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Contents 
• High field HTS SMES solenoid 

– Summary of design, construction and test results 

 (achieved new record performance) 

 

A brief discussion on: 

• High field magnets for accelerators 

– Common coil design for high field magnets 

  (inherent geometry for higher performance, lower cost) 

  (good field quality designs demonstrated) 
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High Field HTS Solenoid for 

Superconducting Magnetic Energy Storage 

(SMES)  

Conductor: High strength ReBCO from SuperPower  (over 6 km, 12 mm wide)  
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SMES Options with HTS 

 High Temperature Option (~65 K): Saves on cryogenics (Field ~2.5 T) 

 High Field (~25 T) Option: Saves on Conductor (Temperature ~4 K) High 

Temperature 

SMES Ring 

High 

Field 

SMES 

Ring 

Previous attempts: 

   LTS: up to ~5 T 

   HTS: few Tesla (high temp. to save on cryo) 
 

Our analysis on HTS option: 

Conductor cost dominates the cryogenic 

cost by an order of magnitude 
 

High risk, high reward R&D under arpa-e:  

 Very high fields: ~25 T (E α B2) 

  Only possible with HTS 

Also: A medium field and medium temperature  option 

 (a new record demonstrated as a part of arpa-e funding) 
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Very High Field HTS Solenoid 

Field: ~25 T  

Bore: 100 mm (large) 

Hoop Stresses: 400 MPa 

Conductor: HTS (new) 

Aggressive parameters 

 Funded by arpa-e as a “high risk, high reward” project 

The Basic Demonstration Module 
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Concepts of Large Scale SMES  

• Torus could consists of a large number of solenoid module 

• Field becomes parallel, increasing Ic of ReBCO several times 
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Concepts for GJ Size SMES for GRID 
Radius: 5 meter, height ~5 meter

Consists of double pancakes – same as in demo 

10 rings, each consisting of ~1000 double pancakes

GJ  scale compact storage system 

Bo~25 T, Bperependicular  ~0.4 T (B// efficient for ReBCO) 
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High Field 

HTS 

Solenoid 

Design 



High Field Magnet Technology    Ramesh Gupta, et al., BNL     2014 Kyoto WAMHTS-2    Nov. 13, 2014       9  

Superconducting  
Magnet Division 

Magnetic Design 
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Coil 

Coil 

Stainless Steel 

Support 

Tubes 

Cross-section of Coil and Support Tube  

Inner Stainless Steel Tubes 

for Assembling Pancakes 

inches [mm]       units 



High Field Magnet Technology    Ramesh Gupta, et al., BNL     2014 Kyoto WAMHTS-2    Nov. 13, 2014       11  

Superconducting  
Magnet Division 

Nominal Parameters 
Stored Energy 1.7 MJ

Currrent 700 Amperes

Inductance 7 Henry

Maximum Field 25 Tesla

Operating Temperature 4.2 Kelvin

Overall Ramp Rate 1.2 Amp/sec

Number of Inner Pancakes 28

Number of Outer Pancakes 18

Total Number of Pancakes 46

Inner dia of Inner Pancake 102 mm

Outer dia of Inner Pancake 194 mm

Inner dia of Outer Pancake 223 mm

Outer dia of Outer Pancake 303 mm

Intermediate Support 13 mm

Outer Support 7 mm

Width of Double Pancake 26 mm

Conductor used 

(ReBCO from SP): 

  

 Well over 6 km  

(12 mm wide tape) 
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Grading to Optimize Design 

Initial 1.7 MJ Design 
Optimized 1.7 MJ Design 

Adjust within coil 

(different pancakes) 

•Cu thickness 

•SS thickness 

(more cu in ends 

more SS in middle) 

 

End Result:  

 Improved 

performance 

 Better 

mechanical 

structure and 

reduced Bperp  

J 
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Mechanical Analysis (ANSYS) 

< 500 MPa 

< 125 MPa < 0.3% 

< 0.3% 

Maximum 

coil 

deformation 

due to 

Lorentz 

forces:  

~200 mm 

Axial Stress Axial Strain 

Hoop Stress Hoop Strain 

Lakshmi, et al. 

ASC2014 
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Engineering Design 
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Construction 
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Winding with Computer Controlled 
Universal Coil Winder 

Rotating (later) 
Fixed (earlier) 

Fixed (later) 
Revolving (earlier) 

Turn-to-turn insulation: stainless steel tape 
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Outer Pancake with v-taps 
Practice coils (SS) 

Outer 

Inner 

Outer 

Inner 

Made with ~210 meter of 12 mm ReBCO tape 

from SuperPower with SS tape between the 

turns (No. of turns = 258) 
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Series of Pancakes 

Rotating (now)
Fixed (earlier)

Fixed (now)
Revolving (earlier)

V-taps 
(temporary)

V-taps for intermediate testing 
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Two Pancakes Connected 
with Spiral Splice Joint 
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Inner and Outer Coils Assembled 

Inner Coil 

102 mm id, 194 mm od 

28 pancakes 

Outer Coil 

223 mm id, 303 mm od 

16 pancakes 



High Field Magnet Technology    Ramesh Gupta, et al., BNL     2014 Kyoto WAMHTS-2    Nov. 13, 2014       21  

Superconducting  
Magnet Division 

Coil Parts Prior to Assembly  

Support  
Structure  

Coils 

Test  
Fixtures 
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Coils, Test Fixtures and 
Support Structure 

Pancake coils: inner and outer 

11 T, 760 A coil 
and fixture 

77 K Test Fixture for outer 

Outer 
Support 
Tube for 

Inner 

Outer 
Assembly 
Tube for 

Outer 

Outer 
Support 
Tube for 

Outer Inner 
Assembly 
Tube for 

Inner Copper  
Discs 
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Inner and Outer Coils 

Inner (in support tube) Outer (prior to support tube) 
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Final Assembly 

Outer inserted over inner SMES coil in iron laminations 
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Test Results 
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Pre-qualification Tests 

• HTS is still a developing conductor 

• To ensure that the magnet performance 

is not limited by a weak link, a series of 

intermediate QA tests are performed 

• Each pancake and each joint is 

thoroughly tested with a number of 

voltage taps at 77 K (benefit of HTS) 

• Test of a few partial assemblies are also 

performed at high current/field at 4 K 



High Field Magnet Technology    Ramesh Gupta, et al., BNL     2014 Kyoto WAMHTS-2    Nov. 13, 2014       27  

Superconducting  
Magnet Division 

77 K QA Test of a Pancake 

Legends indicate the turn numbers 

between the sections 
>100 A (1 mV/cm criterion)  
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Double Pancake Coil Test (Type 1) 

(2 powered in series) 
(2 powered individually) 

2 pancakes with similar critical currents 
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Double Pancake Coil Test (Type 2) 

(2 powered in series) 
(2 powered individually) 

2 pancakes with a significantly different critical current 
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Double Pancake Coil Test (type 3) 

Note: The importance of 77 K QA Test 

good 

defective 

one pancake good & one pancake defective 

good 

defective 
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77 K Test Results of a Series 
of Pancakes (inner) 

Critical current based on 1 µV/cm criterion   

Two single 

pancakes 

powered in 

series.    

Note: Higher Ic at 

77K in coil doesn’t 

necessarily translate 

to a higher Ic at 4K 

(present conductor) 
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77 K Test Results of a Series 
of Pancakes (outer) 
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Significant Variation in Conductor 
(present conductor technology) 

Sample

Num Comments

Tape 

Width, 

mm Ic_Perp(8T) Ic(77K) Ic(8T)/Ic(77K)

1 PERP TEST 12 726 330 2.200

2 PERP TEST 12 800 312 2.564

3 PERP TEST 12 1119 341 3.282

4 PERP TEST 12 1324 404 3.277

5 PERP TEST 12 1401 383 3.658

6 PERP TEST 12 773 365 2.118

7 PERP TEST 12 956 337 2.837

8 PERP TEST 12 1369 439 3.118
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8

Ic(8T)/Ic(77K)

Ic(8T)/Ic(77K)

Short sample measurements at BNL 

Ic(4K,8T) : 726 A to 1369 A  

 (specifications: 700 A at 8 T) 

Lift factor 2.1 to 3.7 
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2 pancakes 
1140 A, 4K 

 HTS SMES Magnet High Field Test Results 
100 mm bore ReBCO SMES Coil  

46 pancakes  
350 A, 27K, 12.5 T 

P
e

a
k
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s
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h
e

r 

12 pancakes 
760 A, 4K, 11.4 T 
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Test Fixture for Double Pancake  

High current upgrade for leads (~1kA), 

fixture, quench protection set-up, etc.  

Cu Leads 
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Double Pancake Coil Test 
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The option of operating over a large range (the benefit of HTS) 
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Twelve Pancake Coil Test  
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Setup for 12 Pancake Coil Test 
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4 K Test of 100 mm 12 Pancake Coil  
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Coil reached 11.4 T at ~760 A 

 exceeded Go/NoGo target of 10 T 
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12 Pancake Coil Test 
(and quench) 
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Charge Quench 

• Energy (~125 kJ) extracted and dumped in the external resistor. 

• 77 K re-test (after quench) showed that the coil remained healthy. 
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Preparation for the Final Test 
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Back Panel and Control System 

Low noise (~1 mV detection) and high isolation voltage (> 1 kV) 
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Test of Quench Protection 
System at 77 K 

Power supply was shut off and energy extracted when the quench 

threshold reached. No degradation in coil performance observed 
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SMES Coil Run on 5/21/2014 
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Record field in a superconducting magnet 

at a temperature of 10 K or higher. 

Record field in a superconducting magnet 

at a temperature of 10 K or higher. 

27 K can be 

obtained by 

liquid neon 
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Present Status 

• The design goal was 1.7 MJ at ~700 A with 25 T at 4 K. 

• We tested the unit at several temperatures between 20-80 K, 

including the 350 Amp (12.5 T) test at 27 K. 

• During one such test, the system tripped due to a data entry error 

at ~165 A – well below the current the magnet was tested earlier 

• This trip resulted in damage to a few current leads in the inner 

coil. It appears that there was arcing, perhaps during shut-off. 

• SuperPower has taken the charge of repairing and further testing  
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Take away from the  
High Field HTS SMES R&D 

• Even though we didn’t reach the design goal of an aggressive 

program of 25 T, in large aperture (~100 mm) superconducting 

magnet with large hoop stresses (~400 MPa) in the first attempt 

itself, we did learn several things in the process beside creating 

new records. 

• This is the first time that such a large amount of HTS (over 6 km 

of 12 mm wide tape) has been used in a 4K, high field application. 

• The experience and technologies developed should be useful to 

other future programs, such as very high field magnets for FCC. 

• Demonstration of 12.5 T at 27 K is higher than what any one even 

proposed for SMES. The last most ambitious proposal (not 

funded) was for 11 T at 20 K by Chubu Electric with Furukawa. 
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Quench Protection 
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Quench Protection Strategy Used at BNL 
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Strategy used at BNL in various HTS programs:  

 Detect early and react fast  

 An advance quench protection system 

 Developed an advanced low-noise electronics and noise cancellations schemes 

to detect pre-quench voltage (phase) where HTS coils are operating safely 

 Uses electronics to handle high isolation voltage (>1kV) 

o Use inductively coupled copper discs to quickly extract energy initially 
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Advanced Quench Detection System 
with Fast Energy Extraction 

Cabinet #1 (32 channels, 1kV) 

Cabinet #2 (32 channels, 1kV) • Fast energy extraction in larger magnets 

creates high voltages as “L” increases 

• Develop electronics that can tolerate 

high isolation voltage (>1 kV) 

• Divide coils in several sections  
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Cu discs between double pancakes are inductively coupled 

Most action  

in milliseconds 
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High Field Magnet for Accelerators 
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Common Coil Design 

• Simple 2-d geometry with large bend 
radius (no complex 3-d ends) 

• Conductor friendly (suitable for brittle 
materials – can do both Wind & React 
and React & Wind with LTS and HTS) 

• Compact (compared to single aperture 
LBL’s D20 magnet, half the yoke size for 
two apertures) 

• Special coil geometry (suitable for large 
Lorentz forces at high fields) 

• Efficient and methodical R&D due to 
simple & modular design 

• Minimum requirements on expensive 
tooling and labor 

• Successfully built at LBL, BNL & FNAL 

• Lower cost magnets expected 

Coil #1 

Coil #2 

Main Coils of the Common Coil Design 
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Common Coil Design in Handling Large 
Lorentz Forces in High Field Magnets 

In common coil design, a racetrack coil can move 

as a block, without straining the conductor in the 

ends and thus minimize causing quench or damage. 

Horizontal 
forces are 
larger 

In cosine theta or conventional block coil 

designs, the coil module cannot move as 

a block. Therefore, Lorentz forces put 

strain on the conductor at the ends which 

may cause premature quench.  
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Possible Layout of Common Coil Designs 

Internal  

Support  

Module 
Collar Module 

Coil  

Modules 
HTS 

Coil 

R&D Magnet 15 T Field Quality Magnet 

15 T design is 

based on Nb3Sn 

conductor with  

Jc = 2200 A/mm2 

@(12T, 4.2K)  

Vary aperture after the coils are made 

• a unique feature in R&D magnets 

• lower separation, higher field 

A good field 

quality 

magnetic 

design is 

demonstrated 

More horizontal 

space for structure 

will need a minor 

iteration  



High Field Magnet Technology    Ramesh Gupta, et al., BNL     2014 Kyoto WAMHTS-2    Nov. 13, 2014       55  

Superconducting  
Magnet Division 

Demonstration of a Good Field Quality 
 in Geometric Harmonics 

Normal Harmonics at 10 mm in the units of 10-4

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14

(from 1/4 model) 

Typical Requirements:  

~ part in 104, we have part in 105 

     MAIN FIELD:    -1.86463   (IRON AND AIR):

            b 1:  10000.000         b 2:        0.00000         b 3:      0.00308

            b 4:       0.00000        b 5:        0.00075         b 6:      0.00000

            b 7:      -0.00099        b 8:        0.00000         b 9:     -0.01684

            b10:      0.00000         b11:     -0.11428         b12:      0.00000

            b13:      0.00932         b14:      0.00000         b15:      0.00140

            b16:      0.00000         b17:     -0.00049         b18:      0.00000

Horizontal coil aperture:  

 40 mm 
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Demonstration of a Good Field Quality 
in Saturation-induced Harmonics 

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8 10 12 14 16
B(T)

H
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rm

o
n
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s
 (

@
1
0
 m

m
)

b3

b5

b7

b9

Low saturation-induced 

harmonics (within 1 unit) 
Use cutouts at strategic places in 

yoke iron to control the saturation 

Use cutouts at strategic places in 

yoke iron to control the saturation 

Maximum change in entire range: ~ part in 104 

(satisfies general accelerator requirement) 
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Demonstration of a Good Field Quality 
in End Harmonics 

n Bn An

2 0.00 0.00

3 0.01 0.00

4 0.00 -0.03

5 0.13 0.00

6 0.00 -0.10

7 0.17 0.00

8 0.00 -0.05

9 0.00 0.00

10 0.00 -0.01

11 -0.01 0.00

12 0.00 0.00

13 0.00 0.00

14 0.00 0.00

15 0.00 0.00

16 0.00 0.00

17 0.00 0.00

18 0.00 0.00

End harmonics in Unit-m 

Contribution to integral (an,bn) in a 14 m long dipole (<10-6) End harmonics can be made 
small in a common coil design.  

-0.020
-0.015
-0.010
-0.005
0.000
0.005
0.010
0.015
0.020
0.025
0.030

0 2 4 6 8 10 12 14 16

Harmonic Number (a2:skew quad)

D
e
lt

a
-I

n
te

g
ra

l bn

an

n bn an

2 0.000 0.001

3 0.002 0.000

4 0.000 -0.005

5 0.019 0.000

6 0.000 -0.014

7 0.025 0.000

8 0.000 -0.008

9 -0.001 0.000

10 0.000 -0.001

11 -0.001 0.000

12 0.000 0.000

(Very small) 
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BNL Nb3Sn React & Wind 
Common Coil Dipole DCC017 
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Performance of Common Coil Dipole 
(despite large deflections) 

• Magnet reached short sample after a number of quenches 

 Reasonable for the first technology magnet 

• The geometry can tolerate large horizontal forces and deflections 

  important for high field magnets  

 computed horizontal deflection/movement of the coil as a whole ~200 mm 

Ic=10.8 kA 

Bpk=10.7 T 

Bss=10.2 T 

• Slightly exceeded the 

computed short sample 

• Practically no vertical 

or horizontal pre-load 
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Common Coil Design for FCC 

• One can obtain as good field quality (geometric, saturation, 

ends) in common coil as in any design. Field quality would 

depend on the construction errors and conductor properties 

•  Common coil can handle large forces (and deflections 

associated with it) without causing internal strain on the 

conductor because the coil moves as a whole 

• BNL, LBL and FNAL have built Nb3Sn based on this design 

with several positive experience 

• It offers both choices – “wind & react” and “react & wind”  

• A simpler geometry opens the door for lower cost construction 

• Thus the common coil design offers an interesting possibility 

for high performance, lower cost magnets 
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SUMMARY 

Two R&D programs with significant possible potential: 

1. Several aspects of arpa-e high field HTS SMES can 

be directly applied to FCC magnet R&D 

2. Common coil design offers a potential for higher 

performance lower cost high field magnets 
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Extra Slide 
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Concluding Remarks 

• HTS have a potential for generating high fields that were not 

possible before in superconducting magnets. 

• High field coils with a large amount of ReBCO tape have been 

built and record performances achieved. 

• HTS conductor is still in R&D stage. We took the approach that 

use the limited resources and opportunities to demonstrate the 

potential. Positive results should create interest and more funding. 

• Even though the progress has been rapid (in the scale of 

superconducting magnet technology), particularly given that the 

conductor is still in R&D phase, still much remains to be done.  

• To realize the true potential of HTS as HFS, we will require a 

specifically focused and funded program. 

• Common coil design offers a potential for low cost, high 

performance magnets for the next high energy collider.  


