Figure 1.5.3.	Computation of the field produced by a uniform current	
in two in	ntersecting circles.	58
Figure 1.5.4.	Field from Beth's current sheet	64
Figure 2.2.1.	Raster image of the cross section of a coil obtained after	
cutting	an SSC R&D dipole	73
Figure 2.2.2.	Raster image of a RHIC prototype dipole yoke lamina-	
tion		76
Figure 2.3.1.	AUTOMESH input No. 1 for the improved POISSON	81
Figure 2.3.2.	POISSON model generated by method No. 1	82
Figure 2.3.3.	AUTOMESH input No. 2 for the improved POISSON	85
Figure 2.3.4.	POISSON model generated by method No. 2	86
Figure 2.3.5.	The improved mesh generated by method No. 2	87
Figure 2.3.6.	AUTOMESH input No. 3 for the improved POISSON	89
Figure 2.3.7.	Improved POISSON model generated by method No. 3	90
Figure 3.1.1.	The B-H table used in POISSON calculations	94
Figure 3.1.2.	Field lines at 1000 A in the RHIC arc dipole magnet.	100
Figure 3.1.3.	Field lines at 7000 A in the RHIC arc dipole magnet.	101
Figure 3.2.1.	POISSON model of the RHIC arc dipole magnet.	103
Figure 3.2.2.	POISSON model of the SSC collider dipole magnet.	104

Figure 3.2.3. The computed transfer function as a function of yoke
inner radius in the RHIC arc dipole magnet
Figure 3.2.4. Computed saturation induced allowed harmonics as a
function of the yoke inner radius in the RHIC arc dipole magnet. \ldots \ldots 107
Figure 3.2.5. Computed transfer function as a function of the yoke in-
ner radius in the SSC dipole magnet
Figure 3.2.6. Computed saturation induced allowed harmonics as a
function of the yoke inner radius in the SSC dipole magnet
Figure 3.2.7. The computed change in transfer function and b_2 as a
function of the yoke outer radius in the SSC dipole magnet. \ldots \ldots \ldots 112
Figure 3.2.8. Fringe field on the horizontal axis of the SSC dipole
Figure 3.2.9. Fringe field on the vertical axis of the SSC collider
dipole
Figure 3.2.10. The saturation induced harmonics as a function of by-
pass hole angular location in the RHIC arc dipole
Figure 3.2.11. POISSON model of the RHIC insertion dipole D0
Figure 3.2.12. The saturation induced b_2 harmonic as a function of the
bypass hole location in the RHIC D0 dipole
Figure 3.2.13. The saturation induced b_4 and b_6 harmonics as a func-
tion of the bypass hole location in the RHIC D0 dipole
Figure 3.2.14. Reduction in saturation induced harmonics by satura-
tion suppressor holes in the RHIC arc dipole.
Figure 3.2.15. Variation in saturation induced harmonics as a function
of the azimuthal location of the saturation suppressor hole
Figure 3.2.16. Variation in saturation induced harmonics as a function
of the radial location of the saturation suppressor hole
Figure 3.2.17. Variation in saturation induced harmonics as a function
of the size of the saturation suppressor hole

Figure 3.2.18. Influence of the yoke alignment key material on the sat-	
uration induced harmonics in the SSC dipoles. \ldots \ldots \ldots \ldots \ldots 1	30
Figure 3.2.19. Influence of the yoke collaring key material on the satu-	
ration induced harmonics in the RHIC arc dipoles	34
Figure 3.2.20. The saturation induced harmonics with midplane tooth	
and notch in the RHIC arc dipoles	37
Figure 3.2.21. A schematic diagram of cutout and bump at the yoke	
inner radius	40
Figure 3.2.22. Low field transfer function as a function of the angular	
positions of cutout and bump at the yoke inner radius	41
Figure 3.2.23. Low field and saturation induced b_2 as a function of the	
angular positions of cutout and bump at the yoke inner radius. \ldots \ldots 1	42
Figure 3.2.24. Low field and saturation induced b_4 as a function of the	
angular positions of cutout and bump at the yoke inner radius. \ldots \ldots 1	43
Figure 3.2.25. Low field and saturation induced b_6 as a function of the	
angular positions of cutout and bump at the yoke inner radius	44
Figure 3.2.26. POISSON model of the proposed elliptical aperture SSC	
dipole	46
Figure 3.2.27. The saturation induced b_2 and b_4 in the proposed ellip-	
tical aperture SSC dipole	47
Figure 3.2.28. The saturation induced harmonic as a function of the	
angular position where the yoke inner radius changes	51
Figure 3.2.29. POISSON model of an octant of the RHIC insertion	
quadrupole	53
Figure 3.2.30. Transfer function as a function of current in the one and	
two-radius aperture cases	54
Figure 3.2.31. b_5 as a function of current in the one and two-radius	
aperture cases	55
Figure 3.2.32. b_9 as a function of current in the one and two-radius	
aperture cases. \ldots	56

Figure 3.3.1. Drawing of the coldmass of the RHIC arc dipole magnet	160
Figure 3.3.2. The measured b_2 harmonic as a function of current in	
various designs of RHIC arc dipole magnets	162
Figure 3.3.3. The measured b_4 harmonic as a function of current in various designs of RHIC arc dipole magnets.	163
Figure 3.3.4. The measured b_6 harmonic as a function of current in various designs of RHIC arc dipole magnets.	164
Figure 3.4.1. Drawings of the coldmass of the RHIC insertion dipole $D0.$	171
Figure 3.4.2. b_1 as a function of field when the current is the same in two side-by-side $D0$ magnets.	172
Figure 3.4.3. b_1 as a function of field when the current is in the ratio of 2.5:1 in two side-by-side $D0$ magnets.	173
Figure 3.4.4. Field lines in the 40 mm aperture, SSC, 2-in-1 magnet.	175
Figure 3.4.5. Current dependence in a_1 in several SSC dipole magnets	177
Figure 3.4.6. Field lines in the SSC 50 mm dipole magnet with asymmetric placement of coldmass in cryostat.	178
Figure 3.5.1. The axial variation in a_1 saturation in several SSC magnets.	183
Figure 3.5.2. Correlation between the axial variation of a_1 satura- tion and the top-bottom yoke-weight asymmetry in SSC dipole	
DCA213	184
Figure 3.5.3. Correlation between geometric a_1 and saturation a_1 .	187
Figure 3.6.1. Drawing of the RHIC arc dipole coldmass asymmetrically	
placed inside the cryostat.	191
Figure 3.6.2.The measured current dependence of a_1 in two RHIC arcdipoles. \ldots	192
Figure 3.6.3. The correlation between local yoke weight asymmetry	
and local a_1 saturation in RHIC dipoles	194

Figure 3.6.4. The calculated a_1 saturation for various yoke weight	
asymmetries in RHIC arc dipoles	195
Figure 3.6.5. Yoke weight asymmetry in various RHIC arc dipole mag-	
nets	197
Figure 3.6.6. The correlation in integral yoke weight asymmetry and	
integral a_1 saturation in two types of RHIC arc dipole designs. \ldots \ldots \ldots	199
Figure 3.7.1. Average values of allowed harmonics as a function of cur-	
rent in the production series of RHIC arc dipole magnets.	201
Figure 3.7.2. Magnetization inside the iron before and after yoke opti-	
mization as per PE2D model of the RHIC arc dipole magnets. \ldots . \ldots	203
Figure 3.7.3. $\left(\frac{\mu-1}{\mu+1}\right)$ inside the iron before and after yoke optimization	
as per PE2D model of the RHIC arc dipole magnets. \ldots . \ldots . \ldots . \ldots	204
Figure 4.1.1. Drawing of the coil cross section of the RHIC 100 mm	
aperture D0 Dipole	208
Figure 5.2.1. Drawing of the RHIC insertion quadrupole with the loca-	
tions of eight tuning shims indicated.	225
Figure 5.2.2. Detailed drawing of a tuning shim.	226
Figure 5.2.3. Maximum change in the $(a_2$ and $b_2)$, $(a_3$ and $b_3)$, and $(a_4$	
and $b_4)$ harmonics from a given thickness of eight tuning shims. \ldots . \ldots	240
Figure 5.2.4. Maximum change in the a_5 and b_5 harmonics from a giv-	
en thickness of eight tuning shims.	2 41
Figure 5.2.5. Maximum change in the a_9 and b_9 harmonics from a giv-	
en thickness of eight tuning shims.	242
Figure 5.2.6. Current dependence in the skew harmonics generated by	
the tuning shims.	246
Figure 5.2.7. Current dependence in the normal harmonics generated	
by the tuning shims.	247
Figure 5.2.8. Comparison between calculations and measurements for	
the $a_2, b_2, a_3, b_3, a_4, b_4$ harmonics generated by the tuning	
shims	252

Figure 5.2.9.	Comparison between calculations and measurements for	
the a_6 ,	b_6, a_7, b_7, a_8, b_8 harmonics generated by the tuning	
shims.		253
Figure 5.2.10.	Comparison between calculations and measurements for	
the tran	sfer function and the a_5 , b_5 , a_9 , b_9 harmonics generated	
by the t	uning shims	254
Figure 5.2.11.	Beam size in the insertion region for $eta^*=1.$	256
Figure 5.3.1.	Conceptual diagram for correcting a_1 and transfer func-	
tion erro	ors in dipole ends	259
Figure 6.2.1.	Drawing of the collared coil cross section of the SSC	
dipole.		268
Figure 6.2.2.	Drawing of the coldmass of the SSC dipole	272
Figure 6.2.3.	Field lines in the SSC 50 mm dipole at 6500 A	273
Figure 6.2.4.	Current dependence in the allowed harmonics of the SSC	
dipole.		277
Figure 6.2.5.	Lorentz forces in the SSC dipole.	284
Figure 6.3.1.	Drawing of the RHIC insertion quadrupole magnet cross	
section.		287
Figure 6.3.2.	Drawing of the coil cross section for the RHIC insertion	
quadrup	ole	291
Figure 6.3.3.	POISSON model of a quadrant of the 130 mm aperture	
RHIC ir	nsertion quadrupole	294
Figure 6.3.4.	Computed harmonics in the 130 mm aperture RHIC in-	
sertion o	quadrupole	297
Figure 6.3.5.	Field lines in the RHIC insertion quadrupole.	298