

Superconducting

Magnet Division

High Temperature Superconductor (HTS) Magnet R&D and Designs

Ramesh Gupta Superconducting Magnet Division Brookhaven National Laboratory

US Particle Accelerator School University of California – Santa Barbara June 23-27, 2003

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 1 of Lecture 11

KH&VEN NATIONAL LABORATOR

The Conventional Low Temperature Superconductors (LTS)

Superconducting **Magnet Division**

and the New High Temperature Superconductors (HTS)

Low Temperature Superconductor Onnes (1911) **Resistance of Mercury falls suddenly below** meas. accuracy at very low (4.2) temperature

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

160

Popular HTS Materials of Today

•BSCCO 2223 (Bi,Pb)₂Sr₂Ca₂Cu₃O_x •BSCCO 2212 •YBCCO

•MgB₂ is technically a low temperature superconductor (LTS) with critical temperature \sim 39 K.

Of these only BSCCO2212 and BSCCO2223 are now available in sufficient quantities to make accelerator magnets.

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 3 of Lecture 11

Another Remarkable Property of HTS The High Field Current Carrying Capacity

Compare J_c Vs. B between the conventional Low Temperature Superconductors (LTS) and High Temperature Superconductors (HTS)

Applied Field, T

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 4 of Lecture 11

Advantages of using HTS in Accelerator Magnets

As compared to LTS, the critical current density (J_c) falls slowly

- as a function of field
- as a function of temperature

Translate this to magnet design and accelerator operation:

- HTS has a potential to produce very high field magnets
- HTS based magnets can work at elevated temperatures
 - a rise in temperature from, e.g., decay particles can be tolerated
 - the operating temperature does not have to be controlled precisely
- HTS based magnets don't appear to quench in the normal sense
- •Weak spots don't limit the magnet performance, instead the local temperature rises a bit (major difference from LTS magnets).

It becomes a question of heat load rather than a weak spot limiting the performance of the entire magnet

Challenges with HTS

Superconducting Magnet Division

(and the way they are being addressed)

HTS materials are very brittle

Work on magnet designs => make "conductor friendly designs".

• HTS materials are still very expensive

Cost/Amp is coming down continuously, primarily because of the improvements in performance. Also for some applications, the performance and not the material cost should be the main consideration. One must consider the overall system and operational cost.

Large quantities are not available

Situation has significantly improved. We purchased 1.5 km long wire. The tapes are available in similar length. Now we can make coils and magnets having reasonable length.

The technical question is controlling the temperature of reaction furnace to $\sim 1/2$ degree at 880°-890°C over the entire reaction volume.

Possible Applications of HTS in Accelerator Magnets

High Field, Low Temperature Application

Example: Interaction Region (IR) Magnets for large luminosity upgrade or very high field main ring dipoles to achieve highest possible energy in existing given tunnel.

• At very high fields (>15 T), no superconductor carries as much critical current density as HTS.

Medium Field, Higher Temperature Application

Example: Quads for Rare Isotope Accelerator (RIA)

• The system design benefits enormously because the HTS offers the possibility of magnets to operate at higher than 4K, say at 20-40 K.

Special Benefits of HTS

• The HTS can tolerate a large increase in temperature in superconducting coils (caused by the decay particles) with only a small loss in performance.

• Moreover, the temperature need not be controlled precisely (Think about an order of magnitude relaxation in temperature variations, as compared to the LTS used in current accelerator magnets).

Expected Performance of HTS-based Magnets

First Likely Application of HTS: Interaction Region (IR) Magnets

Interaction region magnets for the next generation colliders or luminosity upgrade of existing colliders (LHC is existing collider for this purpose)

can benefit a lot from:

Very high fields

Ability to take large energy deposition without much loss in performance

Ability to operate at elevated temperatures that need not be uniform

 \rightarrow For IR magnets, the performance, not the material cost is the issue.

→ These magnets can be, and perhaps should be, replaced in a few years. (for LHC, the first installment may be due ~10 years from now)

All of above makes HTS a natural choice for next generation IR magnet R&D.

Construction and Test Results from HTS Technology Development Program at BNL

Next Few Slides will Show:

- Results of HTS Tape and Cable Tests
- Construction and Test Results of HTS Coils and R&D Magnets

Please see the tape and cable being distributed

HTS Wire

HTS Tape

10+ kA HTS Rutherford Cable BNL/LBL/Industry collaboration

Slide No. 10 of Lecture 11

Ramesh Gupta, BNL

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

HTS Coil Wound by Hand

Superconducting Magnet Division

Al Bobbin (70 mm radius) (also used, Fe, SS and brass bobbins)

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 11 of Lecture 11

Measured Performance of HTS Cable and Tape As A Function of Field at BNL

Superconducting Magnet Division

Measurements of "<u>BSCCO-2212 cable"</u> (Showa/LBL/BNL) at BNL test facility Reported Ic in new wires is ~ 3x better than measured in the cable. This was a narrow (18 strand) cable. Wider cable with new conductor should be able to carry 5-10 kA current at high fields!

(self field correction is applied)

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Measurements of "<u>BSCCO 2223</u> <u>tape</u>" wound at 57 mm diameter with applied field parallel (1μ V/cm criterion)

(field perpendicular value is ~60%)

Slide No. 12 of Lecture 11

BRUUKHAVEN NATIONAL LABORATORY

For very high field magnet applications, we are interested in low temperature and high field characteristics of high temperature superconductors.

However, these conductors still have significant critical current at higher temperature. Testing at Liquid Nitrogen (LN_2) temperature is much more easier than testing at Liquid Helium (LHe) temperatures.

BNL has developed and extensively used LN2 testing in HTS cable, coil and magnet R&D.

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003 Slide No. 13 of Lecture 11 Ramesh Gupta, BNL

HTS Cable and Coil Test at Liquid Nitrogen

Testing of HTS cables (or tapes) at LN2 is a powerful method even if the cables are to be used in magnets that would operate at LHe temperatures

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 14 of Lecture 11

BSCCO-2212 Cable "Pancake Coils"

HTS cable is carefully wound in large radius pancake coil for testing at liquid nitrogen temperatures

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 15 of Lecture 11

Ic Tracking Between 4.2 K and 55 K

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 16 of Lecture 11

Correlation between T_c and I_c

Superconducting

Magnet Division_

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 17 of Lecture 11

Superconducting

Magnet Division

Ic as a function of Temperature

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 18 of Lecture 11

Correlation between T_c and I_c

Superconducting

Magnet Division

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 19 of Lecture 11

Extrapolated 4 K performance of 20 strand cable (#5) (wire dia = 1 mm) :

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 20 of Lecture 11

BROOKHAVEN NATIONAL LABORATORY Superconducting Magnet Division

Note the improvements both, in the absolute value and in the spread.

HTS Magnet R&D and Test Program at BNL

HTS Tape Coil Program:

- Started ~ 4 years ago
- Six 1-meter long coils built and tested

10-turn HTS Cable R&D Program with rapid turn around

• Cost effective with rapid turn around

encourages systematic and innovative magnet R&D

allows many ideas to be tried in parallel

•Started ~2 year ago

20 coils with brittle materials (5 HTS, 15 Nb₃Sn) built and tested

12T high background field R&D Program

• Will address issues related to high field, high stress performance of HTS

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 22 of Lecture 11

Common Coil Magnets With HTS Tape (Field quality in 74 mm aperture to be measured soon)

OOKHÆVEN

NATIONAL LABORATORY

Superconducting

A coil being wound with HTS tape and insulation.

Status of HTS tape coils at BNL

	Size, mm	Turns	Status	Two U
Nb ₃ Sn	0.2 x 3.2	168	Tested	ТМОП
IGČ	0.25 x 3.3	147	Tested	commo
ASC	0.18 x 3.1	221	Tested	
NST	0.20 x 3.2	220	Under c	onstruction
VAC	0.23 x 3.4	170	Under c	onstruction

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Two HTS tape coils in common coil configuration

Slide No. 23 of Lecture 11

HTS Cable Magnet Program

BSCCO 2212 cable appears to be the most promising high temperature superconductor option for accelerator magnets

Higher current for operating accelerator magnets
Plus all standard reasons for using cable

HTS Cable

A good and productive collaboration has been established between labs (BNL, LBL) and industries (IGC, Showa).

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 24 of Lecture 11

BSCCO Wire (Year 2000)

Superconducting

Magnet Division

Ic-B characteristics of new wire

Showa Electric

T. Hasegawa, "HTS Conductor for Magnets", MT-17, Geneva.

20/02/00

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 25 of Lecture 11

Vacuum Impregnation Setup

Superconducting Magnet Division

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 26 of Lecture 11

HTS Coils in Support Structure

Superconducting Magnet Division

Coils are heavily instrumented. There is a voltage tap after each turn. Data were recorded from all 26 voltage taps.

Coils are assembled for the most flexible and extensive testing. Four leads are taken out of the cryostat. During the test the coils were powered separately and together in "common coil" and "split-pair solenoid mode".

> Two Hall probes (between the two coils and at the center of two coils) also recorded the central field.

Slide No. 27 of Lecture 11

Ramesh Gupta, BNL

Performance of Coil #1 and Coil #2 in Common Coil Test Configuration in Magnet (DCC002)

Superconducting Magnet Division

NATIONAL LABORATORY

OKH*r*ven

Voltage difference between each consecutive turn and on each coil

Measurements in HTS Magnet DCC004 at 4.2 K

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 28 of Lecture 11

Superconducting

Magnet DCC006: 2nd HTS Dipole (Magnet No. 6 in the common coil cable magnet series)

configurations OL structure to test single coils in various A versatile double

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 29 of Lecture 11

Critical Current in Mixed Strand Cable

Superconducting

NATIONAL LABORATORY

OKH&VEN

Magnet Division

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 30 of Lecture 11

Ramesh Gupta, BNL

Measured Ic of Various Turns

Superconducting Magnet Division

Turns No. 1-7 show an I_c close to the best measured in cable prior to winding. This suggest a low level of degradation.

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 31 of Lecture 11

Superconducting

Measured Critical Current as a Function of Temperature

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 32 of Lecture 11

Performance of HTS Coil in the Background Field of Nb₃SN Coils

Field in various coils

Measured electrical Resistance of HTS coil in the background field provided by various Nb3Sn coils in the magnet DCC008R

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 33 of Lecture 11

Performance of HTS Coil in the Background Field of Nb₃SN Coils

Performance of HTS cable in coil (before and after winding) 3.5 -- lc,kA- -∎ - Iss(kA) **DCC008R** 3.0 $I(Nb3Sn)=9kA \longrightarrow I(Nb3Sn)=6kA$ I(Nb3Sn)=0kA → I(Nb3Sn)=3kA 2.5 Ic Before Winding 2.0 l(kA) 1.5 **Ic After Winding** 1.0 I_{Nb3Sn}=0kA I_{Nb3Sn}=0kA I_{Nb3Sn}=0kA I_{Nb3Sn}=0kA 0.5 0.0 0.5 1.5 2.5 3 3.5 0 2 4 H(T)HTS coil was subjected to various background field by changing current in "React & Wind" Nb₃Sn coils (HTS coil in the middle and Nb₃Sn on either side) Ramesh Gupta, BNL

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 34 of Lecture 11

Low Field Magnet Applications of HTS in Accelerators

Medium Field, Higher Temperature Application

Example: Quads for Rare Isotope Accelerator (RIA)

- These applications don't require very high fields.
- The system design benefits enormously because the HTS offers the possibility of magnets to operate at higher than 4K, say at 20-40 K.
- The HTS can tolerate a large increase in temperature in superconducting coils (caused by the decay particles) with only a small loss in performance.
- Moreover, the temperature need not be controlled precisely (Think about an order of magnitude relaxation in temperature variations, as compared to the LTS based accelerator magnets).

Superconducting

High Temperature Superconductor (HTS) Quads in Fragment Separator Region of RIA

Basic Requirements of Quadrupoles for Fragment Separator in RIA

They are the first magnetic elements in the fragment separator for RIA

- Required Gradient: 32 T/m in the first quadrupole of the triplet.
- This gradient points to superconducting magnet technology.

Quads are exposed to high radiation level of fast neutrons (E > 1 MeV) Beam looses 10-20% of its energy in production target, producing several kW of neutrons.

A large fraction of above hit the superconducting quadrupole triplet.

• This raises several short tem and long term time scale issues.

Room temperature, water cooled copper magnets produce lower gradient and/or lower aperture quads. That will lower acceptance and make inefficient use of beam intensity. Also moving quad back and adding more shielding, requires higher gradient and larger aperture quadrupoles.

Basically, we need *"radiation resistant"* superconducting quads, working in a "hostile environment", where no known magnet has ever lived so long before!

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003 Slide No. 37 of Lecture 11

Short Time Scale Issues

Superconducting magnets will quench if large amount of energy is dumped on superconducting coils (over several mJ/g).

In addition, there is a large constant heat load on the cryogenic system : \sim 1 W/kg to the cold mass.

• The temperature increase must be controlled within the acceptable tolerances of the superconductor used.

• The large amount of heat deposited must be removed economically.

• HTS appear to have a potential of offering a good technical and a good economical solution with the critical current densities that are available today (of course, we can always do better with higher J_c).

• However, we need to develop magnet technology and prove that the above potential can be utilized in a real magnet system.

- One must look at the impact on the material properties of such a radiation dose over the life time (estimated 10^{19} neutrons/cm² in the region of 0 to 30 degrees in ~12 years).
- Iron and copper are expected to be able to withstand about ~100 times the above dose.

<u>Note:</u> The normal water cooled electromagnet can not generate the required field gradient.

The development of the radiation resistant superconducting magnet designs & technologies is highly desirable for RIA.

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 39 of Lecture 11

Significant Reduction in Neutron Fluence at Larger Angle

Note:

A large (almost exponential) reduction in Neutron Fluence at higher angle.

NOTE: The radiation dose on superconducting coils can be significantly reduced by moving them outward (larger solid angle).

T. Kurosawa, et al., Phys Rev C, Vol 62, 044615

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 40 of Lecture 11

Proposed Alternate Design for the 1st RIA Quad in the Triplet of Fragment Separator

A Super-ferric design with <u>yoke</u> making significant contribution to field. Racetrack Coil is at x = 22 cm and yoke starts at $R_{yoke} = 5.5$ cm

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 41 of Lecture 11

Insulation in HTS Coils Built at BNL

Superconducting Magnet Division

BNL has successfully tested several HTS R&D magnets and test coils made with BSCCO 2212 and BSCCO 2223 tape. A unique and very pertinent feature of these coils is the successful use of <u>stainless steel as the insulation material between turns</u>. This technique was developed to provide a strong mechanical coil package capable of withstanding the large Lorentz forces in a 25T environment, but will also provide a highly radiation resistant coil.

Two double pancake NMR coils, one with kapton insulation and the other with stainless steel. S.S. insulation works well with superconductors

HTS Test Coil for an Accelerator Magnet

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 42 of Lecture 11

Summary and Status of the Alternate Design of the 1st QUAD in RIA Fragment Separator

Apart from providing a good technical solution, this design should bring a large reduction in the operating costs.

- HTS Quads can operate at much a higher temperature (20-40 K instead of 4K).
- •The iron yoke is warm (or at least at ~80 K, which can be cooled by liquid nitrogen). This brings a major reduction in amount of heat to be removed at lower temperature.
- The coils are moved significantly outward to reduce radiation dose by a large amount.
- HTS can tolerate an order of magnitude higher temperature variations during operation.
- The possibility of stainless steel insulation is highly attractive.
- It is shown that the field quality requirements can be met.

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003 Slide

Slide No. 43 of Lecture 11

Near Term R&D Program at BNL

- Build a series of 10 turn coils with better HTS cable
- Build ~40 turn coils after the technology is reasonably developed
- In parallel build ~12 T magnet with Nb₃Sn to provide background field
- Assemble hybrid magnet to study issues related to the performance of HTS coils in high field environment
- •Study field quality issues related to HTS magnets

Present the results to accelerator community so it can make an informed decision about the viability of HTS in accelerators to take advantage of exciting benefits it offers.

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 44 of Lecture 11

Cut-away View of the 12 T Magnet

Superconducting

Magnet Division

Cut-away view of the 12T Magnet

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 45 of Lecture 11

Superconducting

Magnet Division_

12 T Magnet: The Important Next Step in HTS R&D Program

- At present, HTS alone can not generate the fields we are interested in.
- Nb₃Sn coils provides high background fields. The HTS coils will be subjected to high field and high stresses that would be present in an all HTS magnet. Therefore, several technical issues will be addressed.
- Since 12 T Nb₃Sn magnet uses similar technology (building high field magnet with brittle material), it also provides a valuable learning experience in building an all HTS high field magnet.

• Important design consideration: Allow a simple mechanism for testing HTS insert coils.

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 46 of Lecture 11

High Field Magnet Designs with HTS

Superconducting Magnet Division

<u>NOTE:</u> High Temperature Superconductors (HTS) are uniquely suitable for generating very high fields since, unlike in conventional Low Temperature Superconductors (LTS), the reduction in critical current density as a function of field is much smaller at very high fields.

Applications Under Considerations

- Common Coil 2-in-1 Dipole Design for Hadron Colliders
- Neutrino Factory Storage Ring/Muon Collider Dipole (and Quads) Design
- Interaction Region Magnets (Dipole and Quadrupoles) for High Luminosity Colliders (e.g. for LHC Luminosity Upgrade)

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003 Slide No. 47 of Lecture 11 Ramesh Gupta, BNL

Operation of HTS Based Accelerator Magnets

- HTS based magnets don't appear to quench in a normal way.
- One (or even a few) weak spot (s) won't limit the ultimate performance of the magnet. That would only cause the local temperature to rise a bit but the magnet will continue to operate.
- This becomes more a question of the heat load rather than the weak spot limiting the performance of the whole magnet.

• This is a major difference from the LTS based magnets where a single weak spot limits the performance of the entire magnet.

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003

Slide No. 48 of Lecture 11

HTS has potential to make a significant impact on the design and operation of future accelerators

- •HTS can generate high fields
- •HTS can work at elevated temperature
- >HTS cable and coil testing at Liquid Nitrogen (LN2)
- temperatures has been found reliable and productive
 - •Good correlation between higher temperature (LN2) and lower temperature testing
 - •LN2 tests are much easier, faster and cost effective
- New "conductor friendly designs" allow HTS "React & Wind" technology to be incorporated in accelerator magnets