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Overview 

• HTS in High Field Superconducting Magnets 

– Opportunities and Challenges  

• HTS Magnet Programs at BNL  

– We work on a variety of magnet types (solenoid, dipoles, etc.).  

The focus of this presentation is on very high field solenoids. 

–  A15+ T HTS solenoid already designed, built and tested; and 

a more ambitious 20-25 T goal in 2013 in multiple programs  

– Ultimate target: ~40 T in a hybrid design (HTS+LTS) 

• Summary 
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Modern Superconductors for 
Very High Field Magnets 
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HTS offer unique 

opportunities 
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High Field Superconductor (HTS) 

• The development of High Temperature Superconductor (HTS) as 

the High Field Superconductor (HFS) is the key to all ongoing 

very high field magnet development programs 

• High strength HTS (e.g., with Hastelloy substrate from 

SuperPower) are very attractive for high field applications 

• Progress in conductor to date has been impressive. There is even 

more room for progress – even higher Ic and more uniform Ic   

• But conductor is only the beginning. There are several 

challenges in making very high field magnets out of them 
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Challenges with HTS for  
High Field Superconducting Magnets 

• Anisotropic electrical properties for YBCO or tape conductor 

• Mechanical properties (more so for 2212 but for YBCO also) 

• Quench protection : a major issue for HTS 

• Containment (mechanical) structure 

• Conductor cost  

 More discussion later with progress made in some of these areas 
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HTS Magnet Programs at BNL 

• Brookhaven National Laboratory (BNL) has been active in HTS conductor, coil 

and magnet R&D for over a decade. The level of effort has been significant: 

– Received over 50, 000 meters of HTS (normalized to 4 mm tape) 

– Built well over hundred coils and a large number of magnets 

– Used all – Bi2212, Bi2223, YBCO, MgB2 - in round wire and tape form 

• Magnet R&D on a wide range of programs:  

– Low field, high temperature (unique and sometime cost-effective) 

– Medium field, medium temperature (baseline design of a major machine) 

– High Field, low temperature     focus of this presentation 

These variety of programs help develop a wider understanding and cross solutions 
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High Field Solenoid Programs 

• Ongoing programs: 

 ~25 T High Energy Density SMES 

 ~40 T Solenoid for Muon Accelerator Program  

• Other future possibilities: 

 NMR 

 ??? 

 ??? 
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Motivation for High Field HTS SMES 

 High Temperature (~65 K) Option: Saves on cryogenics (Field ~2.5 T) 

 High Field (~25 T) Option: Saves on Conductor (Temperature ~4 K) 
High Temperature 

High Field 

Some previous/other work: 

   LTS: ~5 T (~4 K operation) 

   HTS: few to several Tesla (20 K or more) 

 

Our analysis on HTS option: 

Conductor cost dominates the cryogenic 

cost by an order of magnitude 

 

An aggressive option:  

 Ultra high fields ~25 T 

 Only possible with HTS 

 High risk and high reward program 
Partnership between BNL, 

SuperPower and ABB  
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Concept of GRID Scale (GJ scale) 
Superconducting Energy Storage  

Participants:  ABB (Lead), SuperPower/Furukawa and BNL 

 Funded by arpa-e as a “high risk, high reward” project. 

Concept of a single Unit Concept of Number of units in a toroidal SMES system 
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High Field Solenoid for 
Proposed Muon Collider 

 Muon collider:  

• An exciting and challenging machine 

One key challenge: 

• High field (~40 T) solenoid for cooling 

 Resistive magnet would use enormous 

electro power (hundreds of MW) 

 Even a combination of resistive and 

superconductive magnets will consume 

large power 

 Need superconducting magnets and 

use of HTS for such high field is essential Courtesy: Bob Palmer 
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Modern Superconductors for 
Very High Field Magnets 
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• Hybrid design offers a 

more affordable solutions 

• Use HTS in higher field 

region and LTS in lower 
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30-40 T Technology Demo Magnet 

Design consisted of several coils (HTS and LTS) 

1. 10-15 T HTS insert coil (~25 mm aperture) 

2. 10-12 T HTS midsert coil (~100 mm aperture) 

3. 6-15 T LTS coil(s) - NbTi for 6-8 T; and/or Nb3Sn for 12-15 T 

 

1 

2 

3 

20-25 T All HTS Coils (1 & 2): 

addresses challenges with high 

field HTS solenoids 

 

30-40 T All Superconducting 

Solenoid (1, 2 and 3+): 

addresses challenges with high 

field superconducting solenoids  
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Funding Status of 30-40 T Solenoid 

This technology is being primarily developed under a series of  US 

DOE SBIR (Small Business Innovative Research Program) with 

BNL (a national lab) collaborating with PBL, Inc. (an industry.) 

 

Funding Status: 

1. HTS insert solenoid :  Funded 

2. HTS midsert solenoid : Funded 

3. LTS outsert :  Not yet funded for construction 

 Courtesy: Bob Palmer 
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PBL/BNL High Field HTS Solenoids 

10+ T,100 mm 

HTS solenoid 

(midsert) with 24 

pancakes for full 

length solenoid 

(ready for test) 

15+ T, 25 mm HTS 

solenoid (insert) 

with 14 pancakes  

already tested 

Half length 100 mm 

with 12 pancakes 

already tested and 

reached 6+ T on 

axis (9+ T peak)  

Use of high strength HTS is critical to the success 

Coils made with 

~4mm HTS tape 

from SuperPower 

Record 

Field 
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High Field HTS Solenoid Test Results 
(magnet #1 using SuperPower HTS) 

Field on axis: 

  over 15 T   

Field on coil:  

 over 16 T  

(original target was 10-12 T) 

 

Real demo of 2G HTS to 

create high field 

 

 Highest field ever in 

an all HTS solenoid 

Overall Jo in coil: 

     >500 A/mm2 at 16 T 

(despite anisotropy) 

14 pancake coils with ~25 mm aperture 

 Note: Benefit of HTS – large operating range  
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Test Results of HTS Solenoid #2 
(½ Midsert, 12 coils instead of 24) 
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Peak Field on Coil at 250 A : ~9.2 T

Coil operated with margin at 250 A

PBL/BNL 100 mm HTS Solenoid Test for Muon Collider

Large use (1.2 km) of 2G 

HTS in high field magnet.  

250 A ==>  

6.4 T on axis  

9.2 T peak 

field on coil  

SuperPower HTS 

Coil could have reached above 10 T peak (original target), 

but was not ramped up to protect electronics of that time.  

Full solenoid with 24 pancakes should create >10 T on axis.  
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Status of High Field MAP Solenoids 

1 

2 

3 

Two HTS coils together made with SuperPower 

HTS is expected to create 20-25 T, if successful 

~30 T with NbTi outer 

(40 T with Nb3Sn or more HTS) 
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Challenges with High Field 
HTS Magnet Technology 

Discussion on two selected topics: 

• Quench Protection 

– Slow quench propagation velocities  

– Coil may get degraded even before one detects quench 

• Mechanical Properties 

– Stress /strain tolerance important in high field magnets 

– Asymmetric properties of tape (just as magnetic)  
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High Current Test of 4 mm Tapes 
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SP 
YBCO 
Coil

During the initial R&D period, coils with 2G HTS tape from ASC (~0.4 mm 

X 0.3 mm) and SuperPower (0.4 mm X 0.1 mm) were built and tested 

Coil built with 4mm tape 

purchased ~5 years ago 

Max current: 540 A and 580 A; coils remain protected 



Superconducting  
Magnet Division 

Ramesh Gupta, BNL, USA               Very High Field HTS Magnets                Tokyo, Japan Slide No. 20 ISS2012  
 

Low Temp Performance of FRIB Coils 
(R&D during technology development period) 

ASC YBCO Coil (with nano-dots)

SP YBCO Coil (without doping) 

ASC BSCCO Coil (1st series) 
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These numbers are amazing ... 

• May be too demanding for protection and should be avoided in real applications. 

Tape width: ~ 4 mm; Length used in single coil ~100 meter 

Copper thickness:  SuperPower ~ 0.045 mm;  ASC ~ 0.1 mm 

If coils go normal (momentarily 

or thermal runaway, etc.).  

• Copper current density in ASC 

coil : ~1500 A/mm2 

• Copper current density in 

SuperPower coil : ~3000 A/mm2 

Coil remained protected 

(we usually don’t allow such 

high Jcu in LTS magnets) 
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BNL Quench Protection Strategy 

• Quench protection in high field HTS magnets 
is one of the biggest challenges of the field. 

• We have developed a unique approach to 
overcome this challenge. 

• Use problem (things happening slowly) to our 
advantage. 

• Detect the longer pre-quench phase of HTS 
(where coil can be operated safely) and initiate 
the action for protection. 

• This requires detecting small resistive voltage 
in presence of large noise and inductive 
voltages – challenge in large systems. 

• BNL has made significant advances in 
electronics to detect start of this pre-quench 
phase well below 1 mV rather than 50-100 mV. 

Pre-quench phase 

Use quench protection heaters 

as the final line of defense 
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Advanced Quench Detection System 
Developed at BNL 

• Advance quench protection 

electronics detects quench fast and 

extract energy quickly. 

•  This requires development of low 

noise, fast electronics with large 

isolation voltage. 
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Mechanical Properties of HTS 

• HTS tapes (such as 2G tape with Hastelloy substrate) 

have inherently higher stress and strain tolerances and 

are particularly suitable for high field solenoids  

• However, even  these 2G tape have relatively lower 

stress tolerance on the narrower face (question how 

much). Question is how much? 
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Mechanical Properties of High 
Strength HTS from SuperPower 

High Strength HTS are 

important for high field magnets 

High Strength HTS from SuperPower/ 

Furukawa tested at Florida, USA 

But what happens on the narrow face? 
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Measurements to Study the Influence of 
Stress on the Narrow side of HTS Tape 
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Bi-filar Coil for Axial Loading  

Load is applied on the 

narrow face. 

 

Bi-filar winding is 

chosen to minimize 

the influence of 

magnetic field on Ic. 

 

Maximum load 

applied: 107 MPa 

(max in current 

designs ~100 MPa) 

 

The test was carried 

out  in real situation: 

the coil remain cold 
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Voltage versus pressure cycle (0 to 4200psi / 107MPa)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141

# of cycles

v
o

lt
a
g

e
 (

u
V

)

sec1

sec2

sec3

sec4

sec5

sec6

Influence of ~107 MPa Pressure on the 
Narrow Face of Conductor in 2G HTS Coil 
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Load ON, Load OFF. Measure change in 

voltage in ~100 cm (1 m) long six sections 

~0.5% reversible change in Ic 
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Other High Field Geometries 
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• High field (>20 T) cosine theta magnet technology with 

complex ends 

• The proposed energy and luminosity upgrade of LHC at 

CERN will require high field dipole and quadrupole magnets 

• Hybrid designs with HTS inner 

Dipole NbTi Magnet (BNL)  

Quadrupole Nb3Sn Magnet 

( Courtesy: Bill Sampson, BNL) 

Cosine theta prototype magnets built  and tested in BNL using LTS materials 

Courtesy: S. Lakshmi 

HTS Dipole and Quadrupole 
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V4 

V5 

V6 

V11 

V10 

V9 

Inner most turn  

(straight sections) 

Innermost turn  

(straight sections) 

Outer most turn  

(straight sections) 

Inner  to outer turn 

 and Outer  turn  

Courtesy: S. Lakshmi 

Several V-taps for Detailed 
Examinations 
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Conductor length :14 m 

Dipole coil: I-V test at 77 K; self field 

Y axis represents the end-to end voltage in the coil 

block (V1-V16) 

Based  on   

1mV/cm criterion: Ic= 204 A 

0.1mV/cm criterion: Ic= 187.8 A 

Courtesy: S. Lakshmi 

Test Results at 77 K 
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Other Significant HTS Magnet 

Development at Medium Fields 
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Magnets for the Fragment Separator 
of Facility of Rare Isotope Beams 

Exposure in the first magnet itself: 

 Head Load : ~10 kW/m, 15 kW  

 Fluence : 2.5 x1015 n/cm2 per year 

 Radiation : ~10 MGy/year 

Pre-separator quads and dipole 

Large Radiation and Heat Loads in Fragment Separator Region Magnets 

Radiation resistant 

Copper or NbTi Magnets don’t satisfy the requirements 
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HTS Magnets For FRIB 

• HTS offers a unique solution for challenging environment of 

FRIB magnets with unprecedented energy and radiation loads.  

• Because of large thermal margins HTS magnets can operate 

reliably and can remove large heat loads efficiently at ~40 K. 

 HTS magnets are now the baseline design for the quadrupole 

and dipole magnets in the fragment separator region of FRIB. 
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SuperPower ASC

FRIB HTS Quadrupole 

220 mm, >15 T/m 
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Coils in FRIB Quad Structure @77 K 
(made with 2G HTS from SuperPower and ASC) 
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~330 meter  

12 mm used 
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SuperPower 

coil and 

 ~215 meter 

12mm double 

tape used in 

each of four 

ASC coil 

Performance 

at ~40 K is 

more relevant 
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Summary 

• High field all HTS solenoids can now be successfully built using a 

significant amount of conductor (~2 km) 

• Maximum field on coil >16 T, overall current density (Jo) in coil 

>500 A/mm2 – new record for the technology  

• We still have a lot to demonstrate and many challenges to overcome 

• However, the impact of these two results of all HTS solenoid (and 

other high field insert coil test at NHMFL) is obvious 

• We are now at the verge of revolutionizing the superconducting 

magnet technology – reaching higher field as never possible before  

• Stay tuned for more results in coming years from around the world. 

We hope that 30-40 T solenoids will become a reality. 
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Back-up Slides 
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Original Design Parameters  
(as presented at ASC2010) 

Target Design field (optimistic) ~22 T  

Number of coils (radial segmentation) 2 self supporting 

Stored Energy (both coils) ~110 kJ 

Inductance (both in series) 4.6 Henry 

Nominal Design Current ~220 A 

Insulation (Kapton or stainless steel) ~0.025 mm 

Je (engineering current density in coil) ~390 A/mm2 

Conductor 

Width 

Thickness 
Stablizer 

2G ReBCO/YBCO 

~4 mm 

~0.1 mm 
~0.04 mm Cu 

Outer Solenoid Parameter 

Inner diameter 
Outer diameter 

Length 

Number of turns per pancake 
Number of Pancakes 

Total conductor used 

Target field generated by itself 

 

~100 mm 
~160 mm 

~128 mm 

~240 (nominal) 
28 (14 double) 

2.8 km 

~10 T 

Inner Solenoid Parameter 

Inner diameter 

Outer diameter 
Length 

Number of turns per pancake 

Number of Pancakes 

Total conductor used 

Target field generated by itself 

 

~25 mm 

~90 mm 
~64 mm 

~260 (nominal) 

14 (7 double) 

0.7 km 

~12 T 

External Radial support (overband) Stainless steel tape 

 

Target Design field (optimistic) ~22 T  

Number of coils (radial segmentation) 2 self supporting 

Stored Energy (both coils) ~110 kJ 

Inductance (both in series) 4.6 Henry 

Nominal Design Current ~220 A 

Insulation (Kapton or stainless steel) ~0.025 mm 

Je (engineering current density in coil) ~390 A/mm2 

Conductor 

Width 

Thickness 
Stablizer 

2G ReBCO/YBCO 

~4 mm 

~0.1 mm 
~0.04 mm Cu 

Outer Solenoid Parameter 

Inner diameter 
Outer diameter 

Length 

Number of turns per pancake 
Number of Pancakes 

Total conductor used 

Target field generated by itself 

 

~100 mm 
~160 mm 

~128 mm 

~240 (nominal) 
28 (14 double) 

2.8 km 

~10 T 

Inner Solenoid Parameter 

Inner diameter 

Outer diameter 
Length 

Number of turns per pancake 

Number of Pancakes 

Total conductor used 

Target field generated by itself 

 

~25 mm 

~90 mm 
~64 mm 

~260 (nominal) 

14 (7 double) 

0.7 km 

~12 T 

External Radial support (overband) Stainless steel tape 

 

  This was thought to be a very ambitious proposal!!! 

 We have achieved >60% (6+ T) with only half outer 

 We have already exceeded inner by over 25% (15+ T)  

24 (12) 

Midsert 


