

http://www.bnl.gov/magnets/staff/gupta

BNL Magnet Program Related to Muon Collider

Ramesh Gupta Brookhaven National Laboratory

Muon Collider Design Workshop, BNL, 12/03/09

Areas of Interest

- Superconducting Magnet Division
- 1. High Field Solenoids
 - Collaborative work with PBL funded under a series of SBIR
 - Target field 35-40 T in an all superconducting solenoid (HTS+LTS)
- 2. Open Midplane Dipole
 - Significant progress was made in the design under LARP funding
 - Intellectual and design experienced is directly useful to *Muon Collider*
- 3. Radiation Damage and Energy Deposition Studies
 - Crucial to HTS Quad for FRIB (Facility for Rare Isotope Beams)
 - Ongoing R&D with significant results (work performed under DOE-NP)

Muon Collider Design Workshop, BNL, 12/03/09

High Field Solenoid with PBL

A few key players:

- PBL: Bob Weggel, Ron Scanlan, Jim Kolonko, David Cline, Al Garren, ...
- BNL: Bob Palmer, Harold Kirk and staff of Superconducting Magnet Division

Muon Collider Design Workshop, BNL, 12/03/09

BNL Magnet Program Related to Muon Collider Ramesh Gupta, BNL

High Field Muon Collider Solenoid SBIR with PBL (Particle Beam Lasers)

Collaboration:

Superconducting Magnet Division

- A useful collaborative program between PBL & BNL to develop high field superconducting solenoid technology for muon collider.
- PBL brings ideas and funding through SBIR.
- BNL contributes its staff, ideas, facilities and past experience with HTS.

Overall program philosophy and strategy:

- There is not enough funding in one SBIR to build 35-40 T solenoid.
- However, this could be done with a series of SBIR with each attractive in its own right.
- This approach also provides a natural segmentation which is anyway needed to reduce accumulation of stress/strain on the conductor due to Lorentz forces.
- It also allows lessons learnt from one SBIR (year) to apply to the next.

Components of 35-40 T Solenoid

SBIR proposals from PBL:

- 1. Phase II #1, 08-10 (funded): ~10 T HTS solenoid (i.d.=100 mm, o.d.=165 mm, L ~128 mm)
- 2. Phase II #2, 09-11 (funded): ~12 T HTS insert (i.d. = 25 mm, o.d. = 95 mm, L ~64 mm)
- 3. Phase 1, 10-11 (proposed): 12-15 T Nb₃Sn outsert (i.d.=180 mm, o.d.= 210^{+} mm, L = 200^{+} mm)

Overall programmatic features:

- The dimensions of all solenoids have been carefully chosen so that one fits inside the other and the two HTS solenoid (generating 20+ T) fit inside the NHFML ~19 T resistive solenoid.
- As a part of the Phase II SBIR #2, we will test the above ~20+ T HTS solenoid in the background field of NHFML ~19 T resistive magnet to reach fields approaching 40 T.
- Then, as a part of the third SBIR (currently a Phase I proposal), we would build a Nb_3Sn solenoid made with Rutherford cable and incorporate above 20+T HTS inside.
- Thus above will make a 35-40 T all superconducting solenoid to demonstrate the technology.
 Muon Collider Design Workshop, BNL, 12/03/09
 BNL Magnet Program Related to Muon Collider
 Ramesh Gupta, BNL 4

Preliminary Design with 12 T Nb₃Sn outsert

15 T Nb₃Sn Preliminary Design

Superconducting Magnet Division

15 T Nb₃Sn example; Left: Field $|B| \equiv (B_r^2 + B_z^2)^{\frac{1}{2}}$ of solenoid of I.D. = 180 mm, O.D. = 260 mm; Length = 246 mm; Overall current density = 400 A/mm²; Central field = 15.00 T; Maximum field = 16.32 T; Energy = 914 kJ. Right: Stresses and deformation. Von Mises stress, $\sigma_{vM} \equiv \frac{1}{2} [(\sigma_r - \sigma_{\phi})^2 + (\sigma_r - \sigma_z)^2]^{\frac{1}{2}}$, ranges from 156 MPa (= 23 ksi) to 438 MPa (= 64 ksi). Total deformation, $\Delta R \equiv (\Delta r^2 + \Delta z^2)^{\frac{1}{2}}$, with Young's modulus of 100 GPa (= 14.5x10⁶ psi), ranges from 0.262 mm to 0.363 mm.

Muon Collider Design Workshop, BNL, 12/03/09

Layout of Three Solenoids

Field directions and axial fields for the combined magnet using the Nb₃Sn coil (yellow) and the two YBCO coils (magenta)

Muon Collider Design Workshop, BNL, 12/03/09

Angular Field Dependence of Ic is in Helpful Direction

Inner two are HTS coils **Field Parallel** and outermost is Nb3Sn $(\sim 35.2 \text{ T, max})$ UNITS 25/Mar/2009 13:17:31 L ength mm Т Magn Flux Surface contours: ABS(BY) Densitv 3.519937E+001 Maan Field Am Magn Scalar Pot A Magn Vector Pot Wb m Elec Flux Density Cm - 3.000000E+001 Elec Field V m⁻¹ Conductivity Sm **Field Perpendicular** Current Density Amm Power W - 2.500000E+001 Force Ν $(\sim 10.7 \text{ T max})$ Energy - 1 Mass ka PROBLEM DATA - 2.000000E+001 25/Mar/2009 13:18:35 Surface contours: SOBT(BX*BX+B7*B7) 1.079559E+001 - 1.500000E+001 1.000000E+001 1.000000E+001 - 8.000000E+000 5.000000E+000 6.000000E+000 4.145770E-001 Vector I 4.000000E+000 and tware for electro **2G HTS carry significantly more current in field** 2.000000E+000 parallel direction than in field perpendicular 0.000000E+000

Muon Collider Design Workshop, BNL, 12/03/09

BNL Magnet Program Related to Muon Collider Ran

Vec

9

- Bi2212 round wire is isotropic. It carries the same current density in the field parallel direction as in field perpendicular direction (or in any other direction).
- The original SBIR proposal included a Bi2212 insert solenoid as well.
- However, that was dropped because of the reduced funding allocation.
- Moreover, Bi2212 is being pursued as a part of the national program.
- There is a proposal to replace YBCO insert by Bi2212 insert (built elsewhere).
- It is possible that a combination of Bi2212 and YBCO HTS, along with an outer Nb₃Sn coil, might provide an overall attractive solution.

Status of HTS Solenoid

- High Ic conductor (~165 A, 77 K self-field, on average spec was 100 A) and high field (advanced pinning) conductor purchased from SuperPower in the first year. Over 1 km has been delivered and the rest is coming soon (making it 1.6 km).
- Test results from the conductors (next slide).
- FRIB/RIA coils and MgB2 solenoid have already been built and tested for several key construction features (including the measurement of performance as a function of current).
- Solenoid winding with pancake coils is starting soon.
- More conductor order (1. 4 km) has been placed for the second year.
- Above order is being increased by another 1 km for the second Phase 2 SBIR.
- Total conductor purchased: ~4 km.

Muon Collider Design Workshop, BNL, 12/03/09

BNL Magnet Program Related to Muon Collider Ramesh Gup

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

Two 2G wires from different production

- Wire chemistry influences the field dependence.
- But what happens to the angular dependence?

Muon Collider Design Workshop, BNL, 12/03/09

MgB₂ Solenoid made with Conductor from COLUMBUS SUPERCONDUCTORS SpA

• Coil i.d. = 100 mm

KH*K*VEN

NATIONAL LABORATORY

Superconducting

- Coil o.d. = 200 mm
- Numbers of turns = 80

- MgB₂ Solenoid with a double pancake coils.
- Same i.d. as in the HTS solenoid.
- Several aspects of the design and technology tested.

Muon Collider Design Workshop, BNL, 12/03/09

NKH*r*vfn MgB₂ Solenoid NATIONAL LABORATORY Critical Current as a Function of Temperature Superconducting **Magnet Division**

- Top and bottom plates are conduction cooled with the helium gas.
- Helium flow is adjusted to vary the temperature.
- Similar studies (Field vs. temperature) are planned in the HTS solenoid.

Muon Collider Design Workshop, BNL, 12/03/09

40

450 400 350 300 250 200 150 Conductor courtesy: COLUMBUS 100 SUPERCONDUCTORS SpA 50 0 0 5 10 15 20 25 30 35 Temp (K)

Ic as a function of temperature in MgB₂ coils

• ~1.3 T peak field

• 100 A => ~0.31 T

Progress in Open Midplane Dipole Design (work performed under the auspices of LARP)

Muon Collider Design Workshop, BNL, 12/03/09

BNL Magnet Program Related to Muon Collider Ramesh Gupta, BNL 14

Motivation for Open Midplane Dipole Design

Conventional cosine theta design with **Tungesten Liner**

• Superconducting coils in muon collider dipoles are subjected to a large number of decay particles (a few kW/m) from short lived muons. One way to protect the coils is to use Tungsten liner.

- However, that increases size of the magnet.
- Angular distribution of the decay particles is highly anisotropic with a large peak at the midplane (Mokhov).
- In previous open midplane dipole designs were trapped in non-superconducting material at the midplane. Different versions of this design have been examined earlier by M. Green and P. McIntyre, etc.

In the proposed open midplane design, there will be no structure at the midplane.

Why a True Open Midplane Design?

A large amount of particles coming from high luminosity IP deposit energy in a warm (or 80 K) absorber, that is inside the cryostat. Heat is removed efficiently at higher temperature.

By open midplane, we mean <u>truly</u> open midplane:

- Particle spray from detector deposit energy in a warm (~80 K) absorber sufficiently away from the superconducting coils and support structure .
- In some earlier "open midplane designs", although there was "<u>no conductor</u>" at the midplane, there was some "<u>other structure</u>" between the upper and lower halves of the coil.
- Those designs, though avoided a direct hit from primary shower, created secondary showers in that <u>other structure</u>. The secondary shower then deposited a significant amount of energy in the superconducting coils.

• Earlier designs, therefore, did not work as well in protecting coils against large energy deposition.

Muon Collider Design Workshop, BNL, 12/03/09

Superconducting

Open Midplane Dipole Design

(challenges with the true open midplane design)

- #1 In usual cosine theta or block coil designs, there are large attractive forces between upper and lower coils. How can these coils hang in air with no structure in between?
- **#2** The ratio of peak field in the coil to the design field appears to become large for large midplane gaps.
- #3 The large gap at midplane appears to make obtaining good field quality a challenging task. Gap requirements are such that a significant portion of the cosine theta, which normally plays a major role in generating field and field quality, must be taken out from the coil structure.
- ➡ With such basic challenges in place, don't expect the design to look like what we are used to seeing in conventional cosine theta magnets.

17

Challenge #1: Lorentz Forces between coils A new and major consideration in design optimization

In conventional designs the upper and lower coils rest (react) against each other. In a truly open midplane design, the target is to have no structure between upper and lower coils. Structure generates large heat loads and the goal is to minimize them.

New Design Concept to navigate Lorentz forces

Original Design

Since there is no downward force on the lower block (there is slight upward force), we do not need much support below if the structure is segmented. The support structure can be designed to deal with the downward force on the upper block using the space between the upper and the lower blocks.

Muon Collider Design Workshop, BNL, 12/03/09

Challenge #2: Peak Field

Superconducting Magnet Division

Several designs have been optimized with a small peak enhancement: ~7% over B_o

Quench Field: ~16 T with $J_c = 3000 \text{ A/mm}^2$, Cu/Non-cu = 0.85 Quench Field: ~15.8 T with $J_c = 3000 \text{ A/mm}^2$, Cu/Non-cu = 1.0

Muon Collider Design Workshop, BNL, 12/03/09

Superconducting

Challenge #3: Field Quality

Muon Collider Design Workshop, BNL, 12/03/09

Field Harmonics and Relative Field Errors in an Optimized Design

Proof: Good field quality design can be obtained in such a challenging design:

(Beam @ x=+/- 36 mm at far end) (Max. radial beam size: 23 mm) Geometric Field Harmonics:

	Ref(mm)	Ref(mm)		
n	36	23		
1	10000	10000		
2	0.00	0.00		
3	0.62 0.25			
4	0.00	0.00		
5	0.47	0.08		
6	0.00	0.00		
7	0.31	0.02		
8	0.00	0.00		
9	-2.11	-0.06		
10	0.00	0.00		
11	0.39	0.00		
12	0.00	0.00		
13	0.06	0.00		
14	0.00	0.00		
15	-0.05	0.00		
16	0.00	0.00		
17	0.01	0.00		
18	0.00	0.00		
19	0.00	0.00		
20	0.00	0.00		

Field errors should be minimized for actual beam trajectory & beam size. It was sort of done when the design concept was being optimized by hand. Optimization programs are being modified to include various scenarios. Waiting for feed back from Beam Physicists on how best to optimize. However, the design as such looks good and should be adequate.

Muon Collider Design Workshop, BNL, 12/03/09

NKH<u>r</u>ven Field Uniformity in an Optimized 15 T NATIONAL LABORATORY **Open Midplane Dipole Design** Superconducting **Magnet Division**

Proof that good field quality can be obtained in such a wide open midplane dipole design:

UNITS Length mm Flux density Field strength : A m* Potential Wb m⁻¹ Conductivity :Sm*' Source density: A mm² W Power Force : N Energy : J -Mass : kg

The maximum horizontal displacement of the beam at the far end of IP is +/- 36 mm.

The actual field errors in these magnets will now be determined by construction, persistent currents, etc.

Muon Collider Design Workshop, BNL, 12/03/09

BROOKHAVEN NATIONAL LABORATORY

Mechanical Analysis

Superconducting Magnet Division

In the present design the relative values of the x and y deflections are 3-4 mil (100 micron) and the maximum value is 6-7 mil (170 micron).

Above deflections are at design field (13.6 T). They are ~1-2 mil higher at quench field.

Muon Collider Design Workshop, BNL, 12/03/09

Superconducting

Magnet Division

Mechanical Assembly

• Several possible assembly concepts for the open midplane dipole design were examined.

• A possible mechanical assembly is shown on the left.

24

Energy Deposition Summary (Nikolai Mokhov 04/05)

SUMMARY

- The open midplane dipole is very attractive option for the LARP dipole-first IR at $\mathcal{L} = 10^{35}$. The design accommodates large vertical forces, has desired field quality of 10^{-4} along the beam path and is technology independent.
- After several iterations with the BNL group over last two years, we have arrived at the design that – being more compact than original designs – satisfies magnetic field, mechanical and energy deposition constraints.
- We propose to split the dipole in two pieces, 1.5-m D1A and 8.5-m D1B, with a 1.5-m long TAS2 absorber in between.
- With such a design, peak power density in SC coils is below the quench limit with a safety margin, heat load to D1 is drastically reduced, and other radiation issues are mitigated. This is a natural two-stage way for the dipole design and manufacturing.

Fermilab

Summary of Optimized Open Midplane Nb₃Sn Dipole Designs for LARP

	Α	B	С	D	Ε	F
H(mm)	84	135	160	120	80	120
V(mm)	33	20	50	30	34	40
V/H	0.39	0.15	0.31	0.25	0.43	0.33
$B_o(T)$	13.6	13.6	13.6	13.6	15	13.6
$B_{ss}(T)$	15	15	15	14.5	16	15
$J_{c}(A/mm^{2})$	2500	3000	3000	3000	3000	3000
Cu/Sc	1	1,1.8	0.85	0.85	0.85	1
$A(cm^2)$	161	198	215	148	151	125
R _i (mm)	135	400	400	320	300	300
R _o (mm)	470	800	1000	700	700	700
E(MJ/m)	2.2	4.8	9.2	5.2	4.1	4.8
F _x (MN/m)	9.6	10.1	12.3	9.5	10.4	9.6
F _v (MN/m)	-3.0	-6.8	-8.7	-7.0	-5.1	-5.4

For more information (publications + talks): http://www.bnl.gov/magnets/Staff/Gupta/

Muon Collider Design Workshop, BNL, 12/03/09

Combined Function Open Midplane Design with Skew Quadrupole Lattice (developed under BNL LDRD)

Muon Collider Design Workshop, BNL, 12/03/09

BNL Magnet Program Related to Muon Collider Ramesh Gupta, BNL

27

Compact Ring with Combined Function Skew Quadrupole Lattice

- Skew quadrupole needs <u>NO</u> conductor at midplane (B. Parker)
- In study 1 (50 GeV), $\sim 1/3$ space was taken by inter-connect regions

$$Q, SX$$
 $D/D / Q, SX$ $D/D / D/D / Q, SX$ Interconnect
 $1 \text{ m}^{0.75 \text{ m}} 2.4 \text{ m}, \text{ B} = 6 \text{ T}^{0.75 \text{ m}} 1 \text{ m}^{0.75 \text{ m}} 2.4 \text{ m}, \text{ B} = 6 \text{ T}^{0.75 \text{ m}}$ Region

To first order, dipole becomes a skew quad, if the relative polarity of coils is changed.

Muon Collider Design Workshop, BNL, 12/03/09

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

>New <u>magnet system design</u> makes a productive use of all space !

150

Reverse coils also cancel harmonic errors in the ends

A Possible Magnet Test Setup

Structure to test magnet performance in various configuration: Magnet system layout in the proposed v factory storage ring: X5**50**MO X-1500.0 **Dipole/Quad One Coil Normal Coils Reverse Coils** test setup 2 D/2 & O/2 **Dipole (D) Skew Quad (Q)** (switch relative current direction) 150 b2 error thru the ends Staggered 100 coil setup \geq From, reverse coil 50 straigth section 0 -50 From normal coil Note: Errors get -100 automatically cancelled Work carried out -150 Λ 100 200 300 400 500 600 700 800 900 1000 under a BNL LDRD Z(mm)

Muon Collider Design Workshop, BNL, 12/03/09

Open Midplane dipole

Pros of Open Midplane Dipole:

- Does not need thick tungeston liner
- Aperture could be significantly smaller
- Has positive influence on the machine detector interface (FNAL workshop 11/09)

Open Midplane Dipole Design Recap

Cosine theta design with tungeston liner

Cons of Open Midplane Dipole:

- New design
- More complex structure

Need a reasonable R&D program to make a good cost and technical decision.

Muon Collider Design Workshop, BNL, 12/03/09

Radiation Damage and Energy Deposition Studies (work performed under the auspices of DOE-NP for FRIB)

Muon Collider Design Workshop, BNL, 12/03/09

BNL Magnet Program Related to Muon Collider Ramesh Gupta, BNL 32

Motivation for Recent Radiation Damage Studies on HTS

- Radiation damaged studies are being carried for the proposed Facility for Rare Isotope Beams (FRIB) for magnets in the Fragment Separator region. Use of HTS offers several advantages.
- Critical quadrupoles are exposed to unprecedented level of radiation (~20 MGy/year) and very large heat loads (~10 kW/m, 15 kW in first quad itself).
- **Question:** Can HTS magnets withstand and remove these radiation and heat loads?
- A comprehensive conductor and magnet R&D program was carried out to demonstrate above.
- The results of this program are relevant to many other future programs, such as muon collider.

Key Steps of Radiation Damage Experiment

Muon Collider Design Workshop, BNL, 12/03/09

Radiation Damage Studies at BLIP

Superconducting Magnet Division

Figure 2. The BLIP facility.

Beam Tunnel Bill P Tank Wing Wall

From a BNL Report (11/14/01)

The Brookhaven Linac Isotope Producer (BLIP) consists of a linear accelerator, beam line and target area to deliver protons up to 200 MeV energy and 145 µA intensity for isotope production. It generally operates parasitically with the BNL nuclear and high energy physics programs.

Change in Critical Current (I_c) of YBCO Due to a Large Irradiation

Radiation Damage Studies on YBCO by 142 MeV Protons by G. Greene and W. Sampson at BNL (2007-2008)

Muon Collider Design Workshop, BNL, 12/03/09

Change in Critical Temperature (T_c) of YBCO Due to a Large Irradiation

Muon Collider Design Workshop, BNL, 12/03/09

Impact of Irradiation on HTS

- The maximum dose was 3.4 X 10^{17} proton per sec 100 μ A.hr.
- As per Al Zeller, displacement per atom (dpa) per proton is ~9.6 X 10⁻²⁰.
 This gives ~0.033 dpa at 100 μA.hr.
 Radiation Damage Studies on YBCO by 142 MeV Protons

Bottom line:

- I_c performance of YBCO will drop ~10% after 30 years operation.
- This is pretty acceptable !!!

It appears that YBCO is at least as much radiation tolerant as Nb₃Sn is (Al Zeller).

Caveat:

Above is based on 77 K, self-field.

To be completely sure, we are making measurements at lower temperature and in the presence of field.

Ramesh Gupta, BNL 3/2008

One needs to normalize the impact of this damage for muon collider magnets

Muon Collider Design Workshop, BNL, 12/03/09

Energy Deposition Experiments for FRIB

- With 15 kW going in first quad (~10 kW/m), energy deposition is a key issue in FRIB.
- We should be able to remove these large heat loads efficiently.
- Magnets should be able to operate in a stable fashion in presence of these loads.
- These experiments are relevant to muon collider magnets next to detectors.

Stainless steel tape heaters for energy deposition experiments

• Controlled energy (heat) is deposited between the coils with these heaters.

Muon Collider Design Workshop, BNL, 12/03/09

Large Energy Deposition Experiment

Goal is to demonstrate that the magnet can operate in a stable fashion with the heat loads expected in FRIB (5mW/cm³ or 5kW/m³ or 25 W on 12 short HTS coils) at the design temperature (~30 K) with some margin on current (@140 A, design current is 125 A).

Muon Collider Design Workshop, BNL, 12/03/09

BNL Magnet Program Related to Muon Collider

Ramesh Gupta, BNL 40

FRIB/RIA HTS QUAD Program

• Providing a significant experience with the construction and test of HTS magnets in high radiation environment

Both use HTS Pancake coils

Muon Collider Design Workshop, BNL, 12/03/09BNL Magnet Program Related to Muon ColliderRamesh Gupta, BNL

41

HTS Coils for RIA/FRIB Magnets

Superconducting Magnet Division

- RIA quad is made with 24 coils, each using ~200 meter of HTS. We have purchased over 5 km of 1G wire for this project (FRIB purchase of 2G wire is separate).
- This gives a good opportunity to examine the reproducibility in coil performance.
- Stainless steel tape serves as an insulator which is highly radiation resistant.

RIA: Rare Isotope Accelerator FRIB: Facility for Rare Isotope Beams

Muon Collider Design Workshop, BNL, 12/03/09

BNL Magnet Program Related to Muon Collider Ramesh Gupta, BNL

42

LN₂ (77 K) Test of 25 BSCCO 2223 Coils

13 Coils made earlier tape (Nominal 175 turns with 220 meters)

12 Coils made with newer tape (150 turns with 180 meters)

Coil performance generally tracked the conductor performance very well.

Note: A uniformity in performance of a large number of HTS coils. It shows that the HTS coil technology is now maturing !

Muon Collider Design Workshop, BNL, 12/03/09

Various Magnet Structures of RIA Quad (a part of step by step R&D program)

Superconducting Magnet Division

Unique Features of RIA HTS Quad :

• Large Aperture, Radiation Resistant

A summary of the temperature dependence of the current in two, four, six and twelve coils in the magnetic mirror model. In each case voltage first appears on the coil that is closest to the pole tip. Magnetic field is approximately three times as great for six coils as it is for two coils.

• PBL & BNL have undertaken a program to develop YBCO (2G) based high field solenoid by building a short 35-40 T all superconducting solenoid.

• The development of open midplane design is important to $\mu^+\mu^-$ colliders, as large number of decay particles at the midplane may limit the performance of superconducting coils and/or increase the operating cost of the machine.

- The design concept has been significantly developed under LARP funding.
- We would be glad to carry it forward for a muon collider open midplane dipole.
- Initial test results under FRIB program show that HTS is robust against the radiation damage and can tolerate large heat loads.

Of course, all of above still require a significant amount of R&D before magnets based on such designs could be inducted in an operating machine.