

Conceptual Design of a Smaller Aperture Open Midplane Dipole

Ramesh Gupta Superconducting Magnet Division Brookhaven National Laboratory Upton, NY 11973 USA

Dipole Design Review, BNL, December 14, 2004

High luminosity (10^{35}) Interaction Regions (IR) present a hostile environment for superconducting magnets by throwing ~9 kW of power from each beam

- This raises two basic challenges :
 - How to design a magnet that can survive these large heat and radiation loads
 - What is the cost of removing these large heat loads both in terms of "new infrastructure" and "operating cost"

- Basic Design Features and Advantages
 - Solution What are we trying to achieve and why?
- E Inherent Design Challenges
 - ∠ What makes this design so challenging ?
- E Conceptual Development of the Design
 - What makes this design look so different?
- B Design Iterations
 - Summary of designs with various apertures.
- ✤ Now is about time to pick one set of parameters and move ahead.

BROOKHAVEN

Technology Choice

✓ With magnet aperture decreasing and operating field increasing, bending strain degradation associated with "React & Wind" technology becomes an important consideration. Bending strain degradation should be kept within a reasonable limit.

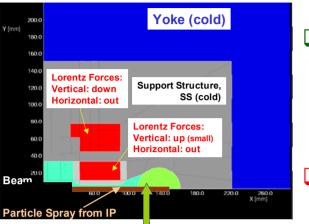
∠ "Wind & React" technology becomes relatively more desirable if design parameters drift towards smaller aperture and higher fields.

Berameters of a Proof of Principle Design

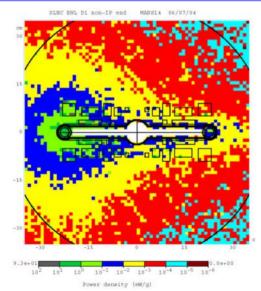
Solution Goal is to build a model magnet within expected budget.

Discussion and Summary

Whether it is LHC upgrade, or any other project, one needs to have an integrated approach, rather than focusing on an individual component.

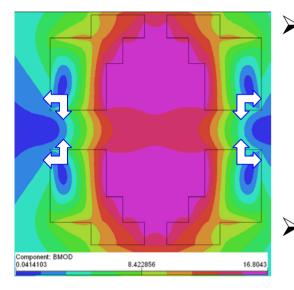

The magnet technology should be developed, at least at this stage, to minimize the overall system cost (infrastructure & operating) and not just the magnet cost. It should also support good technical options.

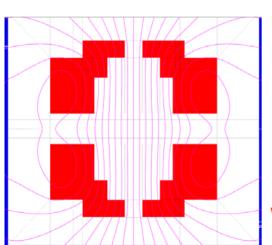
To allow a credible consideration of any option, one needs to know if there will a solution for all critical components. And if yes, then what would be the cost of R&D and of building. This will allow machine physicists to make a more informed decision when the time comes.


If magnet R&D cost appears too high, then the challenge is to find a way to reduce the cost of this R&D. Demonstration of the proposed design & technology must be achieved within the budget allocated.

Open Midplane Dipole for LHC Luminosity Upgrade Basic Design Features and Advantages

A large amount of particles coming from high luminosity IP deposit energy in a warm (or 80 K) absorber, that is inside the cryostat. Heat is removed efficiently at higher temperature.




Dipole Design Review 12/14/04

- In the proposed design the particle spray from IP deposits most of its energy in a warm absorber, whereas in the conventional design most of the energy is deposited in coils and other cold structures.
- Calculations for the dipole first optics show that the proposed design can tolerate ~ 9kW/side energy deposited for 10³⁵ upgrade in LHC luminosity, whereas in conventional designs it would cause a large reduction in quench field.
- The requirements for increase in CERN cryogenic infrastructure and in annual operating cost would be minimum for the proposed design, whereas in conventional designs it will be enormous.
- The cost & efforts to develop an open midplane dipole must be examined in the context of overall accelerator system rather than just that of various magnet designs.

Open Midplane Dipole Design Challenges

- Attractive vertical forces between upper and lower coils are large than in any high field magnet.
 Moreover, in conventional designs they react against each other. Containing these forces in a magnet with no structure between the upper and lower coils appears to be a big challenge.
- The large gap at midplane appears to make obtaining good field quality a challenging task.
- The ratio of peak field in the coil to the field at the center of dipole appears to become large as the midplane gap increases.
- Designs may require us to deal with magnets with large aperture, large stored energy, large forces and large inductance.

With these challenges in place, don't expect the optimum design to necessarily look like what we are used to seeing.

Develop an integrated design of a high field dipole that

- Has an open midplane that is adequate for removing most spray particles from IP.
- Has a support structure that can accommodate large vertical forces in an open midplane design.
- Has desired field quality along the beam path.
- Is technology independent ("React & Wind" Vs. "Wind & React") in 2-d magnetic and mechanical design.

Design Iterations in Year 2004 To Help Evolve Basic Design Parameters

Design A (06/04):

D1

D1

D1A

Vertical/Horizontal Gap = 50 mm/160 mm

Design/Quench Field = 13.5 T/15 T

Proof of principle open midplane design. To first order, it met all technical requirements: energy deposition, field quality, and support structure to contain Lorentz forces.

✓ But the magnet became big and expensive.

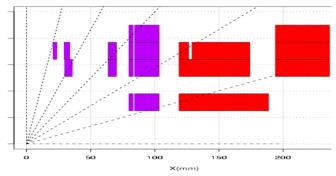
<u>Design B (10/04):</u>

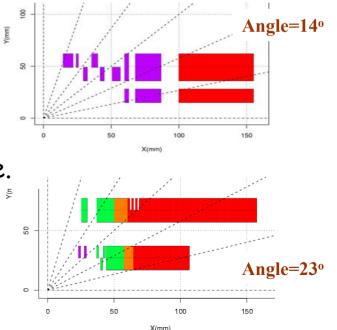
Vertical/Horizontal Gap = 30 mm/120 mm Design/Quench Field = 13.5 T/14.5 T

Smaller magnet.

> <u>NOTE</u>: Nikolai has not examined this case.

Design C (12/04):


Vertical/Horizontal Gap = 34 mm/80 mm


Design/Quench Field = 15 T/16 T

An aggressive target (large angle for midplane block).

Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta

Angle of midplane block=17.4°

A Lower Cost Open Midplane Dipole Proposal (A possibility presented during October meeting)

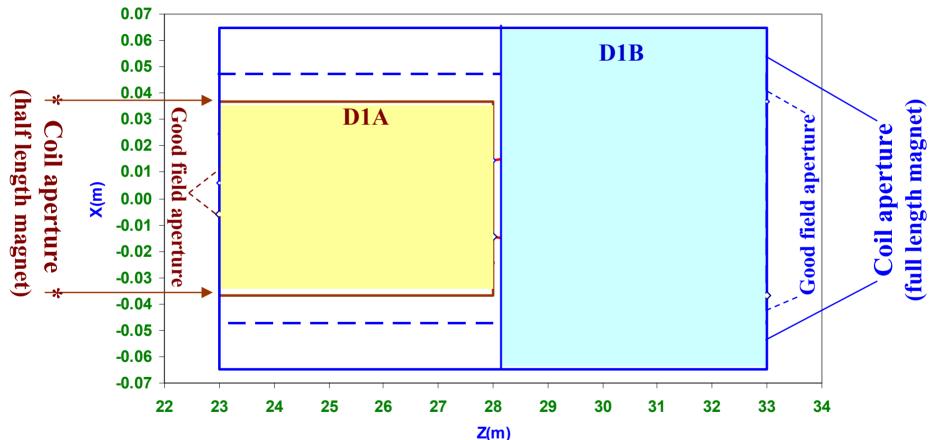
0.05 0.04 0.03 0.02 0.01 (m) x **Beam Trajectory** 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 34 33 22 23 24 25 26 27 31 32 28 29 30 Z(m)

Trajectory in D1

• At present, the aperture of D1 is determined by the requirements at the far end of IP.

• We propose dividing each D1 in two dipoles D1A and D1B. We also propose to develop only D1A under LARP.

• D1A will be shorter and will have lower aperture.


• One can also consider raising field in D1A and reducing in D1B. This will balance Lorentz forces better between D1A (higher field, lower aperture) and D1B (lower field, larger aperture).

Dipole Design Review 12/14/04

US LARP

Proposal: Build D1A Under LARP Funding

A lower aperture, lower length, lower cost, open midplane racetrack coil dipole that while developing and proving the basic technology, also gets used in LHC IR upgrade

Consider increasing the field in the first D1 (D1A), and also consider using HTS there. HTS has a potential to generate higher fields and can tolerate higher heat loads, as well.

Dipole Design Review 12/14/04

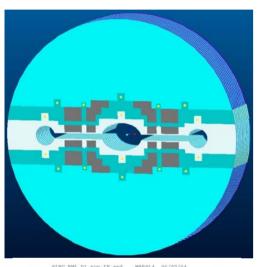
BROOKHAVEN 11

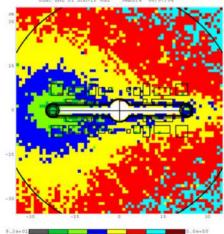
LARP Dipole Design Development

The design is being developed in a comprehensive and iterative way, where

- energy removal
- magnetic
- mechanical
- and beam physics

requirements are being (and must be) optimized together.


There are no rules, past experience or guidelines to follow. Given that that it's a new type of design, old approaches may not always provide the best or even a working solution. Some time, we are forced to become creative - e.g., when we get stuck. We are trying to do it in an as objective manner as possible.

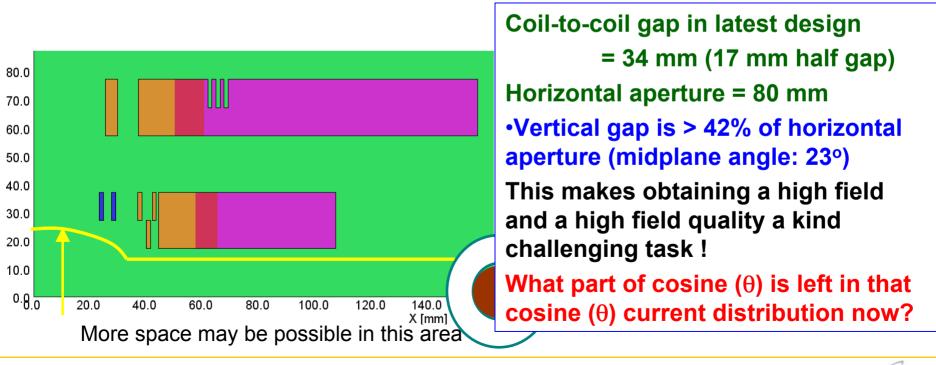

Constant communications/iterations with Mokhov (energy removal requirements) and Jesse/Mike (support structure requirements). Now time has come to do iterations of the design with input from "beam physicists".

A True Open Midplane Design

By open midplane, we mean <u>truly</u> open midplane:

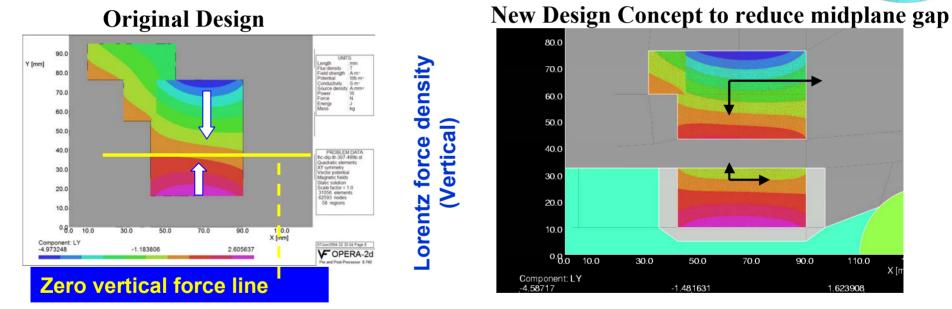
Dipole Design Review 12/14/04

Particle spray from IP (mostly at midplane), pass through an open region to an absorber sufficiently away from the coil without hitting anything at or near superconducting coils.


In earlier "open midplane designs", although there was "<u>no conductor</u>" at the midplane, but there was some "<u>other structure</u>" between the upper and lower halves of the coil. Secondary showers from that <u>other structure</u> deposited a large amount of energy on the coils.

The energy deposited on the superconducting coils by this secondary shower became a serious problem. Therefore, the earlier open midplane designs were not that attractive.

A critical constraint in developing magnetic design of an open midplane dipole with good field quality is the size of the midplane gap for coil.


The desired goal is that the gap is large enough so that most showers pass through without hitting anything before hitting the warm target.

Dipole Design Review 12/14/04 Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta

Navigation of Lorentz Forces A new and major consideration in design optimization

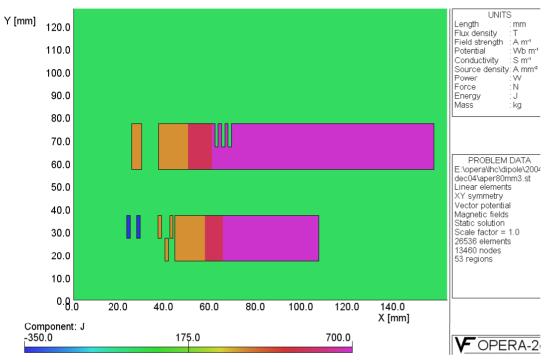
Unlike in conventional designs, in a truly open midplane design the upper and lower coils do not react against each other. As such this would require a large structure and further increase the coil gap. That makes a good field quality solution even more difficult.

Since there is no downward force on the lower block (there is slight upward force), we do not need much support below it, if the structure is segmented. The support structure can be designed to deal with the downward force on the upper block using the space between the upper and the lower blocks.

15

Dipole Design Review 12/14/04 Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta

<u>A Preliminary 15 T Design for D1A</u>


This is a preliminary (conceptual) design since we have spent a limited time only. We started working on it after the LARP collaboration meeting in October, '04. This study includes some iterations between magnetic & mechanical designs.

D1A Design guideline from Harrison & Peggs 15 T, 5 meter, Field Quality < 10⁻³ Horizontal +/-28 mm, Vertical +/-14 mm

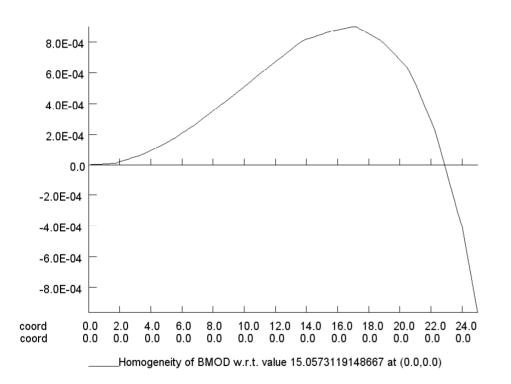
A Design with Simple Pancake Coils

The design is based on two simple double pancake coils in each half of the magnet.

Mechanical structure is such that the coil can be as close to midplane as possible while allowing adequate space for transmission of (a) beam in good field region and (b) spray particles to warm region.

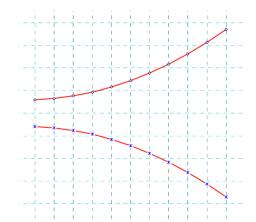
Vertical Lorentz force on lower double pancake is upward. Space between upper and lower double pancake is just adequate to contain downward Lorentz forces.

• Grading is done through varying current density (power supply) rather than through varying conductor (a more cost effective and more flexible approach for R&D magnets). The model above has three current densities: 350, 550, 700 A/mm².


• Also used: -350 A/mm². A negative current may look counter-intuitive at first, but it works like a magic for such an extreme optimization (now it looks obvious, why?).

Dipole Design Review 12/14/04

Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta


Obtaining a good field quality in a magnet with a large ratio of vertical gap (34 mm) to horizontal aperture (80 mm) is a major challenge.

Final design may require certain trade-offs between various requirements.

Demonstration of a ball-park or proof-of-principle solution.

Beam goes to larger excursions only near the end. Field quality is messy in the end region anyway.

We are waiting for further input from beam physicists to iterate for a more optimal solution.

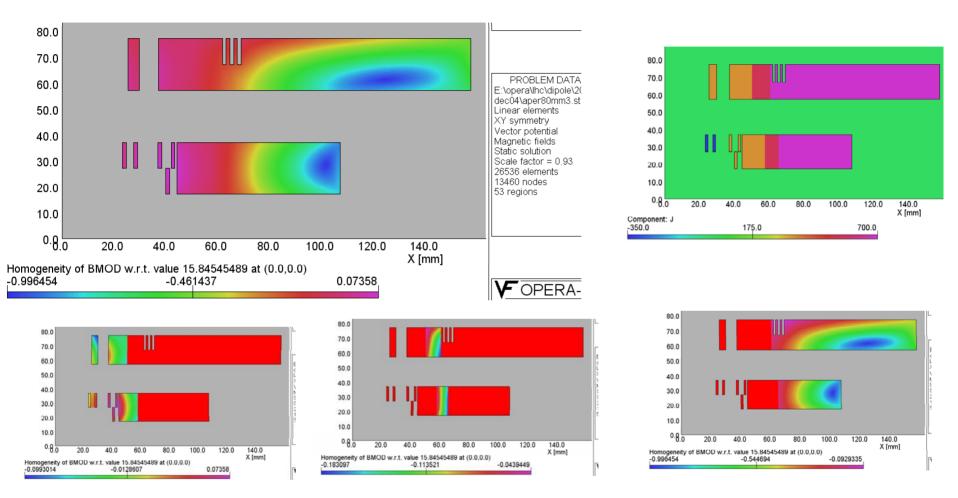
Dipole Design Review 12/14/04

Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta

Design Parameters of a 15 T (~16 T Quench) Open Midplane Dipole

Nb ₃ Sn wire and cable	parameters:	
J _{sc} (12T,4.2K)	3000 A/mm ²	Qı
Cu/Non-Cu ratio	0.85 (or 1.0)	Qı
Strand diameter	0.7 mm	Но
No. of strands in cable	26	Co
Cable width (bare)	9. 5 mm	Co
Cable thickness (bare)	1.25 mm	Yc
Insulation	Nomex /Fiberglass	Sto Inc
Cable width (insulated)	10 mm	 T*
Cable thickness (insulated)	1.45 mm	th
Max. J _{cu} (@quench)	~ 2kA/mm ²	co Q

Magnet parameters:


Quench Field	~16 T
Quench Current*	4.7, 7.4, 9.4 kA
Horizontal Spacing	80 mm
Coil Midplane Gap	34 mm
Collar Outer Radius	300 mm
Yoke Outer Radius	700 mm
Stored Energy@Quench	4.8 MJ/meter
Inductance*	.43, .17, .11 H/m

*Three values, since current grading, rather than the cable grading is used. Minimizes the conductor development cost in R&D magnets.

Quench Field will be ~ 15.8 T if Cu/Non-Cu is 1.

Peak Fields in Coil Blocks

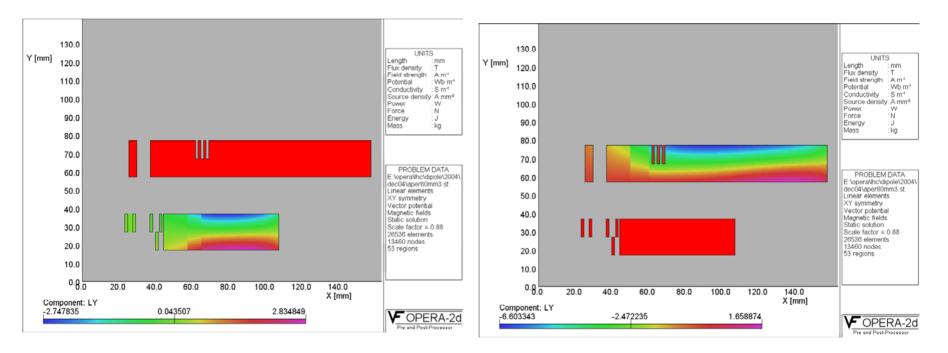
Quench Field: ~16 T with $J_c = 3000 \text{ A/mm}^2$, Cu/Non-cu = 0.85 Quench Field: ~15.8 T with $J_c = 3000 \text{ A/mm}^2$, Cu/Non-cu = 1.0

Dipole Design Review 12/14/04

Quench Field Calculations

				Bare Thic		Ins width																	
0.85	0.7	26	9.6	1.25 Cabla la	10	10 Cabla Ia	1.45 Cable la	lau															
Field	Fit Jc	Wire Je	Wire Ic		Ic(degrad)			Jcu															
10	4373	2364	910	23651	21286	1774	1468	4677															
11	3653	1975	760	19757	17781	1482	1226	3907	700 -	1													7
12	3035	1641	631	16415	14773	1231	1019	3246									110	I 2(2) + -(-)	E 3 2				-
13	2504	1354	521	13543	12189	1016	841	2678	660 -								5-2						-
14	2046	1106	426	11066	9959	830	687	2188	620 -			+ 		-1-+-1				+ - - 		- + - - [_ <u></u>]			-
15	1651	892	343	8929	8036	670	554	1766	580 -		+ -1 - 1 - 1	<u> </u>		-1- + -1	+	_!_ L -!- + ·		+ -1-	+	_ I _ . - + - -	- +	·	-
16	1312	709	273	7096	6386	532	440	1403	500 -								555		222				-
17	1022	552	213	5527	4975	415	343	1093	ି ହୁ 540 -				-7-		<u></u> +	- -+:	76	+ - -	<u>+</u>	- + - - T	- +		-
18	776	419	161	4197	3777	315	261	830	2 540 W 500 Y 9 460		⊢ _ _ _ + _ _ - -	- - + -	_ _ + - - +	-	-⊢+ -⊢+	-!- + : -!- + :		+ -1	+	_ + _ - - + - -	- +	· I_ + -	-
10	110	-13	101	-137	5111	010	201	000	¥ 500 -			3273		금님	\geq		552	I I I	83				-
									<u>ĕ</u> 460 -						<u>-</u>	\sim		+ - - ; 					-
									-		⊢ _ _ _ ⊨ _ _ ⊨ _	-1-+-	_ _ + _ _ +	-1-+-1	- - + - - +	-!- + : -!- + :		+ - - -	+ + -	- + - - - + - -	- 11	_ + - _ + -	-
									420 -			3272			풍수		5-2		2-				-
									380 -									+ - -		~		¦	-
																	E E E	÷ = = :	111			i i	-
		350	550	700	700				340 -	È i i i		그그그		수년	÷÷	titt.	÷.e	ŢŢ	ini -	t to.	i ti		-
	17.2	18.4	16.4	15.8	15.3				300 -							-1		+ -	<u> </u>				-
		0.068	-0.048	-0.084	-0.110					4.0 14.2	14.4 14	.6 14.8	15.0 ·	15.2 15	.4 15.	6 15.8	B 16.	0 16.2	16.4	16.6 ·	16.8 1	7.0 1	7.2
0.9185	15.80	16.87	15.04	14.47	14.06																		
0.9100	15.60														B(1)							
		321	505	643	643																		

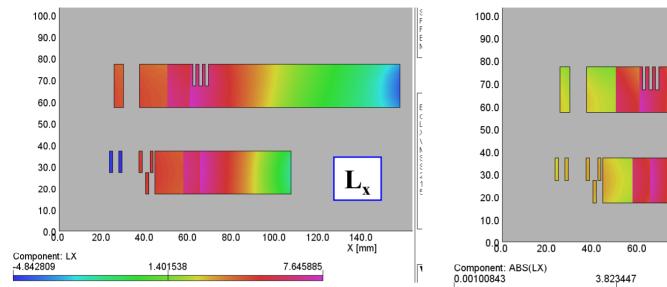
Quench Field: ~16 T with $J_c = 3000 \text{ A/mm}^2$, Cu/Non-cu = 0.85

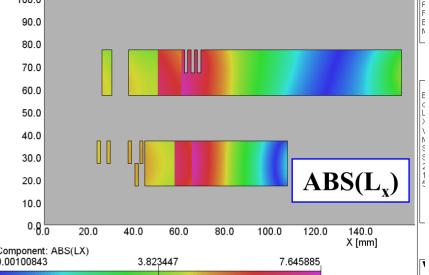

Quench Field: ~15.8 T with $J_c = 3000 \text{ A/mm}^2$, Cu/Non-cu = 1.0

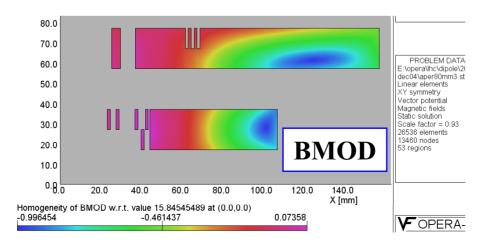
Dipole Design Review 12/14/04

Net upward vertical force on lower double pancake coil

Downward vertical force on upper double pancake coil is taken by the support structure between two double pancake coils


Net Force per quadrant: Horizontal = 11 MN/m; Vertical –5.4 MN/m


Dipole Design Review 12/14/04



Horizontal Forces at 15 T

Dipole Design Review 12/14/04

Comparison Between 80 mm Aperture and 120 mm Aperture Designs

Design B (10/04):

Horizontal Coil Aperture = 120 mm Coil Midplane Gap = 30 mm

> Design Field = 13.5 T Quench Field = 14.5 T

Design C (10/04):

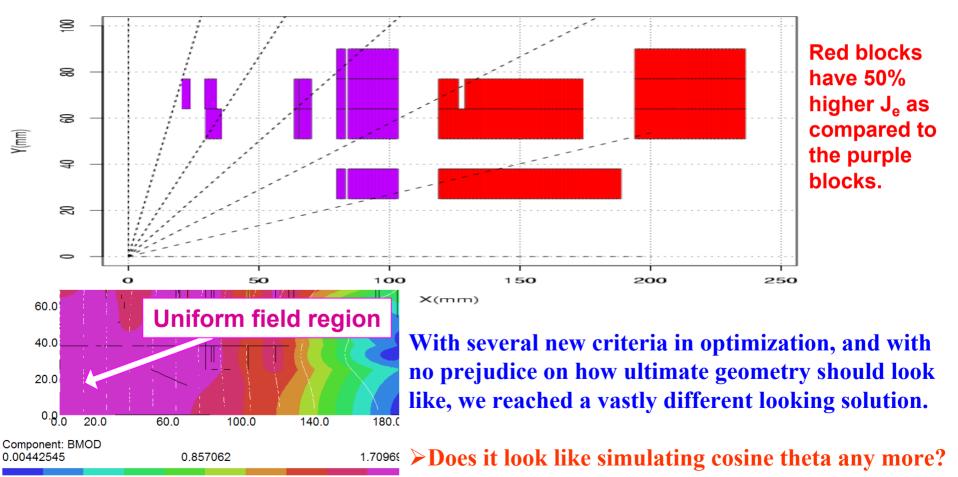
Horizontal Coil Aperture = 80 mm Coil Midplane Gap = 34 mm

> Design Field = 15 T Quench Field = 16 T

Whereas on the one side, the conductor, support structure and over-all magnet size decreases as aperture decreases.

However on the other side, the conductor, support structure and over-all magnet size increases as the design field increases.

When we compare the overall requirements of two design, it's a wash. The two are similar in requirements within 10%.


Brief Overview of a More Complete and A Comprehensively Optimized Proof-of-Principle Design

Just to show that a hand optimized design (such as the one presented just now) can be further optimized to the next level.

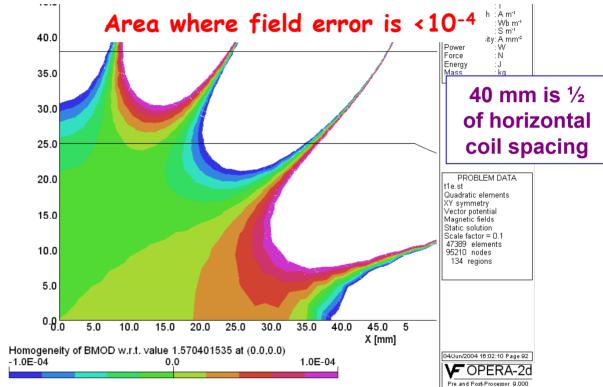
US
LARPHand Optimized Design =>Fine-tuned by RACE2DOPT for Harmonic Minimization

The design is first navigated by hand for "Lorentz Forces", "Support Structure", "Energy Deposition", "Low Peak Field" and better than 10⁻³ "Field Quality".

Then a few select cases are optimized for field harmonics with RACE2DOPT (local code).

Dipole Design Review 12/14/04

Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta



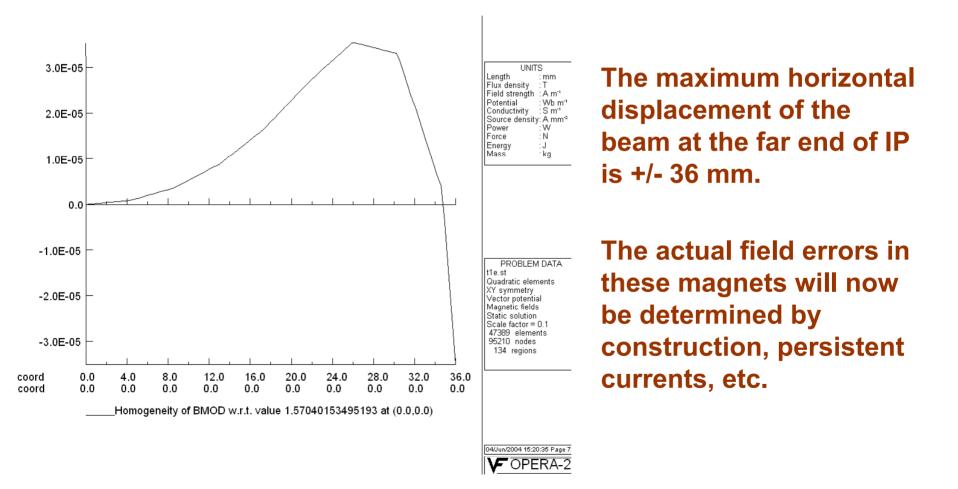
Field Harmonics and Relative Field Errors In An Optimized Design

Proof: Good field quality design can be obtained in such a challenging design:

(Beam @ x=+/- 36 mm at far end) (Max. radial beam size: 23 mm) Geometric Field Harmonics:

	Ref(mm)	Ref(mm)
n	36	23
1	10000	10000
2	0.00	0.00
3	0.62	0.25
4	0.00	0.00
5	0.47	0.08
6	0.00	0.00
7	0.31	0.02
8	0.00	0.00
9	-2.11	-0.06
10	0.00	0.00
11	0.39	0.00
12	0.00	0.00
13	0.06	0.00
14	0.00	0.00
15	-0.05	0.00
16	0.00	0.00
17	0.01	0.00
18	0.00	0.00
19	0.00	0.00
20	0.00	0.00

Field errors should be minimized for actual beam trajectory & beam size. It was sort of done when the design concept was being optimized by hand. Optimization programs are being modified to include various scenarios. Waiting for feed back from Beam Physicists on how best to optimize. However, the design as such looks good and should be adequate.


Dipole Design Review 12/14/04

Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta

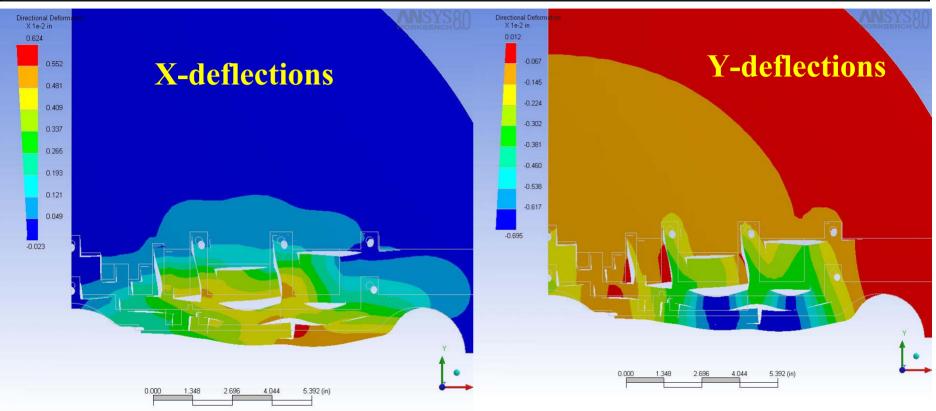
Field Uniformity in An Optimized 15 **Open Midplane Dipole Design**

Proof that good field quality can be obtained in such a wide open midplane dipole design (\sim 1/2 of vertical and \sim 1/3 of horizontal aperture):

Dipole Design Review 12/14/04

Design Parameters of 15 T Open Midplane Dipole

Nb₃Sn wire and cable parameters:


Magnet parameters:

InsulationNomexCable width (insulated)13 mmCable thickness (insulated)1.45 mmCable thickness (insulated)1.45 mmCable thickness (insulated)1.45 mm	J _{sc} (12T,4.2K)	3000 A/mm ²	Quench Field	~15 T				
Strand diameter0.7 mmNo. of strands in cable34Cable width (bare)12. 5 mmCable width (bare)12. 5 mmCable thickness (bare)1.25 mmInsulationNomexCable width (insulated)13 mmCable thickness (insulated)1.45 mmCable thickness (insulated)1.45 mm	Cu/Non-Cu ratio	0.85						
No. of strands in cable34Collar Outer Radius400 mmCable width (bare)12.5 mmYoke Outer Radius1 meterCable thickness (bare)1.25 mmStored Energy11 MJ/meterInsulationNomexInductance*0.16 (0.4) H/mCable width (insulated)13 mmTwo values if current grading, rather than cable grading is used, in R&D magnets.Cable thickness (insulated)1.45 mmThe magnet itself is big and expensive. But these are only a few. If one considers the overall increase	Strand diameter	0.7 mm						
Cable width (bare)12. 5 mmYoke Outer Radius1 meterCable thickness (bare)1.25 mmStored Energy11 MJ/meterInsulationNomexInductance*0.16 (0.4) H/mCable width (insulated)13 mm"Two values if current grading, rather than cable grading is used, in R&D magnets.Cable thickness (insulated)1.45 mmThe magnet itself is big and expensive. But these are only a few. If one considers the overall increase	No. of strands in cable	34	· · · ·					
InsulationNomexInductance*0.16 (0.4) H/mCable width (insulated)13 mm*Two values if current grading, rather than cable grading is used, in R&D magnets.Cable thickness (insulated)1.45 mmThe magnet itself is big and expensive. But these are only a few. If one considers the overall increase	Cable width (bare)	12. 5 mm		1 meter				
InsulationNomexCable width (insulated)13 mmCable thickness (insulated)1.45 mmCable thickness (insulated)1.45 mmCable thickness (insulated)1.45 mm	Cable thickness (bare)	1.25 mm		11 MJ/meter				
Cable width (insulated)13 mmgrading is used, in R&D magnets.Cable thickness (insulated)1.45 mmThe magnet itself is big and expensive. But theseCable thickness (insulated)1.45 mmThe magnet itself is big and expensive. But these	Insulation	Nomex	L	0.16 (0.4) H/m				
2 are only a few. If one considers the overall increase	Cable width (insulated)	13 mm	e					
$1 (\bigcirc 1000 \land 1000 \land 1000 \land 1000 \circ 10000 \circ 1000 \circ 10000 \circ 1000 \circ 1000 \circ 1000 \circ 1000 \circ 10000 \circ 100000000$	Cable thickness (insulated	d) 1.45 mm	The magnet itself is big and e	expensive. But these				
J_{cu} (@Quencn) Touv A/IIIII in infrastructure and operating cost, and just not th magnet cost, the net savings will be substantial.	J _{cu} (@quench)	~ 1800 A/mm ²	2 are only a few. If one considers the overall i in infrastructure and operating cost, and just					

Dipole Design Review 12/14/04

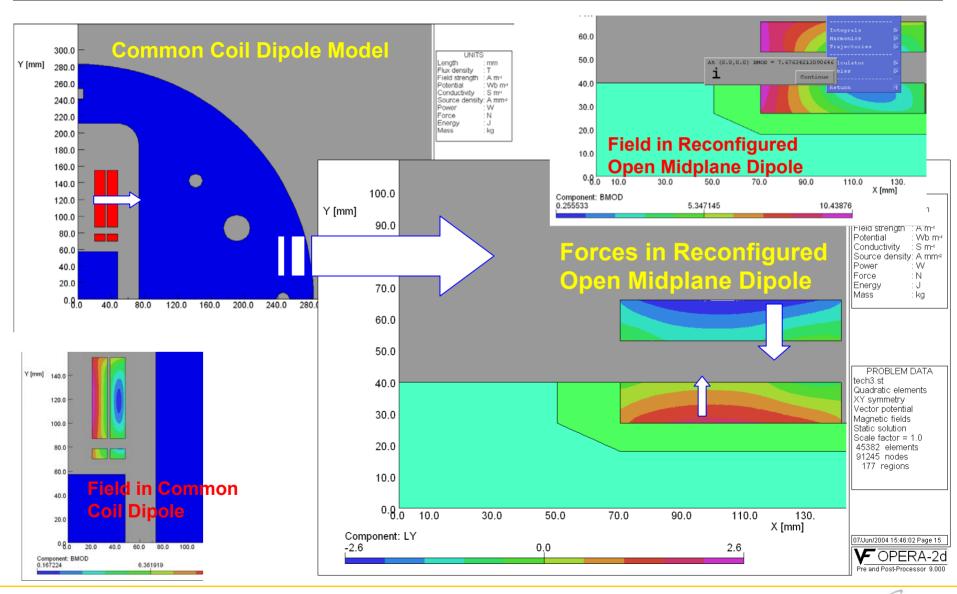
Mechanical Analysis

In the present design the relative values of the x and y deflections are 3-4 mil (100 micron) and the maximum value is 6-7 mil (170 micron).

Above deflections are at design field (13.6 T). They are \sim 1-2 mil higher at quench field.

Dipole Design Review 12/14/04 Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta

Nikolai Mokhov's calculations showed that only a small fraction of energy is deposited in superconducting coils and that the magnet life due to this is not limited for at least 10 years.

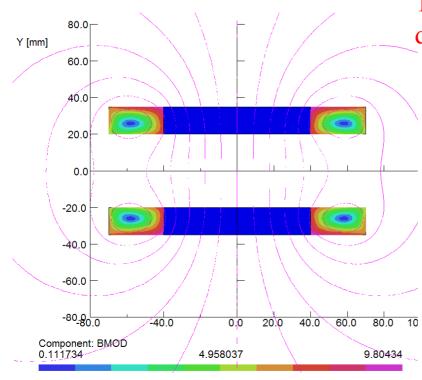

It also showed a significant reduction in 4 K heat load.

Partial Magnet Technology Test of Open Midplane Design Concept with LBL Sub-scale Coils

Dipole Design Review 12/14/04 Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta

Re-configuration of Common Coil Dipole Coils (or Other Magnet Coils) for High Field Technology Test

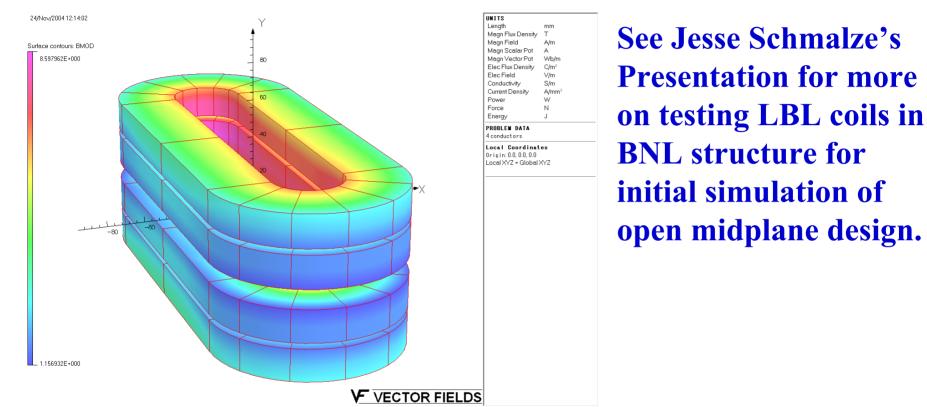
Dipole Design Review 12/14/04


US ARP

Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta

Technology Development Tests Sub-scale Coils in Open Midplane Structure

Short coils made and pre-tested for other applications can be used in an open midplane configuration to examine the basic technological issues. (A possible BNL/LBL collaboration).


The support structure for this open midplane dipole test may be designed such that it:

- Produces similar deflections

 (after the 1st test with ~zero deflection)
- Allows variation in pre-stress
- Allows variation in vertical separation

Lorentz Forces for LBL Sub-scale Coils

ABS(FX) ABS(FY) ABS(FZ) Total(MN) 0.86 0.46 0.28

Dipole Design Review 12/14/04 Conceptual Design of a Smaller Aperture Open Midplane Dipole - Ramesh Gupta

Note: All coils are double pancake (complete magnet requires four double pancake coils).

In "Wind & React" approach, one would build the complete double pancake coil in one go.

A prudent approach may be to first build and test a pair of coils without midplane gap (one pair at a time even one coil).

Before testing the complete magnet, we should also evaluate the benefits/added complications of a mirror test configuration.

The above scenario (testing components in stages) minimizes the cumulative risk to the magnet as a whole.

- The coil design has ~260 turns of ~10 mm X 1.45 mm cable.
- The cable uses 26 strands of 0.7 diameter.
- The estimated conductor cost for a 0.5 meter long model magnet is <100 k\$.
- We can afford the purchase of this (plus spare conductor) in our next year budget.

A Strategic Comparison of "D1" Vs. "D1A+D1B" Options

D1	D1A
Single magnet	Two magnets (D1A + D1B)
High field large aperture	Very high field smaller aperture
	+ Higher field larger aperture
Very large Lorentz forces	Large Lorentz forces
Required field : ~13.5 T	Required Field : ~15 T
Quench field : ~14.5 T	Quench Field : ~16 T
Collar o.d. : ~600 mm	Collar o.d. : ~600 mm
Yoke o.d. : ~1400 mm	Yoke o.d. : ~1400 mm

• Conductor requirements, overall magnet size, etc. are similar in D1 and D1A. D1, due to its larger aperture, may be better from energy deposition point of view.

• If it was a magnet based on known technology, with parameters that can be fixed at this stage, then perhaps first solution (D1) would be preferred.

• If one of the goal of the LARP is to develop higher field magnet technology, and the magnet parameters can not be defined at this stage, then perhaps R&D magnet based on D1A parameters should be preferred.

• After having developed a very high field R&D magnet, one can step back a bit in specifying parameters for a machine magnet, if so desired.

SUMMARY

• The "Open Midplane Dipole Design" seems to offer a good technical and an economical option for LHC luminosity upgrade

• To first order, the challenging requirements associated with the open midplane design appears to have been met in a proof of principle design.

• With the design and R&D program presented, it is possible to carry out model magnet R&D within the budget allocated (see Peter Wanderer's) presentation for more specific numbers.

• "D1" and "D1A+D1B" options have been compared.

• Open midplane design brings a significant addition to magnet technology.