http://www.bnl.gov/magnets/staff/gupta/

Magnetic Design Studies of the Sextupole

Ramesh Gupta

Prototype Lattice Magnet Design Review January 28, 2008

Overview

Considerations in the Development of Sextupole Design

Iron poles should clear the beam tube:

- A major consideration in the development of the design
- Beam tube was shaved but had still left with sufficient material
- Aperture was increased from 66 mm to 68 mm

Obtain the desired field quality:

- All harmonics should be less than 5 unit (22 mm reference radius)
- Wide sextupole breaks basic symmetry and creates certain harmonics (semi-allowed) that are not allowed in sextupole
- A new technique has been developed for reducing these semiallowed harmonics

Strategy for obtaining field quality in machine magnets:

• Chamfers will be optimized after initial measurements

68 mm Aperture Sextupole (Current Aperture)

To allow enough material for beam tube

- Sextupole aperture was increased from 66 mm to 68 mm
- Pole shape was re-optimized within the confine of overall geometric constraints

Details of Pole Piece

Pole piece may appear to have sharp corners (illusion due to long piece), but in reality it does not.

Laminations can be reasonably cut.

Radii are 3 mm and 1.5 mm.

Magnetic Optimization of Pole Profile

Six points (position) and two radii were used in optimizing pole profile to obtain low allowed harmonic while satisfying geometric constraints.

BROOKHAVEN SCIENCE ASSOCIATES

All allowed harmonics are ~1.5 unit or less. Earlier design had b₁₅ of ~13 unit. Initially required value of all harmonics 5 units or less.

Sextupoles for NSLS2

Magnetic Design Studies of the Sextupole, Ramesh Gupta, January 28, 2009 Slide #5

U.S. DEPARTMENT OF ENERGY

BROOKHAVEN SCIENCE ASSOCIATES

Magnet Models to Increase Computational Accuracy

We want to obtain as good results as possible for

- Non-allowed (or semi-allowed) harmonics due to break in symmetry in wide sextupole
- Influence of pins to align laminations
- Increase general accuracy

With these guideline, a special model/mesh is created.

Symmetric Model (as much as possible) for Better Accuracy

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Common Model for Standard and Wide Sextupole Magnets to Minimize Computational Errors in Harmonics

Influence of Alignment Pins

Even this did not change harmonics significatly.

Magnetic Design Studies of the Sextupole, Ramesh Gupta, January 28, 2009 Slide #9

NATIONAL LABORA

BROOKHAVEN SCIENCE ASSOCIATES

Influence of the Material/Tight Fitting of of Pins (extreme case - non-magnetic) - 1

Maximum saturation (field) does not go up ... and in pole region.. **BROO**

Magnetic Design Studies of the Sextupole, Ramesh Gupta, January 28, 2009 Slide #10

BROOKHAVEN NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

Influence of the Material/Tight Fitting of of Pins (extreme case - non-magnetic) - 2

Maximum saturation (field) does not go up; and in pole region

it makes pole saturate more uniformly

NATIONAL LABORAT

BROOKHAVEN SCIENCE ASSOCIATES

Mesh for Increasing Accuracy of Calculations

Quadratic elements are used in sextupole and quadrupole models. Mesh density is higher in critical regions.

68 mm Standard Aperture Sextupole

0.0 0.810315004

Magnitude of the Field in Yoke

Magnetic Design Studies of the Sextupole, Ramesh Gupta, January 28, 2009 Slide #14

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

Harmonics in Standard Sextupole

Harmonics at 22 mm reference radius in NSLS2 68 mm aperture sextupole - standard aperture File: 68mm-sext-ver-3-standard

Case#	# Scale Fundament		ital Sext (tal Sext (T/m ²)		d(TF),%	1	3	5	5	7	9	
	1	0.5	0.0578	11	5.7	231.3	0	2.52	1000	0.3	16 0.)23 0 .	497
	2	1	0.1158	23	1.6	231.6	0	2.37	1000	0.2	97 0.)22 0 .	504
	3	1.5	0.1734	34	346.7		0	2.21	1000	0.2	77 0.)20 0 .	481
	4	2	0.2279	45	455.7		1	3.14	100	00 0.3	91 0.)29 0 .	476
	5	2.1	0.2375	47	5.0	226.2	2	3.35	100	00 0.4	18 0.)31 0 .	473
	6	2.5 0.2672		534	4.5	213.8	8	3.26	100	00 0.4	06 0.)31 0 .	451
	7	3 0.2882		57	576.5		17	2.46	100	00 0.3	06 0.)23 0 .	416
	8	3.5	0.2999	599	599.7		26	2.07	100	0.2	58 0.)19 <mark>0</mark> .	387
Case#	Scale	Fu	ndamental	Sext (T/m^	11	13	15	17	19	21	23	25	27
1	0.5		0.0578	115.7	-0.003	0.000	-1.425	0.000	0.000	-0.294	0.001	0.000	0.022
2	1		0.1158	231.6	-0.003	0.000	-1.426	0.000	0.000	-0.294	0.001	0.000	0.022
3	1.5		0.1734	346.7	-0.003	0.000	-1.424	0.000	0.000	-0.294	0.001	0.000	0.022
4	2		0.2279	455.7	-0.004	0.000	-1.424	0.000	0.000	-0.294	0.001	0.000	0.022
5	2.1		0.2375	475.0	-0.004	0.000	-1.424	0.000	0.000	-0.294	0.001	0.000	0.022
6	2.5		0.2672	534.5	-0.004	0.000	-1.423	0.000	0.000	-0.294	0.001	0.000	0.022
7	3		0.2882	576.5	-0.003	0.000	-1.421	0.000	0.000	-0.294	0.001	0.000	0.022
8	3.5		0.2999	599.7	-0.003	0.000	-1.420	0.000	0.000	-0.294	0.001	0.000	0.022

Values of non-allowed harmonics in black indicates the modeling errors.

In many terms harmonics are not reliable to the third decimal places.

Note: Small allowed harmonics (<5 units)

68 mm Wide Aperture Sextupole

300.0

280.0

260.0

Y [mm]

Remember:

Mesh is the same as in standard sextupole, only the material properties changed.

Harmonics Due to EXTRA CUTOUT in Wide Sextupole

Basic sextupole symmetry is broken. Expect harmonics that are not allowed in sextupole. Material property changed between the two models and differences are taken

Scale	Sext (T/m^2)	db1	db3	db5	db7	db9	db11	db13
0.5	115.5	-43.6	-15.9	-5.4	-0.42	0.00	0.05	0.01
1	231.2	-39.3	-14.3	-4.9	-0.38	0.00	0.05	0.01
1.5	346.3	-36.6	-13.3	-4.5	-0.36	0.00	0.04	0.01
2	455.2	-32.9	-10.9	-4.1	-0.32	0.00	0.04	0.01
2.1	474.5	-32.2	-10.2	-4.0	-0.31	0.00	0.04	0.01
2.5	534.1	-27.5	-6.4	-3.4	-0.27	0.00	0.03	0.00
3	576.3	-21.0	-3.3	-2.6	-0.21	0.00	0.03	0.00
3.5	599.6	-17.3	-2.1	-2.1	-0.17	0.00	0.02	0.00

Calculation to such a reliability is possible only because of the same mesh in two cases

BROOKHAVEN SCIENCE ASSOCIATES

A Technique for Reducing Semi-allowed Harmonics

These "semi-allowed" sextupole harmonics (b1, b5, b7, etc.) are created in because removing the iron at horizontal plane breaks the ideal six fold symmetry.

Suggested Fix :

Compensate this asymmetry by another deliberate asymmetry – by moving the poles at vertical plane away from the center.

A difference of about $\sim 70 \,\mu m$ is sufficient to reduce harmonics well below acceptable errors.

Values at $\sim 350 \text{ T/m}^2$ (2/3 of the design field)

Ν	bn(new)	bn(old)
1	-8.1	-37.6
3	9,979	10,000
5	0.0	-4.5
7	-0.25	-0.36
9	0.27	0.48

BROOKHAVEN SCIENCE ASSOCIATES

Harmonics in Wide Sextupole

File: 680	nm-sext-v	er-3-e	extended-v/U									
Case#	ŧ Sca	le	Fundamental	Sext (T/m	ר^1)	T.F. (d(TF),%	b1	b3	b5	b7	b9
	1	0.5	0.0576	115.2		230.5	0	-12.5	10000	-0.52	-0.29	0.28
	2	1	0.1154	230.7		230.7	0	-8.4	10000	0.00	-0.25	0.29
	3	1.5	0.1728	345.6		230.4	0	-5.9	10000	0.30	-0.23	0.27
	4	2	0.2272	454.3		227.2	2	-1.6	10000	0.83	-0.19	0.26
	5	2.1	0.2368	473.6		225.5	3	-0.9	10000	0.92	-0.18	0.26
	6	2.5	0.2666	533.2		213.3	8	2.4	10000	1.33	-0.15	0.24
	7	3	0.2877	575.4		191.8	17	6.6	10000	1.85	-0.11	0.20
	8	3.5	0.2994	598.7		171.1	26	9.0	10000	2.15	-0.09	0.17
Case#	Scale	Se	xt (T/m^2)	b11	b13	b15	b17	b19	b21	b23	b25	b27
1	0.5	5	115.2	0.17	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
2			230.7	0.17	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
3	1.5	5	345.6	0.17	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
4		2	454.3	0.16	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
5	2.2		473.6	0.16	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
6	2.5	5	533.2	0.16	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
7	3	3	575.4	0.15	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
8	3.5	5	598.7	0.15	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02

Not corrected for meshing errors.

na a autora Orauta a da du 70

Here are all the details

Harmonics a	it 22 mm re	eference radius	Standard symmetric sextunale																
File: 68mm-s	sext-ver-3-	standard		Standard Symmetric Sextupole															
Case#	Scale	Fundamental	Sext (T/m^2)	T.F.	d(TF),%	1	3	5	7	9	11	13	15	17	19	21	23	25	27
1	0.5	0.0578	115.7	231.3	0	2.52	10000	0.316	0.023	0.497	-0.003	0.000	-1.425	0.000	0.000	-0.294	0.001	0.000	0.022
2	1	0.1158	231.6	231.6	0	2.37	10000	0.297	0.022	0.504	-0.003	0.000	-1.426	0.000	0.000	-0.294	0.001	0.000	0.022
3	1.5	0.1734	346.7	231.2	0	2.21	10000	0.277	0.020	0.481	-0.003	0.000	-1.424	0.000	0.000	-0.294	0.001	0.000	0.022
4	2	0.2279	455.7	227.9	1	3.14	10000	0.391	0.029	0.476	-0.004	0.000	-1.424	0.000	0.000	-0.294	0.001	0.000	0.022
5	2.1	0.2375	475.0	226.2	2	3.35	10000	0.418	0.031	0.473	-0.004	0.000	-1.424	0.000	0.000	-0.294	0.001	0.000	0.022
6	2.5	0.2672	534.5	213.8	8	3.26	10000	0.406	0.031	0.451	-0.004	0.000	-1.423	0.000	0.000	-0.294	0.001	0.000	0.022
7	3	0.2882	576.5	192.2	17	2.46	10000	0.306	0.023	0.416	-0.003	0.000	-1.421	0.000	0.000	-0.294	0.001	0.000	0.022
8	3.5	0.2999	599.7	171.4	26	2.07	10000	0.258	0.019	0.387	-0.003	0.000	-1.420	0.000	0.000	-0.294	0.001	0.000	0.022

Wide sextupole with no pole adjustment

NATIONAL LABORAT

BROOKHAVEN SCIENCE ASSOCIATES

ORY

Harmonics at 22 mm reference radius in NSLS2 68 mm aperture sextupole, extended File: 68mm-sext-ver-3-extended

Case#	Scale	Fundamental	Sext (T/m^2)	T.F.	d(TF),%	b1	b3	b5	b7	b9	b11	b13	b15	b17	b19	b21	b23	b25	b27
1	0.5	0.0577	115.5	230.9	0	-41.1	10000	-5.08	-0.40	0.50	0.05	0.01	-1.43	0.00	0.00	-0.29	0.00	0.00	0.02
2	1	0.1156	231.2	231.2	0	-36.9	10000	-4.56	-0.36	0.50	0.04	0.01	-1.43	0.00	0.00	-0.29	0.00	0.00	0.02
3	1.5	0.1731	346.3	230.9	0	-34.4	10000	-4.26	-0.34	0.48	0.04	0.01	-1.42	0.00	0.00	-0.29	0.00	0.00	0.02
4	2	0.2276	455.2	227.6	1	-29.7	10000	-3.67	-0.29	0.48	0.04	0.01	-1.42	0.00	0.00	-0.29	0.00	0.00	0.02
5	2.1	0.2373	474.5	226.0	2	-28.8	10000	-3.56	-0.28	0.47	0.03	0.01	-1.42	0.00	0.00	-0.29	0.00	0.00	0.02
6	2.5	0.2671	534.1	213.6	7	-24.2	10000	-2.99	-0.24	0.45	0.03	0.00	-1.42	0.00	0.00	-0.29	0.00	0.00	0.02
7	3	0.2881	576.3	192.1	17	-18.5	10000	-2.28	-0.18	0.42	0.02	0.00	-1.42	0.00	0.00	-0.29	0.00	0.00	0.02
8	3.5	0.2998	599.6	171.3	26	-15.2	10000	-1.86	-0.15	0.39	0.02	0.00	-1.42	0.00	0.00	-0.29	0.00	0.00	0.02

Wide sextupole with 70 micron vertical adjustment in pole (moved up by adjusting shims)

Harmonics at 22 mm reference radius in NSLS2 68 mm aperture sextupole, extended with 70 micron vertical pole offset File: 68mm-sext-ver-3-extended-v70

Case#	Scale	Fundamental	Sext (T/m^2)	T.F.	d(TF),%	b1	b3	b5	b7	b9	b11	b13	b15	b17	b19	b21	b23	b25	b27
1	0.5	0.0576	115.2	230.5	0	-12.5	10000	-0.52	-0.29	0.28	0.17	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
2	1	0.1154	230.7	230.7	0	-8.4	10000	0.00	-0.25	0.29	0.17	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
3	1.5	0.1728	345.6	230.4	0	-5.9	10000	0.30	-0.23	0.27	0.17	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
4	2	0.2272	454.3	227.2	1	-1.6	10000	0.83	-0.19	0.26	0.16	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
5	2.1	0.2368	473.6	225.5	2	-0.9	10000	0.92	-0.18	0.26	0.16	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
6	2.5	0.2666	533.2	213.3	7	2.4	10000	1.33	-0.15	0.24	0.16	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
7	3	0.2877	575.4	191.8	17	6.6	10000	1.85	-0.11	0.20	0.15	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
8	3.5	0.2994	598.7	171.1	26	9.0	10000	2.15	-0.09	0.17	0.15	-0.05	-1.42	0.01	-0.01	-0.29	0.00	0.00	0.02
6	~ O i	ffice o	1													DD	00	1/11	MATCH

3-d Modelling of the Sextupole

Ends will be chamfered to minimize measured integral harmonics.

Note: Flat coils save space in the end.

- Sextupole design is sufficiently developed to go in production.
- Pole shape has been optimized to significantly reduce field errors and comfortably meet the field quality requirements.
- •The design meets mechanical requirements in terms of leaving enough material on beam tube.
- A design technique has been developed and implemented to reduce semi-allowed harmonics in wide sextupole.

