Superconducting

Magnet Division

Lecture IV

Magnetic Design Coil Optimization

Ramesh Gupta
Superconducting Magnet Division
Brookhaven National Laboratory
US Particle Accelerator School
University of California - Santa Barbara June 23-27, 2003

BROOKHAVEN

NATIONAL LABORATORY

Superconducting

Coil Designs for Real Magnets

 Magnet DivisionLHC Dipole

RHIC Dipole

contanvent vessel

Tevatron Dipole

Figure 4.9: The Tevatron 'warm-iron' dipole (Tollestrup 1979).

HERA Dipole

-All magnets use
NbTi Superconductor

- All designs use cosine theta coil geometry

Do they really look like having a cosine theta current distribution?

Or that matter, even an elliptical geometry for conductor having a constant current density?

Superconducting

Coil Cross-section Optimization (1)

The optimization of a coil cross-section for a good magnetic design involves:

- Minimizing field harmonics
- Maximizing field (Transfer Function) for a lower number of turns
- Minimizing Peak Field (Max. field on the conductor for given central field)

At first, it appears to be fairly straight forward process, thanks, in part, to the modern automated codes like ROXIE and PAR2DOPT, etc.,
In fact, one can built a magnet based on the optimized coil structure obtained by a relatively new user.

Superconducting

Coil Cross-section Optimization (2)

But the advanced cross-section optimization is a bit more involved:

- One must avoid designs that create mechanical difficulties
- One should look for flexibility to allow future adjustments
- Also look for special requirements in each application.

One approach fits all, may not always be a good strategy.

My Experience:

-The initial design, quiet often sets, the eventual performance of the magnet apart from degree of difficulties in manufacturing the magnet.
-As compared to building magnets, design process takes a relatively small resources. Spend time in looking for as many possibilities/options as possible.

Superconducting

Field Harmonic Definitions

Magnet Division
The field quality in magnets is expressed in terms of the normal and skew harmonic coefficients, b_{n} and a_{n} by the following expansion:

$$
B_{y}+i B_{x}=10^{-4} \times B_{R} \sum_{n=1}^{\infty}\left(b_{n}+i a_{n}\right)[(x+i y) / R]^{n-1}
$$

where x and y are the horizontal and vertical coordinates, B_{R} is the field strength of the primary harmonics at the "reference radius" R. The values of the field harmonic are given in the units of 10^{-4}.

The definition used above (European convention) differs from that used in many U.S. publications (US convention), where $n-1$ is replaced by n and the summation starts from $n=0$.

BROOKHMVEN

NATIONAL LABORATORY

Superconducting

 Magnet Division
Field and Harmonics From A Current Block (No Iron)

Consider a "Radial Block" between radii $\rho_{1} \& \rho_{2}$ and angle $\phi_{1} \& \phi_{2}$ having a current density of J. The total current (I) and harmonics $\left(A_{n}, B_{n}\right)$ are given by:

$$
I=\frac{1}{2} J\left(\rho_{2}^{2}-\rho_{1}^{2}\right)\left(\phi_{2}-\phi_{1}\right)
$$

$$
\begin{aligned}
& A_{1}=-\frac{\mu_{o} J}{2 \pi}\left(\rho_{2}-\rho_{1}\right)\left[\cos \left(\phi_{2}\right)-\cos \left(\phi_{1}\right)\right], \\
& A_{2}=-\frac{\mu_{o} J R_{o}}{2 \pi} \ln \left(\frac{\rho_{2}}{\rho_{1}}\right)\left[\cos \left(2 \phi_{2}\right)-\cos \left(2 \phi_{1}\right)\right],
\end{aligned}
$$

$$
n=1 \text { refers to dipole. }
$$

R_{o} is the reference radius.
for $\mathrm{n} \geq 3$

$$
A_{n}=\frac{\mu_{o} J}{2 \pi} \frac{R_{o}^{n-1}}{n(n-2)}\left(\frac{1}{\rho_{2}^{n-2}}-\frac{1}{\rho_{1}^{n-2}}\right)\left[\cos \left(n \phi_{2}\right)-\cos \left(n \phi_{1}\right)\right]
$$

$$
\begin{aligned}
& B_{1}=-\frac{\mu_{o} J}{2 \pi}\left(\rho_{2}-\rho_{1}\right)\left[\sin \left(\phi_{2}\right)-\sin \left(\phi_{1}\right)\right], \\
& B_{2}=-\frac{\mu_{o} J R_{o}}{2 \pi} \ln \left(\frac{\rho_{2}}{\rho_{1}}\right)\left[\sin \left(2 \phi_{2}\right)-\sin \left(2 \phi_{1}\right)\right],
\end{aligned}
$$

See my thesis for these and other derivations.
for $\mathrm{n} \geq 3$

$$
B_{n}=\frac{\mu_{o} J}{2 \pi} \sum_{n=3}^{\infty} \frac{R_{o}^{n-1}}{n(n-2)}\left(\frac{1}{\rho_{2}^{n-2}}-\frac{1}{\rho_{1}^{n-2}}\right)\left[\sin \left(n \phi_{2}\right)-\sin \left(n \phi_{1}\right)\right]
$$

Superconducting

 Magnet DivisionHomework Assignment (one block)

Assume that a current block is between radii 10 cm and 12 cm and it starts at an angle $\Phi=0$.
Find the subtended angle (or the angle at which the block must end) for

- The normal sextupole harmonic to be zero. Is it a unique solution?
- Assume that you have a dipole symmetry. How many other blocks must be present to generate this symmetry (give number and angles).
- Compute the values of the first three non-zero allowed harmonics in Tesla (A_{n} and/or B_{n}) at a reference radius of $6 \mathbf{c m}$.
- Do the above for decapole harmonic to be zero. Is it a unique solution?
- Can you find a solution for which both sextupole and decapole harmonics are zero? The block does not have to start from an angle $\Phi=0$. What happens if it is in a cylindrical iron cavity having a permeability of (a) $\mathbf{1 0}$, (b) 100 and (c) 1000. Hint: You can use the method of images.

Superconducting

 Magnet Division
Homework Assignment (Two blocks)

Assume that there are two current blocks. First between radii 10 cm and 11 cm and second between 11 cm and 12 cm . Both starts at angle $\Phi=0$.

Find the subtended angle (the angle at which block must end) for the normal sextupole harmonic and decapole harmonics to be zero.

Is it a unique solution?

What happens if it is in a cylindrical iron cavity having a permeability of
(a) 10
(b) 100 and
(b) 1,000.

Hint: You can use the method of images.

How to Look for Optimal X-section (1)

Superconducting Magnet Division

1. Look for designs that look similar to cosine theta distribution (experience)
2. Use special techniques/software (artificial intelligence)
3. Cover a large range of combinations and find the best

My recommendation, go for the $3^{\text {rd }}$ option (several thousand cases):

It does not take long to look a large number of possibilities - less than a few seconds per case if the peak field is not computed.

To save time compute peak field only in promising solutions.

How to Look for Optimal X-section (2)

Develop a front-end program to automatically create several cases for a series optimization run.
In this optimization:

- Vary number of blocks and number of turn in those blocks.
- Vary starting condition of wedges, etc.

Post-process results to select a limited cases with filters for harmonics, etc.

- Compute peak field for these selected cases.

Go back and carefully evaluate and further optimize these few cases for performance, mechanical layout, flexibility, sensitivity, efficiency and any other requirement.

BROOKHAVEN

NATIONAL LABORATORY

Superconducting Magnet Division
 A D07GEN Run

An Example of Pre-processor for Generating Cases for a Series Run

1 N 1
19.000000.
1.
30.

BRODKHFNEN

NATIONAL LABORATORY

Superconducting

 Magnet Division
An Example of Post-processor for Selecting Cases

A PARSLCT Run

BROOKHANEN

NATIONAL LABORATORY

Superconducting

 Magnet Division \qquadNote the order of magnitude of change in harmonics by by a 25 micron change in dimension.

Table 4.3.1: The effect of a $+25 \mu \mathrm{~m}$ change in a wedge thickness or pole width on the transfer function and the field harmonics in the SSC 50 mm aperture dipole magnet. The field harmonics are calculated with a 10 mm reference radius. The numbering of the wedges is counter-clockwise from the midplane. The pole width is measured from the vertical axis.

Parameter	$\delta T F$	δb_{2}	δb_{4}	δb_{6}
changed	$10^{-4} \frac{T}{k A}$	10^{-4}	10^{-4}	10^{-4}
Wedge No. 1	-0.78	-0.24	0.01	0.005
Wedge No. 2	0.42	0.30	0.03	-0.005
Wedge No. 3	1.16	0.36	-0.02	0.00
Wedge No. 4	-0.29	-0.06	0.00	0.00
Pole Width (inner)	2.0	0.23	-0.03	0.005
Pole Width (outer)	1.13	0.21	0.00	0.000

Wedge No. 4 is in outer layer.

BROOKHMNEN
NATIONAL LABORATORY

Superconducting

 Magnet Division

Table 4.3.2: The computed change in the transfer function and field harmonics produced by a $+25 \mu \mathrm{~m}$ ($0.001^{\prime \prime}$) change in the wedge thickness, pole width or midplane gap in the RHCC 80 mm aperture arc dipoles. The field harmonics are calculated with a 25 mm reference radius. The numbering of the wedges starts at the midplane. The pole width and midplane gap are measured from the vertical and horizontal axis, respectively.

Parameter changed	$\delta T F$ $10^{-4} \frac{T}{k A}$	δb_{2} 10^{-4}	δb_{4} 10^{-4}	δb_{6} 10^{-4}	δb_{8} 10^{-4}
Wedge 1	-0.6	-0.98	-0.122	0.061	0.043
Wedge 2	0.1	0.69	0.423	0.022	-0.050
Wedge 3	1.1	1.42	-0.090	-0.068	0.041
Pole Width	1.7	1.11	-0.154	0.039	-0.014
Midplane Gap	-0.9	-1.68	-0.557	-0.156	-0.0 .50

Notice that the magnitude of change in harmonics by a 25μ change, is much large in RHIC dipole than in SSC dipole. WHY?

BROOKHRVEN

NATIONAL LABORATORY

Superconducting

 Magnet Division
Change in Harmonics for 0.1 mm Change in Dimension in DO Dipole

RHIC Insertion Dipole D0 with single layer coil Coil inner radius $=\mathbf{1 0 0} \mathbf{~ m m}$,
Harmonic reference radius $=\mathbf{6 5 m m}$
"D0 MAGNET" : Rough Cross section Optimization Spread sheet

To iterate cross section for b2 \& b4 with midplane and pole shims and fixed wedge changes, go to line b65:b72

Expected Parameters of the Iterated Design						b2	b4	b6	b8	b10	b12	b14	b16
Coil Prestress	1	mil from the target.		Expected Harmonic		6.23	2.24	0.54	0.240	-0.012	0.132	-0.047	-0.099
Coil Size						db2	db4	db6	db8	db10	db12	db14	db16
Target Increase	5	in Coil size	Mutiply	Change(mil)	Target b2n	-8.00	-2.30	-0.16	-0.15	0.016	-0.15	0.039	0.096
Total Increase	6	mil in compression				-1.77	-0.06	0.38	0.09	0.00	-0.02	-0.01	0.00
Midplane(mil)	1	Fixed Pole	0.25	4	-0.00333	-5.79	-1.85	-0.48	-0.16	-0.06	-0.02	-0.01	0.00
PoleShim(mil)	1	Decrease Pole	0.25	4	0.006	3.98	-0.53	0.09	-0.05	0.01	0.00	0.01	0.00
Wedge1(mil)	4	Fixed Pole	1	4	-0.0012	-1.32	0.53	0.48	0.14	0.02	-0.01	-0.01	0.00
Wedge2(mil)	0	Fixed Pole	0	4	0.00119	3.05	1.28	-0.06	-0.16	-0.01	0.02	0.01	0.00
Wedge3(mil)	0	Fixed Pole	0	4	0.00314	4.80	0.30	-0.37	0.02	0.03	-0.01	0.00	0.00
Wedge4(mil)	0	Fixed Pole	0	4	0.00508	4.89	-0.65	-0.01	0.04	-0.04	0.01	0.0	0.0
Midplane +4 mil	0	Increase Pole	0	4	-0.0097	-9.76	-1.31	-0.5	-0.11	-0.07	-0.02	-0.0	0.00
Wedge1+4mil	0		0	4	-0.00758 -0.0052	$\begin{array}{r}-5.28 \\ -0.91 \\ \hline\end{array}$	1.06	0.389 -0.155	$\begin{array}{r}0.187 \\ -0.117 \\ \hline\end{array}$	$\begin{array}{r}0.006 \\ -0.018 \\ \hline\end{array}$	-0.006	-0.013 -0.002	0
Wedge2+4mil	0	Increase Pole	0	4	-0.0052 -0.00323	-0.91	1.81 0.82	-0.155	-0.117	-0.018	-0.025	-0.002	0.004
Wedge4+4mil	0	Increase Pole	0	4	-0.0013	4.07	-1.37	0.439	-0.127	0.174	-0.184	-0.057	0

BROOKHANEN

NATIONAL LABORATORY

Superconducting

A Flexible Design from the Beginning

Magnet Division

Design Philosophy:

- Start out a design from the beginning itself, that allows significant adjustability for field harmonics and mechanical parameters (cable thickness, wedges, etc.).
- A flexible design is generally economical, efficient and produces magnets with better performance. I think it's a prudent approach.

Geometric: Start with a larger than required shim and midplane cap. Then adjust it, as required without changing the cross-section of the cured coil. One can also adjust the layers of wedge/cable insulation, if needed. These three parameters can adjust, first two allowed harmonics and pre-stress or cable insulation. This approach was used extensively in various RHIC magnets.

Saturation: Start out with holes and fill them with iron rods. Or, punch holes in laminations later.
In KEK, C.F. dipole, one may consider adjusting for quad and sextupole component.

BROOKHMUEN NATIONAL LABORATORY

Superconducting

 Magnet Division
Change in Midplane Gap to Adjust Harmonics

 (can be easily done by changing the size of the ground-plane insulation cap)

Coil-to-coil

 midplane gap (1 in dipole)Table 4.4.1: The computed and measured change in field harmonics at 25 mm reference radius due to a change in the coil midplane gap. The midplane gap was increased from 0.114 mm to 0.16 mm in the rebuilt 80 mm aperture RHIC model dipole magnet DRS009. In the production magnets, the midplane gap was changed back to 0.114 mm from 0.16 mm to adjust the b_{4} harmonic.

	Δb_{2}	Δb_{4}	Δb_{6}	Δb_{8}
Computed	-3.0	-1.0	-0.28	-0.09
Measured	-3.0	-1.0	-0.29	-0.12

Table 4.5.1: The measured and computed change in field harmonics caused by an asymmetric increase in the coil-to-midplane gap in the prototype 130 mm aperture RHIC interaction quadrupole QRI002. The gap was increased by 0.1 mm in the horizontal plane only. The harmonics are given at a reference radius of 40 mm .

BRODKHBUEN

NATIONAL LABORATORY

Superconducting Magnet Division

RHIC 100 mm Aperture Insertion Dipole: The first magnet gets the body harmonics right

Geometric Field Errors on the X-axis of DRZ101 Body

First magnet and first attempt in RHIC 100 mm aperture insertion dipole A number of things were done in the test assembly to get pre-stress \& harmonics right

Harmonics at $\mathbf{2 k A}$ (mostly geometric).

Note: Field errors are within 10^{-4} at 60% of coil radius and $\sim 4^{* 1} 10^{-4}$ at 80% radius.

Later magnets had adjustments for integral field and saturation control. The coil cross-section never changed.

Measured in 0.23 m long straigth section.

Reference radius $=31 \mathrm{~mm}$

b1	-0.39	a2	-1.06
b2	-0.39	a3	-0.19
b3	-0.07	a4	0.21
b4	0.78	a5	0.05
b5	-0.05	a6	-0.20
b6	0.13	a7	0.02
b7	-0.03	a8	-0.16
b8	0.14	a9	-0.01
b9	0.02	a10	0.01
b10	-0.04	a11	-0.06
b11	0.03	a12	-0.01
b12	0.16	a13	0.06
b13	-0.03	a14	0.03
b14	-0.10	a15	0.02

All harmonics are within or close to one sigma of RHIC arc dipoles.

Superconducting

Magnet Division

Average Field errors ~10-4 up to 80% of the coil radius

Geometric Field Errors on the X-axis of RHIC DRZ magnets (108-125)
Coil X-section was not changed between $1^{\text {st }}$ prototype and final production magnet A Flexible \& Experimental Design Approach Allowed Right Pre-stress \& Right Harmonics
 Estimated Integral Mean in Final Set (Warm-cold correlation used in estimating) Harmonics at 3 kA (mostly geometric)
Reference radius is 31 mm (Coil 50 mm)

b1	-0.28	a1	-0.03
b2	-0.26	a2	-3.36
b3	-0.07	a3	0.03
b4	0.15	a4	0.48
b5	0.00	a5	0.04
b6	0.32	a6	-0.24
b7	0.00	a7	0.01
b8	-0.08	a8	0.05
b9	0.00	a9	0.00
b10	-0.12	a10	-0.02
b11	0.03	a11	-0.01
b12	0.16	a12	0.06
b13	-0.03	a13	0.03
b14	-0.10	a14	0.02

*Raw Data Provided by Animesh Jain at BNL
Field errors are 10^{-4} to 80% of the aperture at midplane. ${ }^{}$
(Extrapolation used in going from 34 mm to 40 mm ; reliability decreases)

Superconducting

 Magnet Division
Computed Peak Fields in SSC Dipole

Table 6.2.6: Peak fields in the SSC 50 mm dipole as computed

BROOKHAVEN
NATIONAL LABORATORY

Superconducting

 Magnet Division
Computed Performance of SSC Dipole

Table 6.2.7: Expected quench performance of the SSC 50 mm dipole with 5% cable degradation $\left(J_{c}=2612.5 \mathrm{~A} / \mathrm{mm}^{2}\right)$ and at 4.35 K temperature. $S_{\text {quench }}$ is the computed current density in the copper at quench and $S_{6.7 T}$ at the design field of 6.7 Tesla.

Layer	$\mathrm{Cu} / \mathrm{Sc}$	$B_{s s}$	I_{c}	$B_{\text {margin }}$	$T_{\text {margin }}$	$S_{\text {quench }}$	$S_{6.7 T}$
\downarrow	Ratio	tesla	A	\%over 6.7T	kelvin	A / cm^{2}	A / cm^{2}
Inner	1.7	7.149	7126	6.7	0.519	736	681
	1.5	7.273	7273	8.6	0.625	788	715
	1.3	7.399	7411	10.4	0.730	853	759
Outer	2.0	7.268	7267	8.7	0.580	919	834
	1.8	7.445	7470	11.1	0.709	980	865

the magnet will quench at the design central field ($B_{\text {design }}=6.7$ tesla). The field margin is defined as follows

$$
B_{\operatorname{margin}}(\%)=\frac{B_{s s}-B_{d e s i g n}}{B_{d e s i g n}} \times 100
$$

BROOKHANEN

NATIONAL LABORATORY

Superconducting Magnet Division

Error in Parts and Influence in Field Harmonics in SSC Dipole

Table 6.2.8: The effect of a 0.05 mm increase in the given parameter on the transfer function and the field harmonics.

Parameter	TF	b_{2}	b_{4}	b_{6}
changed	T / kA	10^{-4}	10^{-4}	10^{-4}
Radius of Block No. 1	0.31	-0.25	-0.10	-0.01
Radius of Block No. 2	-0.32	0.31	0.12	0.01
Radius of Block No. 3	-0.12	0.36	-0.02	-0.01
Radius of Block No. 4	-0.20	0.33	-0.08	0.01
Radius of Block No. 5	-0.11	-0.04	-0.01	0.00
Radius of Block No. 6	-0.78	0.22	0.03	0.00
RMS Blocks	0.38	0.27	0.07	0.01

Thickness of Wedge No. 1	-1.56	-0.48	0.02	0.01
Thickness of Wedge No. 2	0.83	0.59	0.05	-0.01
Thickness of Wedge No. 3	2.32	0.71	-0.04	0.00
Thickness of Wedge No. 4	-0.57	-0.11	0.00	0.00
RMS Wedges	1.48	0.52	0.03	0.01
Cable thickness inner	2.63	1.08	0.05	-0.01
Cable thickness outer	1.99	0.48	0.02	0.00
RMS Cable thickness	2.33	0.83	0.04	0.01
Pole angle inner	-4.01	-0.45	0.06	-0.01
Pole angle outer	-2.26	-0.42	0.00	0.00
RMS Pole angles	3.25	0.43	0.04	0.01

BROOKHRVEN

Superconducting

 Magnet DivisionThe stored energy and the inductance are related through the following formula :

$$
\text { Stored Energy }=\frac{1}{2} \text { Inductance } \times(\text { Current })^{2}
$$

The inductance decreases at high field as the iron yoke saturates.
The results of POISSON computations for the SSC 50 mm aperture dipole are given at 6.5 kA in Table 6.2 .9 for the stored energy per unit length and the inductance per unit length. The total stored energy and the inductance for a 15 m long dipole are also given.

Table 6.2.9: Stored Energy and Inductance at 6.5 kA as computed with the code POISSON for the SSC 50 mm aperture dipole.

2-d Modeling program compute stored energy. Don't forget to multiply by the program symmetry.

Stored Energy per unit length, kJ/m	105.0
Stored Energy for 15 m long Dipole, kJ	1575.6
Inductance per unit length, mH / m	4.972
Inductance for 15 m long Dipole, mH	74.585

BROOKHANEN

NATIONAL LABORATORY

Superconducting Magnet Division

Lorentz Forces on the Individual Turn of the SSC Dipole

Figure 6.2.5: The magnitude of the components of the Lorentz force on the individual turns in a SSC 50 mm prototype magnet. The radial component of the force (F_{r}) pushes the coil outward and the azimuthal component (F_{a}) compresses the coil towards the midplane (horizontal plane). There are 19 turns in the inner layer and 26 turns in the outer layer of each quadrant.

Computed Lorentz forces at the design field of 6.6 T (6.6 kA).

BROOKHRUEN

NATIONAL LABORATORY

Superconducting

 Magnet Division
Forces in the Current Blocks of SSC Dipole

The table summarizes the forces on the blocks in the example SSC dipole.

BLOCK	$F_{X}, \mathrm{lb} . / \mathrm{in}$	$F_{Y}, \mathrm{lb} / \mathrm{in}$	$F_{X}, \mathrm{~N} / \mathrm{m}$	$\mathrm{F}_{\mathrm{Y},}, \mathrm{N} / \mathrm{m}$
1	1005.46	-108.98	$1.76 \mathrm{E}+05$	$-1.91 \mathrm{E}+04$
2	1312.68	-237.56	$2.30 \mathrm{E}+05$	$-4.16 \mathrm{E}+04$
3	612.52	-151.97	$1.07 \mathrm{E}+05$	$-2.66 \mathrm{E}+04$
4	650.99	-116.62	$1.14 \mathrm{E}+05$	$-2.04 \mathrm{E}+04$
5	231.73	-384.60	$4.06 \mathrm{E}+04$	$-6.74 \mathrm{E}+04$
6	1208.86	-1371.22	$2.12 \mathrm{E}+05$	$-2.40 \mathrm{E}+05$
Total	5022.24	-2370.96	$8.80 \mathrm{E}+05$	$-4.15 \mathrm{E}+05$

Octupole in Quadrupoles When Quad Assembled Like Dipoles

Measured b_{3} (octupole) $\neq 0$)

also seen in Sc mm Arc Quad $(7$ unit in both magnets) Octupole From Quad

BASIC Problem
(a) Trying to assemble quad like dipole or
(b) Starting Y_{0} ke i.d is circular (which becomes non-circular after assembly)
Fix

1. Stent out-of round yoke;
so that when assembled, it is round
\rightarrow Too late for that (andtoo sypensive of changes)

- 2. Create deliberate asymmetry in coil
$\overrightarrow{A N D}$ Easy, Tested and worked $(b, y m$,

Superconducting

Goals of End Design

 Magnet Division
Magnetic Design

-Optimize for low integrated harmonics
-Guide design towards lower peak field without large increase in length
-Compute cross talk and fringe fields
Mechanical Layout
-Minimize strain and tilt of the cable in the end. Minimize large changes
-Cable and entire ends should be well supported (constrained)
In low field magnets, magnetic design drives the end design, whereas, in high field (high force) magnets, the mechanical design must!
These guiding principle are common to our all high force magnet designs (including 12 T common coil dipole design).

BRDOKHBUEN

 NATIONAL LABORATORY
Ends of Cosine Theta Cable Magnets

Superconducting

Magnet Division

BROOKHAVEN

 NATIONAL LABORATORYSuperconducting Magnet Division

Ends of Cosine Theta Cable Magnets

\qquad
DSA-207 RETURN END LEFT SIDE

 1 NO.CGO4RE $\mathbf{2}$ THELS.STARRETTCO. $\mathbf{3}$ ATHOLMASS.USSA. $\mathbf{4}$ TEMPERED $\mathbf{5}$

Superconducting

End Harmonic Optimization (conceptual)

Magnet Division

Ends with spacer
(integrated harmonics \& peak field reduced)

Ends without spacer (large harmonics and peak field)

- End spacers increase the straight section length of some turns (turns at midplane go further out)
- Now consider the integral field generated by each turn. The harmonic component generated by a turn will depend on the angular location of it. The integral strength will depend on the length.
- A proper choice of end spacer can make integral end-harmonics small. However, note that the local values are large.
- Spacer also reduce the maximum value of field on the conductor (peak field) in the end.

BROOKHRUEN

NATIONAL LABORATORY

Superconducting

Block Structure

Magnet Division
Straight section (6 blocks, 70 turns): 302010433 (counting from midplane) 334102030 (counting from pole)
End section (8 blocks, 70 turns):
10584134620
(counting from pole)
Straight section => pole

$$
\begin{array}{ll}
3,3,4 & =>10 \\
4,10,20 & =>5,8,4,13 \\
30 & =>4,6,20
\end{array}
$$

Equal spacing in "Red Color" blocks is used as harmonic optimization parameters

BROOKHMNEN NATIONAL LABORATORY

Superconducting

 Magnet Division
Tilt of Turns in Various End Blocks (at far out position)

BROOKHANEN

 NATIONAL LABORATORY
Superconducting

The AKF Parameter of Turns in Various End Blocks

AKF indicates the deviation from constant perimeter (hence strain on the cable)
Large Deviation from 1.0 is bad

BROOKHANEN NATIONAL LABORATORY

Superconducting

Coil End: Design A

Magnet Division

Superconducting

Peak Field Minimization

Magnet Division

A high peak field reduces the magnet quench performance.
> A large effort must be undertaken in 2-d optimization.

Usually about thousand cases are examined to :
-Minimize harmonics -Find a solution with lower peak field
-Good mechanical turn configuration (wedges, tilt angle, etc).

A series of computer programs have been written to carry out the above optimization in an exhaustive and systematic manner.

BROOKHANEN
NATIONAL LABORATORY

Peak Field in the Body of the Magnet

Superconducting
Magnet Division

BROOKHANEN

NATIONAL LABORATORY

Superconducting

Magnet Division

Peak Field in the End

An example of an End Design

BROOKHAVEN

 NATIONAL LABORATORY
Superconducting

 Magnet Division
Peak Field in the End

BROOKHRUEN
NATIONAL LABORATORY

Superconducting

Magnet Division

Peak Field in the End How does it compare to Body?

In this example, the peak value is larger in the end than in the body of the magnet.

Component: BMOD
70.0

Peak Field in the Ends

In cosine theta magnets, the conductors in the Ends are more strained and the mechanical design is generally less robust.

Therefore, one would like the peak field in the Ends to be less than that in the body of the magnet, to give conductor a larger margin.

BRDDKK BI/EN

NATIONAL LABORATORY
Superconducting Magnet Division

Ends with 3 Re-adjusted Spacers

BROOKHRUEN NATIONAL LABORATORY

Superconducting

 Magnet Division
Peak Field Straight Section vs. Ends

BROOKHMVEN

NATIONAL LABORATORY

Superconducting

Block Structure

Magnet Division
Straight section (6 blocks, 70 turns): 302010433 (counting from midplane) 334102030 (counting from pole)
End section (8 blocks, 70 turns):
10584134620
(counting from pole)
Straight section => pole

$$
\begin{array}{ll}
3,3,4 & =>10 \\
4,10,20 & =>5,8,4,13 \\
30 & =>4,6,20
\end{array}
$$

Must avoid large Ultum spacers

 (subdivide, if necessary)

Equal spacing in "Red Color" blocks is used as harmonic optimization parameters

BROOKHAVEN

 NATIONAL LABORATORYSuperconducting Magnet Division

Block configuration:

(8 blocks, 70 turns):
$10,5,8,4,13,4,6,20$
(counting from pole)

End Harmonic Optimization: SMINSQ

End spacers in block \#2 (with 5 turns) and end spacer in block \#7 (with 4 turns).
All spacers with in a block have the same size.

Changing the size of two group of end spacers was adequate to get all harmonics small.
Computed values:

$$
\begin{aligned}
& B_{5}<1 \text { unit-meter; } \\
& B_{9} \text { and } B_{13}<0.1 \text { unit-m }
\end{aligned}
$$

Effective Magnetic Length $\sim 15.6 \mathrm{~cm}$
Mechanical Length $\sim 28 \mathrm{~cm}+$ End Saddle

BROOKHMNEN

 NATIONAL LABORATORY
Superconducting

Field through the Coil Ends

Magnet Division

BROOKHMVEN NATIONAL LABORATORY

Superconducting

 Magnet Division
Field Harmonics through the End b_{5} : dodecapole

BROOKHMVEN NATIONAL LABORATORY

Superconducting

Field Harmonics through the End : b_{9}

Slide No. 48 of Lecture IV
Ramesh Gupta, BNL

BROOKHMVEN NATIONAL LABORATORY

Superconducting

Field Harmonics through the End : b_{13}

Common Coil Design (The Basic Concept)

- Simple 2-d geometry with large bend radius (no complex 3-d ends)
- Conductor friendly (suitable for brittle materials - most are - $\mathbf{N b}_{3} \mathbf{S n}$, HTS tapes and HTS cables)
- Compact (compared to single aperture LBL's D20 magnet, half the yoke size for two apertures)
- Block design (for large Lorentz forces at high fields)
- Efficient and methodical R\&D due to simple \& modular design
- Minimum requirements on big expensive tooling and labor
- Lower cost magnets expected

BRDOKHFUEN
NATIONAL LABORATORY

Superconducting

 Magnet DivisionUp-down asymmetry gives large skew harmonics, if done nothing. Integrate By.dl 10 mm above and 10 mm below midplane.

${ }^{\text {onen }}$ An up-down asymmetry in the ends with "no spacer"

$B_{y} 10 \mathrm{~mm}$ above and below midplane on magnet axis

Up-down asymmetry can be compensated with end spacers. One spacer is used below to match integral By.dl 10 mm above \& below midplane.

$B_{y} 10 \mathrm{~mm}$ above and below midplane on magnet axis

A large Bz.dl in two ends (~ 1 T.m in 15 T magnet).

- Is it a problem?
- Examine AP issues.
- Zero integral.
- Lead end of one magnet + Return of the next magnet will make it cancel in about ~ 1 meter (cell length ~ 200 meters).
- Small v X B.

BROOKHENEN

NATIONAL LABORATORY

Superconducting

 Magnet Division\qquad

An Example of End Optimization with ROXIE (iron not included)

End harmonics can be made small in a common coil design.

Contribution to integral $\left(a_{n}, b_{n}\right)$ in a 14 m long dipole $\left(<10^{-6}\right)$

End harmonics in Unit-m

\mathbf{n}	bn	an
$\mathbf{2}$	0.000	0.001
$\mathbf{3}$	0.002	0.000
$\mathbf{4}$	0.000	-0.005
$\mathbf{5}$	0.019	0.000
$\mathbf{6}$	0.000	-0.014
$\mathbf{7}$	0.025	0.000
$\mathbf{8}$	0.000	-0.008
$\mathbf{9}$	-0.001	0.000
$\mathbf{1 0}$	0.000	-0.001
$\mathbf{1 1}$	-0.001	0.000
$\mathbf{1 2}$	0.000	0.000

BROOKHANEN
NATIONAL LABORATORY

Superconducting

Reduction in Peak Field in the Ends of Common Coil

Field and Field lines as computed by OPERA 2-d
15.1

3-d Model
L L-300.0

Peak field in the ends is minimized by:

- Removing iron over the ends
- Using end spacers between the turns.

bROOKHANEN

 NATIONAL LABORATORY
Superconducting

 Magnet Division
A Helical Magnet for AGS at BNL (1)

This magnet uses helical coils to maintain the polarization of the beam as it passes spin resonances in AGS.

Note: Particle Tracking

V VECTOR FIELDS

BROOKHAVEN

NATIONAL LABORATORY

Superconducting

 Magnet Division
A Helical Magnet for AGS at BNL (2)

$z(\mathrm{~mm})$
V- VECTOR FIELDS

SUMMARY

We are now expert in:

2d coil design
Requires good mechanical, magnetic and flexible design

3d coil design
Requires good mechanical and magnetic design

