

Very High Field HTS and Superconducting Magnets

Ramesh Gupta Brookhaven National Laboratory (BNL), USA (for BNL staff and collaborators from PBL and SMES Team)

25th International Symposium on Superconductivity, Tokyo, Japan

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Overview

- HTS in High Field Superconducting Magnets
 - Opportunities and Challenges
- HTS Magnet Programs at BNL
 - We work on a variety of magnet types (solenoid, dipoles, etc.).
 The focus of this presentation is on very high field solenoids.
 - A15⁺ T HTS solenoid already designed, built and tested; and a more ambitious 20-25 T goal in 2013 in multiple programs
 - Ultimate target: ~40 T in a hybrid design (HTS+LTS)
- Summary

ISS2012

Modern Superconductors for Very High Field Magnets

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

Slid

- The development of High Temperature Superconductor (HTS) as the High Field Superconductor (HFS) is the key to all ongoing very high field magnet development programs
- High strength HTS (e.g., with Hastelloy substrate from SuperPower) are very attractive for high field applications
- **Progress in conductor to date has been impressive. There is even** more room for progress – even higher Ic and more uniform Ic
- But conductor is only the beginning. There are several challenges in making very high field magnets out of them

Challenges with HTS for High Field Superconducting Magnets

- Anisotropic electrical properties for YBCO or tape conductor
- Mechanical properties (more so for 2212 but for YBCO also)
- Quench protection : a major issue for HTS
- Containment (mechanical) structure
- Conductor cost

More discussion later with progress made in some of these areas

HTS Magnet Programs at BNL

- Brookhaven National Laboratory (BNL) has been active in HTS conductor, coil and magnet R&D for over a decade. The level of effort has been significant:
 - Received over 50, 000 meters of HTS (normalized to 4 mm tape)
 - Built well over hundred coils and a large number of magnets
 - Used all Bi2212, Bi2223, YBCO, MgB₂ in round wire and tape form
- Magnet R&D on a wide range of programs:
 - Low field, high temperature (unique and sometime cost-effective)
 - Medium field, medium temperature (baseline design of a major machine)
 - High Field, low temperature **← ← ←** focus of this presentation

These variety of programs help develop a wider understanding and cross solutions

ISS2012 Ramesh Gupta, BNL, USA Very High Field HTS Magnets Tokyo, Japan Slide No. 6

High Field Solenoid Programs

- Ongoing programs:
 - □ ~25 T High Energy Density SMES
 - □ ~40 T Solenoid for Muon Accelerator Program
- Other future possibilities:

 - □ ???

Motivation for High Field HTS SMES

High Temperature (~65 K) Option: Saves on cryogenics (Field ~2.5 T) High Field (~25 T) Option: Saves on Conductor (Temperature ~4 K)

Some previous/other work:

LTS: ~5 T (~4 K operation) HTS: few to several Tesla (20 K or more)

Our analysis on HTS option:

Conductor cost dominates the cryogenic cost by an order of magnitude

An aggressive option:

- ➤ Ultra high fields ~25 T
 - ✓ Only possible with HTS
 - ✓ High risk and high reward program

Partnership between BNL, SuperPower and ABB

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

Slide No. 8

High Temperature

Concept of GRID Scale (GJ scale) Superconducting Energy Storage

Concept of Number of units in a toroidal SMES system

Participants: ABB (Lead), SuperPower/Furukawa and BNL

 \succ Funded by arpa-e as a "high risk, high reward" project.

ISS2012

K H **k**vf N

NATIONAL LABORATORY

Superconducting **Magnet Division**

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

High Field Solenoid for Proposed Muon Collider

Courtesy: Bob Palmer

ISS2012

Muon collider:

• An exciting and challenging machine

One key challenge:

- High field (~40 T) solenoid for cooling
 - Resistive magnet would use enormous
 - electro power (hundreds of MW)
 - Even a combination of resistive and
 - superconductive magnets will consume

large power

✓ Need superconducting magnets and

use of HTS for such high field is essential

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

Modern Superconductors for Very High Field Magnets

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

Japan

ISS2012

30-40 T Technology Demo Magnet

Design consisted of several coils (HTS and LTS)

- 1. 10-15 T HTS insert coil (~25 mm aperture)
- 2. 10-12 T HTS midsert coil (~100 mm aperture)
- 3. 6-15 T LTS coil(s) NbTi for 6-8 T; and/or Nb₃Sn for 12-15 T

20-25 T All HTS Coils (1 & 2):

addresses challenges with high field HTS solenoids

<u>30-40 T All Superconducting</u> Solenoid (1, 2 and 3+):

addresses challenges with high field superconducting solenoids

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

This technology is being primarily developed under a series of US DOE SBIR (Small Business Innovative Research Program) with BNL (a national lab) collaborating with PBL, Inc. (an industry.)

Funding Status:

- **1. HTS insert solenoid : Funded**
- 2. HTS midsert solenoid : Funded
- **3. LTS outsert : Not yet funded for construction**

Courtesy: Bob Palmer

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

10⁺ T,100 mm HTS solenoid (midsert) with 24 pancakes for full length solenoid (ready for test)

Coils made with ~4mm HTS tape from SuperPower

PBL/BNL High Field HTS Solenoids

15⁺ T, 25 mm HTS solenoid (insert) with 14 pancakes already tested

Half length 100 mm with 12 pancakes already tested and reached 6⁺ T on axis (9⁺ T peak)

Use of high strength HTS is critical to the success

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

Superconducting

High Field HTS Solenoid Test Results (magnet #1 using SuperPower HTS)

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Temp(K)

Coil could have reached above 10 T peak (original target), but was not ramped up to protect electronics of that time.

Full solenoid with 24 pancakes should create >10 T on axis. SuperPower HTS

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Status of High Field MAP Solenoids

Two HTS coils together made with SuperPower HTS is expected to create 20-25 T, if successful

~30 T with NbTi outer (40 T with Nb₃Sn or more HTS)

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

Challenges with High Field HTS Magnet Technology

Discussion on two selected topics:

- Quench Protection
 - Slow quench propagation velocities
 - Coil may get degraded even before one detects quench
- Mechanical Properties
 - Stress /strain tolerance important in high field magnets
 - Asymmetric properties of tape (just as magnetic)

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

High Current Test of 4 mm Tapes

During the initial R&D period, coils with 2G HTS tape from ASC (~0.4 mm X 0.3 mm) and SuperPower (0.4 mm X 0.1 mm) were built and tested

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Low Temp Performance of FRIB Coils (R&D during technology development period)

Tape width: ~ 4 mm; Length used in single coil ~100 meter Copper thickness: SuperPower ~ 0.045 mm; ASC ~ 0.1 mm

These numbers are amazing ...

• May be too demanding for protection and should be avoided in real applications.

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

BNL Quench Protection Strategy

- Quench protection in high field HTS magnets is one of the biggest challenges of the field.
- We have developed a unique approach to overcome this challenge.
- Use problem (things happening slowly) to our advantage.
- Detect the longer pre-quench phase of HTS (where coil can be operated safely) and initiate the action for protection.
- This requires detecting small resistive voltage in presence of large noise and inductive voltages – challenge in large systems.
- BNL has made significant advances in electronics to detect start of this pre-quench phase well below 1 mV rather than 50-100 mV.

Use quench protection heaters as the final line of defense

ISS2012

Very High Field HTS Magnets

Advanced Quench Detection System Developed at BNL

- Advance quench protection electronics detects quench fast and extract energy quickly.
- This requires development of low noise, fast electronics with large isolation voltage.

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

- HTS tapes (such as 2G tape with Hastelloy substrate) have inherently higher stress and strain tolerances and are particularly suitable for high field solenoids
- However, even these 2G tape have relatively lower stress tolerance on the narrower face (question how much). Question is how much?

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Mechanical Properties of High Strength HTS from SuperPower

Conductor Stress-Strain at 77K and 4 K with Various Copper Thickness

Significant softening of the stress-strain curve with added copper due to reduced modulus and yielding of the copper.

High Strength HTS from SuperPower/ Furukawa tested at Florida, USA

SUPCIFUNCI ...

"React/Wind" 2G HTS Wire from SuperPower has Larger Operating Stress-Strain Window vs. Others

But what happens on the narrow face?

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

Slide No. 24

43

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

Bi-filar Coil for Axial Loading

Superconducting Magnet Division

Load is applied on the narrow face.

Bi-filar winding is chosen to minimize the influence of magnetic field on Ic.

Maximum load applied: 107 MPa (max in current designs ~100 MPa)

The test was carried out in real situation: the coil remain cold

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Superconducting

Influence of ~107 MPa Pressure on the Narrow Face of Conductor in 2G HTS Coil

Other High Field Geometries

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

HTS Dipole and Quadrupole

- High field (>20 T) cosine theta magnet technology with complex ends
- The proposed energy and luminosity upgrade of LHC at CERN will require high field dipole and quadrupole magnets
- Hybrid designs with HTS inner

Cosine theta prototype magnets built and tested in BNL using LTS materials

Courtesy: S. Lakshmi

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

Test Results at 77 K

Y axis represents the end-to end voltage in the coil block (V1-V16)

Other Significant HTS Magnet Development at Medium Fields

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

ISS2012

Magnets for the Fragment Separator of Facility of Rare Isotope Beams

Large Radiation and Heat Loads in Fragment Separator Region Magnets

Copper or NbTi Magnets don't satisfy the requirements

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

HTS Magnets For FRIB

- HTS offers a unique solution for challenging environment of FRIB magnets with unprecedented energy and radiation loads.
- Because of large thermal margins HTS magnets can operate reliably and can remove large heat loads efficiently at ~40 K.
- HTS magnets are now the baseline design for the quadrupole and dipole magnets in the fragment separator region of FRIB.

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

FRIB HTS Quadrupole

Superconducting Magnet Division

220 mm, >15 T/m Ramesh Gupta, BNL, USA Very

200 0 0 0

0 0 0 1

Very High Field HTS Magnets

Tokyo, Japan

Slide No. 35

ISS2012

ISS2012

Coils in FRIB Quad Structure @77 K (made with 2G HTS from SuperPower and ASC)

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

nets [′]

- High field all HTS solenoids can now be successfully built using a significant amount of conductor (~2 km)
- Maximum field on coil >16 T, overall current density (J_o) in coil >500 A/mm² new record for the technology
- We still have a lot to demonstrate and many challenges to overcome
- However, the impact of these two results of all HTS solenoid (and other high field insert coil test at NHMFL) is obvious
- We are now at the verge of revolutionizing the superconducting magnet technology reaching higher field as never possible before
- Stay tuned for more results in coming years from around the world. We hope that 30-40 T solenoids will become a reality.

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

nets Tok

Back-up Slides

ISS2012

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

Tokyo, Japan

ISS2012

Original Design Parameters (as presented at ASC2010)

		Midsert	
Target Design field (optimistic)	~22 T	Outer Solenoid Parameter	
Number of coils (radial segmentation)	2 self supporting	- Inner diameter Outer diameter	~100 mm ~160 mm
Stored Energy (both coils)	~110 kJ	Length Number of turns per pancake	~128 mm ~240 (nominal)
Inductance (both in series)	4.6 Henry	Number of PancakesTotal conductor used	28 (14 double) ▶ 2.8 km 24 (12)
Nominal Design Current	~220 A	Target field generated by itself	→~10 T
Insulation (Kapton or stainless steel)	~0.025 mm	Inner diameter	> ~25 mm
J _e (engineering current density in coil)	\sim 390 A/mm ²	Outer diameter Length	~90 mm ~64 mm
Conductor Width Thickness Stablizer	2G ReBCO/YBCO ~4 mm ~0.1 mm ~0.04 mm Cu	Number of turns per pancake Number of Pancakes Total conductor used Target field generated by itself External Radial support (overband)	 ~260 (nominal) 14 (7 double) 0.7 km ~12 T Stainless steel tape

This was thought to be a very ambitious proposal!!!
 ✓ We have achieved >60% (6⁺ T) with only half outer
 ✓ We have already exceeded inner by over 25% (15⁺ T)

Ramesh Gupta, BNL, USA

Very High Field HTS Magnets

nets Tol