

Superconducting

Magnet Division

Superconducting Magnet Program at BNL

> **Ramesh Gupta and Peter Wanderer Brookhaven National Laboratory**

20151**ICFA MINI-WORKSHOP ON HIGH FIELD MAGNETS** FOR PP COLLIDERS

- Projects and Facilities
- Selected Superconducting Magnet Activities at BNL
 - HTS Magnets (react & wind only)
 - Nb₃Sn Magnets (both wind & react and react & wind)
 - NbTi Magnets
- Summary

(high field hybrid magnet to be discussed in a separate presentation)

- High Temperature Superconductors (HTS) aka High Field Superconductors (HFS)
 - Primarily ReBCO (now), but also Bi2212, Bi2223 and MgB₂
 - > Universal Winder for flat coils pancake, racetrack
 - > HTS Quadrupole for FRIB (Facility for Rare Isotope Beams)
 - > Low field solenoids for Energy Recovery Linac
 - > High field solenoids for Muon Collider
 - SMES (Superconducting Magnetic Energy Storage)
 - > Quench detection/protection system for HTS

- Relativistic Heavy Ion Collider (RHIC)
 - > General support to RHIC- only operating large circular collider in US
 - > RHIC helical magnet (for polarized protons)
 - > Layer Wind NbTi solenoids for RHIC electron lens
 - > Direct Wind IR multipole magnets for eRHIC electron-ion collider
- US-LHC and APUL (present machine)
- HL-LHC aka LARP (High Luminosity Upgrade)
- Direct Wind machine for work for others
 - > CERN anti-hydrogen, DESY, BEPC (China), JPARC, SuperKEKB

Magnet Division

- Superconductor development and test
 - > HTS for new project initiatives
 - Nb3Sn for LARP
- Cryogenic facilities for testing

Superconducting

Magnet Division

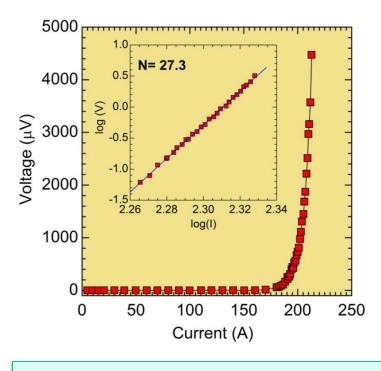
HTS Magnet Program

HTS Magnet Program at BNL

- HTS magnet R&D over a wide range:
 - High field, Medium field and low field (high temperature)
 - Many geometries racetrack, cosine theta, solenoid
- Number of HTS coils/magnets designed built & tested:
 - Over 150 HTS coils and over 15 HTS magnets
- Type of HTS used:
 - ReBCO, Bi2212, Bi2223, MgB₂ wire, cable, tape
- Amount of HTS acquired:
 - Over 50 km (4 mm tape equivalent)
- Our recent activities have been largely on magnets with ReBCO
 - (yet just tested Bi2223 and one MgB₂ magnets)

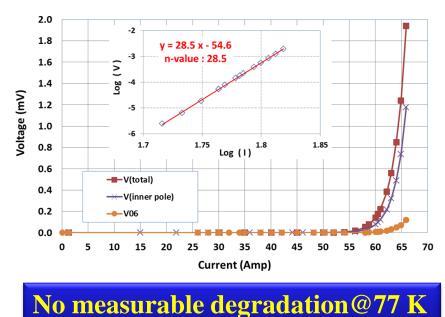
Selected HTS ReBCO Tape Magnet Programs at BNL

ReBCO Tape Cosine θ R&D for Hadron Collider


Superconducting

Cos (θ) Coil - PBL/BNL STTR#1 (12 mm, one block, 77 K)

No measurable degradation@77 K


Kapton Ci Insulation
Possibility of bonded tapes (mutli-tapes)

Cos (θ) Coil - PBL/BNL STTR #2

Superconducting Magnet Division

Also investigated "bonded" or "clad" 12 mm tape from SuperPower

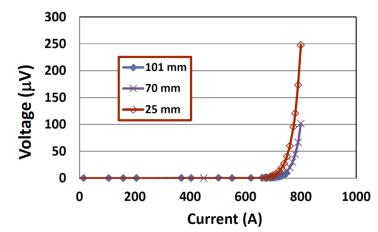
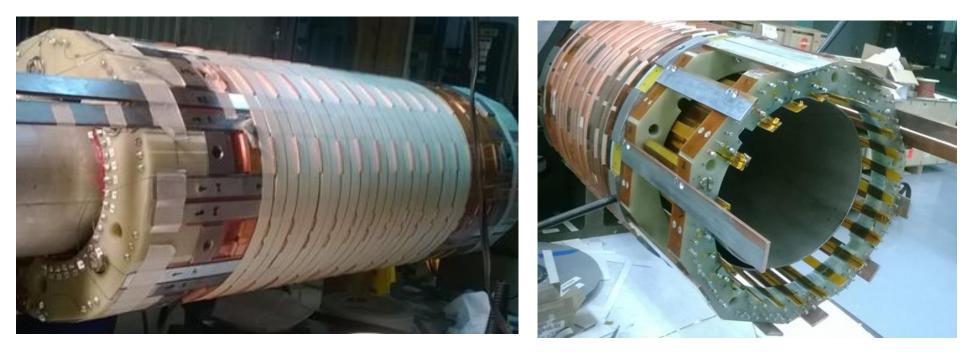


Fig. 17. Bend test results for bonded tape with the YBCO layer oriented toward the central Cu strip. Degradation in I_c begins between a bending diameter of 75 mm and 25 mm.

High Field HTS Solenoid with ReBCO Tape

NKHMVEN High Field (16T) Demo of HTS Magnet NATIONAL LABORATORY Superconducting **Magnet Division PBL/BNL SBIR** Ic vs T **Field on axis: 15.7** T 300 Field on coil : 16.2 T 250 200 (original target: 10-12T) اد ک 150 100 **Overall J**_o in coil: >500 A/mm² @16 T 50 0 10 0 20 30 40 50 60 70 80

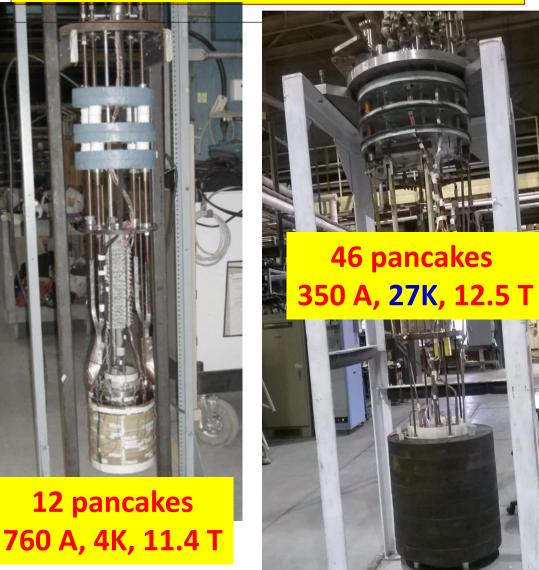

Insert solenoid: 14 pancakes, 25 mm aperture

Temperature (K)

SMES Magnet

Superconducting Magnetic Energy Storage (SMES)

Inner CoilOuter Coil(28 pancakes)(16 pancakes)



Superconducting

Mad

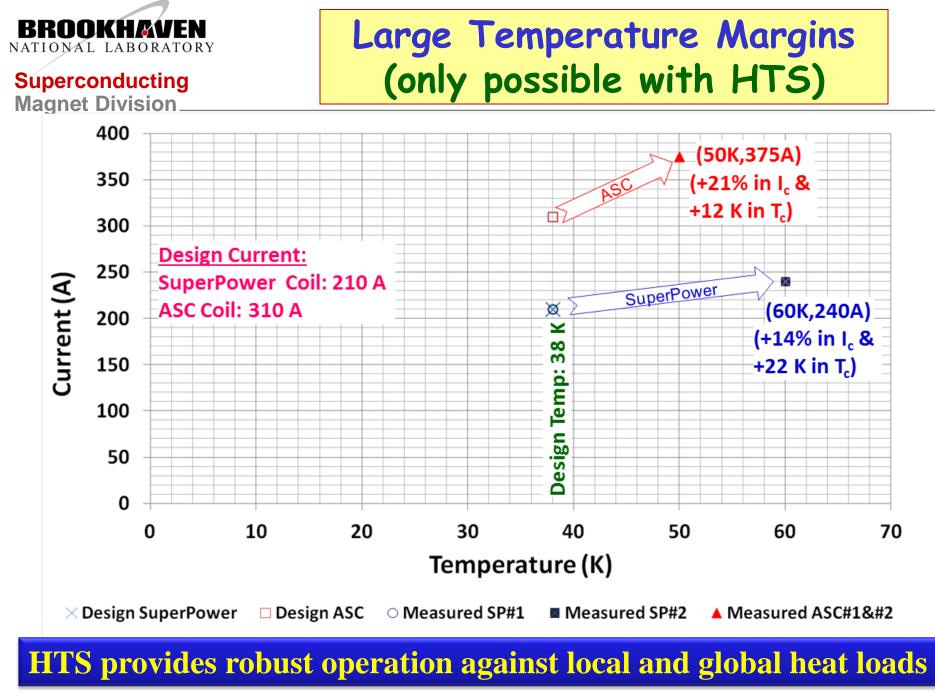
2 pancakes 1140 A, 4K

HTS SMES Magnet Test Results 100 mm bore ReBCO SMES Coil

SuperPare p **HOUSTON** 2015 15

BROOKHAVEN NATIONAL LABORATORY'A




FRIB: Facility for Rare Isotope Beams, now under construction at MSU, USA.

ReBCO HTS Quad for FRIB

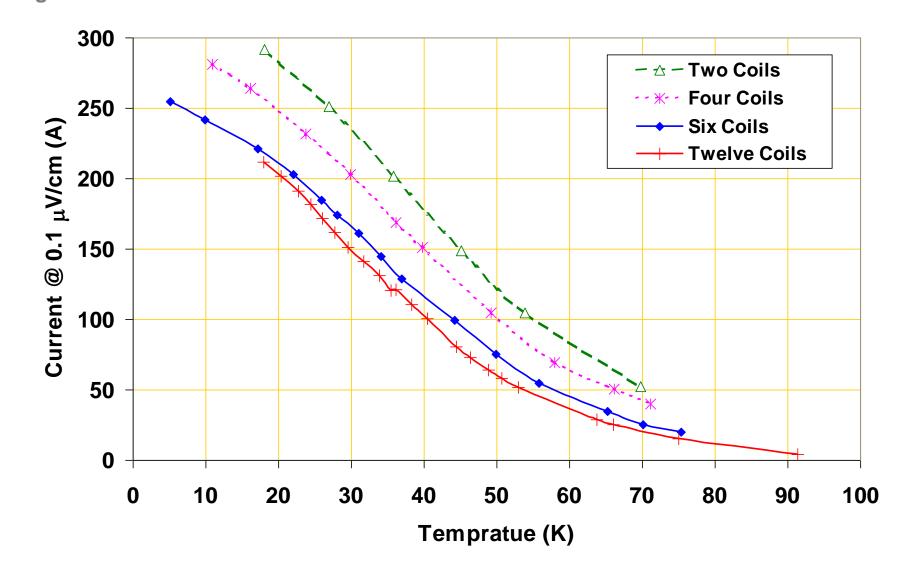
2nd Generation Design

Selected HTS Bi2223 Tape Magnet Programs at BNL

FRIB: Facility for Rare Isotope Beams, now under construction at MSU, USA.

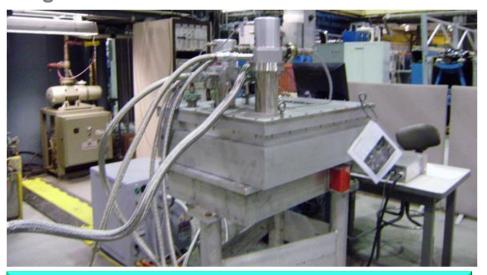
Bi223 HTS Quad for FRIB

Superconducting


Magnet Division

Warm Iron Design with Bi2223 HTS (1st Generation Design)

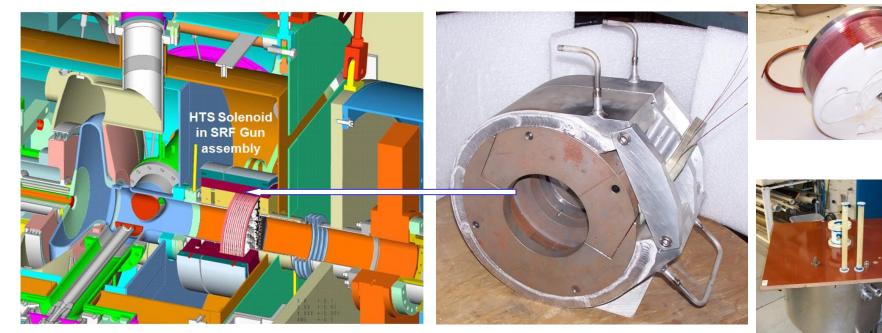
Mirror warm iron


BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

SC Magnets at BNL -R. Gupta & P. Wanderer ICFA Mini-Workshop on High Field SC Magnets for pp Colliders June 14-17, 2015 22

A Warm bore Cryo-cooled Magnet with 6 HTS coils

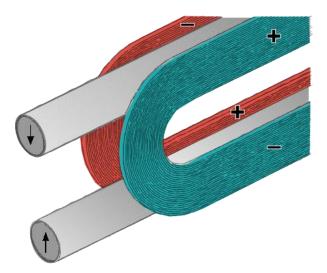
Evening: Switch ON; Morning: COLD


- **Suitable for various studies**
- Quench studies
- □ Measure magnetization
 - induced harmonics
 - > as a function of time
 - as a function of
 - temperature
 - as a function of field

Superconducting

Magnet Division

Low Magnetic Field Application HTS Solenoid with Superconducting Cavity for the Energy Recovery Linac (ERL) at BNL


HTS solenoid is placed in cold to warm transition region after the superconducting cavity where neither LTS or copper solenoid would work

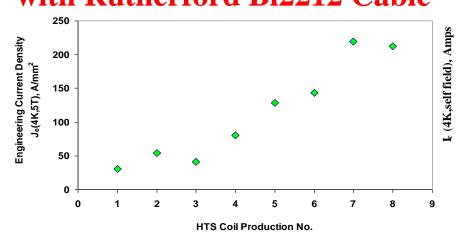
Early focusing provides a unique and better technical solution

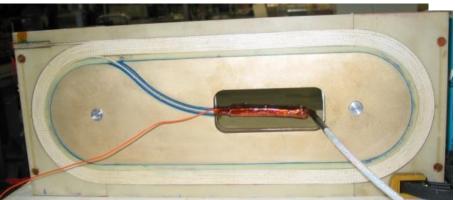
Bi2212 Rutherford Cable Racetrack Coil Magnets for Hadron Collider

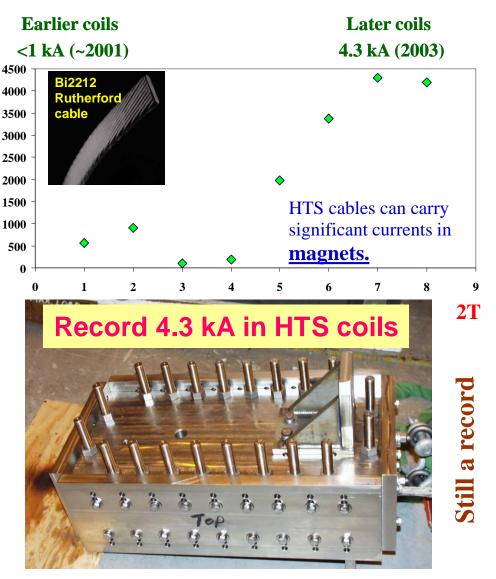
React & Wind Bi2212 Racetrack Coils for High Field Hybrid Magnets

Coils and Magnets Built at BNL with BSCCO 2212 Cable. I_c is the Measured Critical Current at 4.2 K in the Self-Field of the Coil. The Maximum Value of the self-Field is listed in the Last Column. Engineering Current Density at Self-Field and at 5 T is also given.

Coil /	Cable	Magnet	I _c	$\mathbf{J}_{\mathbf{e}}(\mathrm{sf})[\mathbf{J}_{\mathbf{e}}(5\mathrm{T})]$	Self-
Magnet	Description	Description	(A)	(A/mm^2)	field, T
CC006	0.81 mm wire,	2 HTS coils,	560	60	0.27
DCC004	18 strands	2 mm spacing		[31]	
CC007	0.81 mm wire,	Common coil	900	97	0.43
DCC004	18 strands	configuration		[54]	
CC010	0.81 mm wire,	2 HTS coils (mixed	94	91	0.023
DCC006	2 HTS, 16 Ag	strand)		[41]	
CC011	0.81 mm wire,	74 mm spacing	182	177	0.045
DCC006	2 HTS, 16 Ag	Common coil		[80]	
CC012	0.81 mm wire,	Hybrid Design	1970	212	0.66
DCC008	18 strands	1 HTS, 2 Nb ₃ Sn		[129]	
CC023	1 mm wire,	Hybrid Design	3370	215	0.95
DCC012	20 strands	1 HTS, 4 Nb ₃ Sn		[143]	
CC026	0.81 mm wire,	Hybrid Common	4300	278	1.89
DCC014	30 strands	Coil Design		[219]	
CC027	0.81 mm wire,	2 HTS, 4 Nb ₃ Sn	4200	272	1.84
DCC014	30 strands	coils (total 6 coils)		[212]	




Eight coils and five magnets were built at BNL with Rutherford Bi2212 Cable (Showa/LBNL)


HTS Common Coil Dipole with React & Wind Bi2212 Rutherford Cable

8 Coils and 5 Magnets built with Rutherford Bi2212 Cable

Racetrack HTS coil with Bi2212

Superconducting

Magnet Division_

A Select Few Nb₃Sn Magnet Programs at BNL



LHC High Luminosity Upgrade

- LARP Development of higher performance IR quadrupoles for LHC (ATLAS and CMS) – Nb₃Sn replacing NbTi
- New US (DOE + NSF) CERN agreement signed May 7, 2015
- "LARP the Project" planned to begin FY18
 - CD-0 planned for FY16
 - TPC \$181 M
- Magnets: BNL, Fermilab, Berkeley. SLAC also involved
- BNL tasks: conductor development and test, make coils, test magnets in vertical dewar

Wind & React Approach for Nb₃Sn Quadrupoles for LHC Luminosity Upgrade

React & Wind Approach for Nb₃Sn Dipole for proton-proton Collider

÷ **Conductor friendly designs** with large bend radii

We use "React & Wind Approach" for HTS and both "React & Wind" and "Wind & React" for Nb₃Sn

Large (1.5 m³) reaction furnace

Used for reacting long lengths of Nb₃Sn cable

A Key Component of "React & Wind" Technology

Each part and step in this new automatic coil winder is carefully designed to minimize the potential of bending degradation to brittle superconductors during the winding process. The machine is fully automated and computer controlled to minimize uncontrolled errors (human handling). All steps are recorded to carefully debug the process, as and if required.

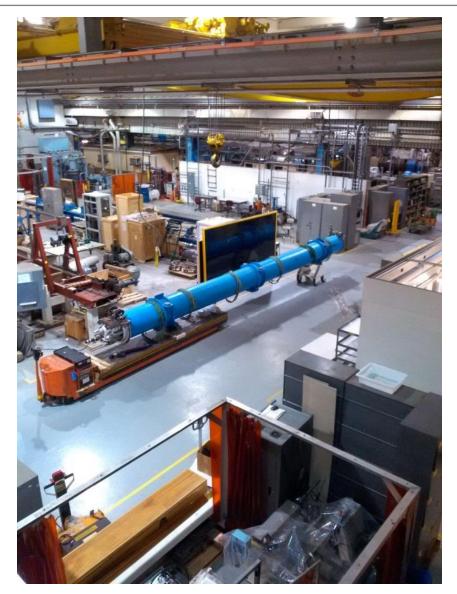
A Select Few NbTi Magnet Programs at BNL

NbTi Magnets for RHIC, LHC

- Superconducting Magnet Division_
 - RHIC:
 - Production of 1740 magnets at BNL and in industry
 - RHIC operation for 14 years only two magnets replaced in that time – no interruption of RHIC operation for replacement
 - LHC (present machine; IR \equiv near collision point):
 - Using RHIC tooling for 10 m IR dipoles
 - US-LHC: Produced 22 10 m dipoles for LHC IR's, .
 - No problems in operation
 - APUL: Two additional spare dipoles, completed 4/14
 - DOE Secretary Moniz's Honor Award 5/15

NbTi 10 m Coil Tooling

Superconducting Magnet Division



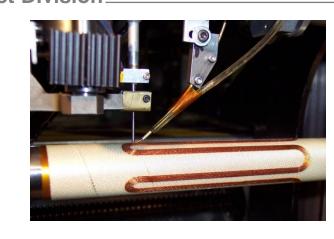
NbTi 10m coil wind and cure tooling, to be rebuilt for LHC 4.2 m quads

Additional 10 m tooling (collaring press, shell welding, vacuum and leak check, cold mass insertion) available.

10 m APUL Dipole for LHC

SC Magnets at BNL -R. Gupta & P. Wanderer ICFA Mini-Workshop on High Field SC Magnets for pp Colliders June 14-17, 2015 36

Superconducting Magnet Division_


Direct Wind CAD CAM Facility

- NbTi wires and small cables bonded to cylindrical support tubes using ultrasound with heat-activated adhesive.
- Generate multipole or solenoidal fields
- Special software translates physics design into conductor locations with 11 wiring machine parameters (e.g., strength of ultrasound signal)

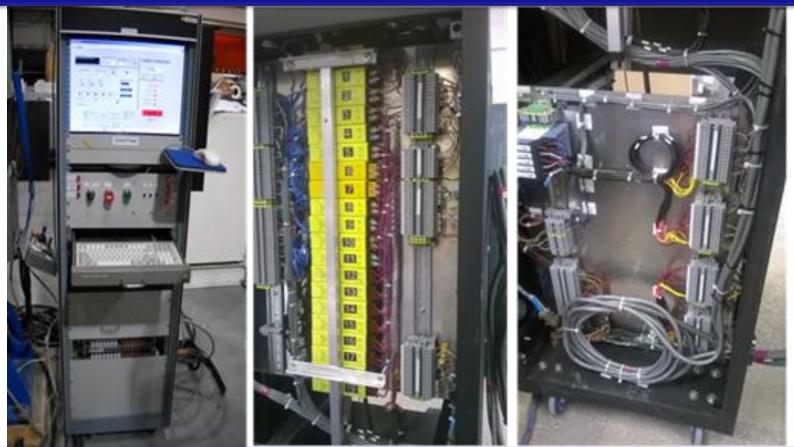
Direct Wind machine

Superconducting Magnet Division_

Superconducting

Magnet Division_

Magnet R&D Support


Advanced Quench Protection Electronics

Superconducting

NATIONAL LABORA

NKH/K//

A Significant Development in Support of HTS Magnets

Detects onset of pre-quench voltage at < 1mV and with isolation voltage > 1kV allows fast energy extraction

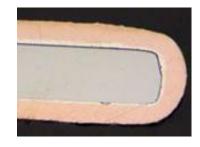
- Superconductor characterization and optimization
- Vertical dewar tests of LARP 4.2 m quads (20 kA, 1.9K).
- Horizontal testing of magnets in cryostats (10kA, 4.5K)

Superconducting

Magnet Division.

Vertical Test Facility (4.5 m, 1.9 K)

Horizontal Test Facility (10 m, 4.5 K)


Strand test solenoids:

- 16T, 4.5K
- 12T, 1.9K
- 7T, 4.5K, I_c vs. theta (for ReBCO)
- SC Magnets at BNL -R. Gupta & P. Wanderer ICFA Mini-Workshop on High Field SC Magnets for pp Colliders June 14-17, 2015 44

Conductor Testing

LARP conductor development

> HTS ReBCO

Summary

- BNL has built many types of superconducting accelerator magnets and installed them in-house and around the world.
- BNL has built magnets with a variety of superconductors in a wide range of field applications using a variety of technologies.
- BNL has a wide ranging facilities for testing superconductors, making coils and for building and testing magnets.
- BNL Magnet Division is ready to participate in the R&D needed for high energy proton-proton collider.